Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Daniel Grupe
    Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG... more
    Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observed. Dynamic causal modeling and Bayesian Model Selection (BMS) were used to test the intrinsic connections between these structures, and their modulation by face perception. BMS results strongly favored a dynamic causal model with bidirectional, face-modulated amygdala-FG connections. However, the right hemisphere connections diminished at time 2, with the face modulation parameter no longer surviving Bonferroni correction. These findings suggest that amygdala strongly influences FG function during face perception, and that this influence is shaped by experience and stimulus salience.► 39 participants completed a facial recognition task during fMRI scanning. ► fMRI analyses revealed bidirectional amygdala–fusiform gyrus (FG) connectivity. ► Amygdala–FG connectivity was modulated by face processing. ► Amygdala–FG connectivity was reduced upon repeated exposure to faces.