Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
HOLOCENE Central Argentina vegetation characteristics linked to extinct megafauna and some implications on human populations Journal: The Holocene Manuscript ID HOL-23-0075.R3 Fo Manuscript Type: Paper Date Submitted by the n/a Author: rP Keywords: rR ee Complete List of Authors: Rindel, Diego; Universidad Nacional de la Plata Facultad de Ciencias Naturales y Museo; CONICET Moscardi, Bruno; Universidad Nacional de la Plata Facultad de Ciencias Naturales y Museo, División Antropología; CONICET Cobos, Virginia; Universidad Nacional de la Plata Facultad de Ciencias Naturales y Museo; CONICET Gordón, Florencia; Universidad Nacional de la Plata Facultad de Ciencias Naturales y Museo; CONICET ev megafauna, plants, coevolution, central region of Argentina, huntergatherers, South America iew In this paper we study the relationships between plants and extinct megafauna by examining the characteristics of the vegetation in the central region of Argentina (i.e., Espinal, Monte and Chaco phytogeographic regions). First, we study the size, shape, quantity, and characteristics of fruits and seeds. We also evaluate the presence of mechanical (spinescence and wood density) and chemical (secondary metabolic compounds) defenses against high rates of herbivory. Complementarily, we assess the importance these plants had for human populations, using archaeological, ethnographic, and current data. A high percentage of the analyzed plants met the criteria proposed for fruits and seeds dispersed by megafauna, together with a high frequency of spinescence, high density woods and secondary metabolites. We propose that these traits cannot be explained by the herbivory pressure of extant Abstract: fauna in the area, but rather developed in interaction with currently extinct fauna. We suggest that Pleistocene megafaunal extinction had important consequences in the region due to their role as ecosystem engineers and to vegetation´s characteristics, which were probably strongly shaped by megafauna activities. Among these consequences, we discuss the loss of certain interactions between these animals and vegetation, such as loss of seed dispersal mechanisms, shrub invasion, and increased susceptibility of vegetation to fire. Other effects for hunter-gatherer groups were the generation of highly regulated mobility patterns and the formation of barriers for the dispersal of prey. Finally, we also discuss the importance of these plants for human populations as food, construction material, medicines and firewood. Likewise, the role of humans as "heirs" of the megafauna in the propagation of tree and http://mc.manuscriptcentral.com/holocene Page 1 of 59 shrub species is highlighted. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Central Argentina vegetation characteristics linked to extinct megafauna and some implications on human populations Diego D. Rindel1,2, Bruno F. Moscardi1,2, Virginia A. Cobos1,2 and Florencia Gordón1,2 1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. 122 y 60, 1900, La Plata, Argentina. 2División Corresponding author: Diego D. Rindel, División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. 122 y 60, 1900, La Plata, Argentina. Email: drindelarqueo@yahoo.com Abstract rP Fo In this paper we study the relationships between plants and extinct megafauna by examining the characteristics of the vegetation in the central region of Argentina (i.e., Espinal, Monte and Chaco phytogeographic regions). First, we study the size, shape, quantity, and characteristics of fruits and seeds. We also evaluate the presence of mechanical (spinescence and wood density) and chemical (secondary metabolic compounds) defenses against high rates of herbivory. Complementarily, we assess the importance these plants had for human populations, using archaeological, ethnographic, and current data. A high percentage of the analyzed plants met the criteria proposed for fruits and seeds dispersed by megafauna, together with a high frequency of spinescence, high density woods and secondary metabolites. We propose that these traits cannot be explained by the herbivory pressure of extant fauna in the area, but rather developed in interaction with currently extinct fauna. We suggest that Pleistocene megafaunal extinction had important consequences in the region due to their role as ecosystem engineers and to vegetation´s characteristics, which were probably strongly shaped by megafauna activities. Among these consequences, we discuss the loss of certain interactions between these animals and vegetation, such as loss of seed dispersal mechanisms, shrub invasion, and increased susceptibility of vegetation to fire. Other effects for hunter-gatherer groups were the generation of highly regulated mobility patterns and the formation of barriers for the dispersal of prey. Finally, we also discuss the importance of these plants for human populations as food, construction material, medicines and firewood. Likewise, the role of humans