Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
Brazilian Archives of Biology and Technology
Chronicles of Oncology, 2018
Cancers
Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have provided encouraging but probably unexpected results, including the exosome plasmatic levels’ clinical relevance and well-known biomarkers’ overexpression on the circulating EVs. The technical approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry. Based on the above approaches, some clinical investigations have been performed on patients with different tumors, providing exciting and promising results. Here we emphasize data showing that exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity, and nucleic acids. However, we ...
Cancers
Clinical oncology needs reliable tumor biomarkers to allow a follow-up of tumor patients who do not necessarily need invasive approaches. To date, the existing biomarkers are not sufficiently reliable, and many of them have generated more problems than facilitating the commitment of clinical oncologists. Over the last decades, a broad family of extracellular vesicles, with size ranging between micro to nano, has been raised as a new hope for potential sources of new tumor biomarkers. However, while knowledge in the field is increasing, we do not currently have definitive information allowing a clinical use of extracellular vesicles in cancer clinics. Recent evidence provides new perspective in clinical oncology, based on data showing that circulating nanovesicles called exosomes may represent a valuable source of tumor biomarkers. In this review, we discuss the existing clinical data supporting a key role of exosomes as a source of tumor biomarkers, including proteins and miRNAs, bu...
Methods in Molecular Biology, 2011
Translational Cancer Research, 2017
Journal of Translational Medicine, 2011
Annals of surgical oncology, 2024
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2014
Exosomes are tiny vesicles (30-150 nm) constantly secreted by all healthy and abnormal cells, and found in abundance in all body fluids. These vesicles, loaded with unique RNA and protein cargo, have a wide range of biological functions, including cell-to-cell communication and signalling. As such, exosomes hold tremendous potential as biomarkers and could lead to the development of minimally invasive diagnostics and next generation therapies within the next few years. Here, we describe the strategies for isolation of exosomes from human blood serum and urine, characterization of their RNA cargo by sequencing, and present the initial data on exosome labelling and uptake tracing in a cell culture model. The value of exosomes for clinical applications is discussed with an emphasis on their potential for diagnosing and treating neurodegenerative diseases and brain cancer.
International Journal of Nanomedicine, 2020
Exosomes are a subset of tiny extracellular vesicles manufactured by all cells and are present in all body fluids. They are produced actively in tumor cells, which are released and utilized to facilitate tumor growth. Their characteristics enable them to assist major cancer hallmarks, leveraged by cancer cells in fostering cancer growth and spread while implementing ways to escape elimination from the host environment. This review updates on the latest progress on the roles of cancer-derived exosomes, of 30-100 nm in size, in deregulating paracrine trafficking in the tumor microenvironment and circulation. Thus, exosomes are being exploited in diagnostic biomarker development, with its potential in clinical applications as therapeutic targets utilized in exosome-based nanoparticle drug delivery strategies for cancer therapy. Ongoing studies were retrieved from PubMed ® and Scopus database and ClinicalTrials.gov registry for review, highlighting how cancer cells from entirely different cell lines rely on genetic information carried by their exosomes for homotypic and heterotypic intercellular communications in the microenvironment to favor proliferation and invasion, while establishing a pre-metastatic niche in welcoming cancer cells' arrival. We will elaborate on the trafficking of tumor-derived exosomes in fostering cancer proliferation, invasion, and metastasis in hematopoietic (leukemia and myeloma), epithelial (breast cancer), and mesenchymal (soft tissue sarcoma and osteosarcoma) cancers. Cancer-derived exosomal trafficking is observed in several types of liquid or solid tumors, confirming their role as cancer hallmark enabler. Their enriched genetic signals arising from their characteristic DNA, RNA, microRNA, and lncRNA, along with specific gene expression profiles, protein, or lipid composition carried by the exosomal cargo shed into blood, saliva, urine, ascites, and cervicovaginal lavage, are being studied as a diagnostic, prognostic, or predictive cancer biomarker. We reveal the latest research efforts in exploiting the use of nanoparticles to improve the overall cancer diagnostic capability in the clinic.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Conversando com Mentes Brilhantes
LISANIA: Journal of Arabic Education and Literature
Полевой дневник. Восточная Европа в античное время и Средние века: сборник статей памяти О. В. Шарова, 2024
Andalucía en la Historia, 2018
Cognitive and Behavioral Practice, 2010
Philostrato. Revista de Historia y Arte, 2024
EMI translanguaging pedagogy in Asia: Theories, framework, and implementation, 2021
Indonesian Journal of Electrical Engineering and Computer Science
rocedimentos Especiais Cíveis e Legislação Extravagante. Saraiva (2003)
The India Forum, 2023
Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society, 2011
Cell Biology International Reports, 1987
Molecular and cellular biology, 2012
JACC: Cardiovascular Interventions, 2012