as "heirs" of the megafauna in the propagation of tree and shrub species is highlighted. iew ev rR ee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 2 of 59 Keywords: megafaunal fruits, spinescence, secondary metabolites, evolutionary anachronism, hunter-gatherers, South America. Introduction Currently, there is great concern about the loss of animal species, mainly due to human impact on terrestrial ecosystems and climate change (Ripple et al., 2014, 2015). This situation is particularly serious in the case of large animals, since their impact on ecosystems is profound http://mc.manuscriptcentral.com/holocene Page 3 of 59 (Owen-Smith, 1988). In this sense, a recent study indicates that less than 21% of the Earth's surface is home to all the extant large mammals (Morrison et al., 2007). Understandably, to a large extent, studies of the current biodiversity crisis have focused on the loss of species, the associated consequences and the identification of ways to mitigate them. A related subject has been the loss of ecological interactions, which in many cases goes along with or even precedes the extinction of species (Novaro et al., 2000; Valiente-Banuet et al., 2015). However, defaunation processes like the current ones, with the consequent loss of ecological interactions, also took place in the recent past. Appealing to a historical perspective that considers the development of these processes in time and space can help to a deeper comprehension of the intervening variables and to avoid or mitigate their effects in the present. In this context, this work explores the possible loss of ecological interactions between extinct Pleistocene megafauna and vegetation in the central region of Argentina (southern portion of South America). For this purpose, we define the following categories to be used hereafter: megafauna (animals >44 kg of adult live weight, sensu Martin, 1967), macroherbivores (animals >100 and ≤1000 kg of adult live weight, sensu Owen Smith, 2013), and megaherbivores (animals >1000 kg of adult live weight, sensu Owen Smith, 1988; Teng et al., 2023). The South American fauna was the product of a complex process that involved local evolution and contributions from other areas (Africa and North America) at different times of the Cenozoic (Supplementary Material 1, Table 1). Few extinctions of this highly varied fauna occurred during the Pleistocene, but the great diversity of species came to an end 10 thousand years ago (kya). In South America the severity of the extinctions was greater than in other continents: approximately 50 genera and 83 species of megafauna and megaherbivores became extinct in the period between 20 and 10 kya (Barnosky et al., 2004; Cione et al., 2009; Defler, 2019; Martin and Klein, 1984). The causes of these extinctions are the subject of intense debate. Hypotheses such as extraterrestrial impacts (Firestone et al., 2007; Pino et al., 2019) and the occurrence of a hyper-disease (Lyons et al., 2004; McPhee and Marx, 1997) have been proposed. However, most researchers favor the idea that Pleistocene megafaunal extinctions were caused by the effect of climate change, by human impacts or by a combination of these factors, although there is no consensus about the relative importance of each one (Barnosky et al., 2004; Bartlett et al., 2016; Broughton and Weitzel, 2018; Lemoine et al., 2023; Lima-Ribeiro and Diniz-Filho, 2013; Pires et al., 2020; Prates and Perez, 2021). In support of these hypotheses, it has been proposed that the disappearance of the megafauna occurred concomitantly with two events: the arrival of the first human groups to South America and the ecological changes produced by the Last Glacial Maximum and minor disturbances that followed, such as the Antarctic Cold Reversal (Prates and Perez, 2021; Prates et al., 2020; Villavicencio et al., 2016). Beyond the causal factors of the extinctions, it is clear that over millions of years these animals established dynamic relationships with their environment, greatly impacting the development of the plant communities with which they interacted (Barlow, 2000; Janzen and Martin, 1982). In southern South America, these coevolutionary relationships were surveyed by Guimarães et al. (2008) and Donatti et al. (2007) in some areas of Brazil with high density of megafauna in the past, such as the Amazon, Cerrado, Caatinga, Atlantic Forest and Pantanal. However, the examination of vegetation characteristics to address these possible relationships between plants and extinct megafauna has not yet been systematically investigated in the central region of Argentina, which includes the phytogeographic provinces of Espinal, Monte and Chaco (Figure 1). Particularly, these provinces comprise part of the core dispersal area of iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE extinct megafauna (Prates and Perez, 2021; Varela and Fariña, 2016), and are ecologically similar to where the largest number of plant species with anachronistic traits was found (i.e., Pantanal area; Donatti et al., 2007; Guimarães et al., 2008). Therefore, the research of the coevolutionary relationships between extinct megafauna and vegetation in central Argentina would be useful for a deeper understanding of megafauna ecology and present environments, while allowing to examine whether the results obtained for the regions of Brazil can be generalized to other nearby areas. Insert Figure 1 The investigation of feeding processes by extant herbivores has allowed to postulate that large species are particularly effective dispersers of some fruits (Barlow, 2000; Feer, 1995; Janzen and Martin, 1982), that there is a positive relationship between body size and the capacity to damage plants (Owen Smith, 1988, 2021), and that plants respond to high rates of herbivory by vigorously defending themselves through chemical and mechanical defenses, such as secondary metabolic compounds and spinescence (Cooper and Owen Smith, 1986; Owen Smith, 1993). Also, Dantas and Pausas (2022) showed that wood density is a trait that confers protection against herbivory by large animals. On the other hand, recent researches indicate that the consequences of megafauna disappearance in post-Pleistocene communities were uneven: in some places the impact was important, such as in Australia (Adeleye et al., 2023), while in others it was not (Barnosky et al., 2016). In areas where an important impact has been observed, some of the consequences of the disappearance of these animals were the loss of certain interactions between megaherbivores and vegetation (e.g., loss of seed dispersal mechanisms, shrub invasion, and increased susceptibility to fire). Therefore, based on previous studies (Barlow, 2000; Guimarães et al., 2008; Janzen and Martin, 1982), in this article we aim to evaluate characteristics of the woody vegetation of the central Argentina to assess if they could be interpreted as a reflection of current selective pressures or as anachronisms (i.e., resulting from past relationship between megafauna and vegetation; Barlow, 2000; Janzen and Martin, 1982). For this purpose, we compiled and analyzed data on size, shape and other characteristics of fruits and seeds, as well as wood density and the presence of spines and secondary metabolic compounds. We expect that in a region with high density and diversity of megafauna in the past and similar to the previously surveyed regions of Brazil, as discussed above, there should be a large amount of vegetation showing anachronistic traits. Likewise, since it is important to consider the effect that Pleistocene extinctions and their impact on vegetation could have had in post-Pleistocene human populations, we also analyze archaeological and ethnographic data to explore the probable uses of this vegetation by human populations. In this regard, we hypothesize that humans could have acted as seed dispersers after megafaunal extinctions (see also Pires et al., 2014; Van Zonneveld et al., 2018). Overall, we expect that measuring the abundance of anachronistic traits in the study area will allow a better understanding of the impact of megafaunal extinctions and the functioning of past and present ecosystems. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 4 of 59 Material and methods Study area: Chaco, Monte and Espinal phytogeographic provinces The Chaco-Pampean plain comprises a region of almost one and a half million km2, occupying the central portion of Argentina. The area comprises three phytogeographical http://mc.manuscriptcentral.com/holocene Page 5 of 59 provinces: Chaco, Espinal and Monte (Figure 1). The Chaco province (611,480 km2) occupies the provinces of Chaco, Formosa and Santiago del Estero, eastern Salta, Jujuy, Tucumán, Catamarca and La Rioja, northern San Luis, Córdoba and Santa Fe and northwest of Corrientes. Vegetationally, it is characterized by the presence of xeric deciduous forest that alternates with palm groves, savannas and grasslands (Apodaca et al., 2015; Cantero et al., 2019). The Espinal province (325,080 km2) is distributed in a wide arc, from central Corrientes, northern Entre Rios, Santa Fe, Córdoba and San Luis, central La Pampa and southern Buenos Aires. It is characterized by the presence of dense or open low xerophilous Neltuma forests (previously referred as genus Prosopis; Hughes et al., 2022), generally occupying a single stratum, alternating with palm groves, grassy savannas, and steppes (Apodaca et al., 2015; Arturi, 2005; Cantero et al., 2019; Lewis et al., 2004, 2006, 2009; Mateucci, 2012; Sabattini et al., 2002; Torres Robles et al., 2015; Ugarteche et al., 2011). Finally, Monte province (470,408 km2) extends from southern Salta, central Catamarca and La Rioja, east-central San Juan, Mendoza, Neuquén and Río Negro, western La Pampa and northeast Chubut. It is a phytogeographic province corresponding to a xerophilous, sammophile or halophilous shrub steppe, which alternates with scrubland and riparian forests (Apodaca et al., 2015; Cantero et al., 2019). rP Fo Data compilation and analysis The vegetation survey was carried out from the identification of endemic species and most common vegetation assemblage based on previous works (Abraham de Noir and Bravo, 2014; Apodaca et al., 2015; Cantero et al., 2019; De Maio et al., 2015; Lewis et al., 2004, 2006, 2009; Mateucci, 2012; Sabattini et al., 2002; Torres Robles et al., 2015; Ugarteche et al., 2011). Data on fruit traits, spinescence and metabolic compounds were also surveyed from the literature (Abraham de Noir and Bravo, 2014; Apodaca et al., 2015; Cantero et al., 2019; Demaio et al., 2015). This literature was reviewed in order to have a sample of the plants that were present in the area, focusing the search on woody plants (trees, shrubs, cacti and climbing plants). From this search, lists of woody plants were made and their importance was coded by the number of citations they had. On the basis of the most mentioned plants, we created a list with those that dominate the vegetation communities in the studied provinces. For each plant, its synonymy was checked in the database of Instituto Botánico Darwinion, and the valid name provided by this institution was employed. Then, a file was created for each plant, which included: photos, taxonomic information, fruit and seed biometry data, color, fruit type, dispersal area, preferred habitat, megafauna fruit type, current, ethnographic and archaeological use by humans, dispersal agent, evidence of vegetative propagation, presence of spinescence, length of spines, presence of secondary metabolites and wood density. An anachronism score was assigned to each plant, on the following criteria: plants that have 0-1 anachronistic trait were classified as non-anachronistic, and those with 2 (e.g., megafauna fruits and spinescence), 3 or 4 (i.e., megafauna fruits, spinescence, secondary metabolites and dense wood) of these traits as light, medium and extreme anachronistic, respectively. In addition, online public databases were also consulted. Particularly, Seed Information Database (2023; ser-sid.org), where data on weight, number of seeds and references were obtained, and the databases of Flora Argentina and the Catálogo de las Plantas Vasculares de la Flora del Cono Sur (darwin.edu.ar) of Instituto de Botánica Darwinion, for data on plants from the surveyed area. We obtained information for 191 woody plants (Supplementary Material 2), which are among the most important vegetation in central iew ev rR ee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Argentina. Of these, 57 species were not considered since we did not obtain for them all the data. This left a final database of 134 species of woody plants, corresponding to 37 families and 90 genera. This is approximately 16% of the 837 species of vascular plants surveyed in the total inventory of the vegetation of central Argentina (Cabido et al., 2018). In this database, we surveyed characteristics of the fruits, the presence of secondary metabolic compounds, spinescence and wood density (see below). Fruit traits The main categories of plants with endozoochorous seed dispersal (i.e., dispersing through animal ingestion) are those that produce: I) large, fleshy fruits and II) annual herbaceous plants with small seeds (Janzen, 1984; Janzen and Martin, 1982; Spengler, 2019; Spengler et al., 2021). Therefore, plants that evolve with contrasting mutualistic systems have a particular and diagnostic morphology. Thus, many annual herbaceous plants include traits such as absence of defensive secondary metabolic compounds (toxic or unpleasant to taste) and mechanical defense structures (spines), and the presence of rapid annual growth, small indehiscent fruits on top of the plant, <2 mm seeds with hard protective coatings, rapid evolvability, high developmental plasticity, and tolerance to trampling and disturbed environments (Janzen, 1984; Kuznar, 1983; Spengler and Mueller, 2019; Spengler et al., 2021). In contrast, trees and shrubs with fleshy fruits include large fruits and seeds with high concentrations of sugars, thick pericarpal tissues, indehiscence, and other traits such as high concentrations of secondary metabolic compounds, protective structures on branches and trunk such as spines, as well as changes in plant architecture (Fuller, 2018; Purugganan and Fuller, 2009; Spengler, 2019; Spengler et al., 2021). Throughout the development of plant mutualisms studies, the realization that some trees and shrub’s fruits do not have extant dispersers led to the concept of "ecological anachronisms" (Barlow, 2000; Janzen and Martin, 1982). Therefore, we chose the traits associated with fruits and seeds as a way to select those plants that showed the syndrome of "dispersal by megafauna". For the survey of fruits and seeds we follow Guimarães et al. (2008), as they introduce operational definitions based on previous analyzes of fruits consumed by current megaherbivores (Feer, 1995). These authors point out that the forest elephant (Loxodonta africana cyclotis) primarily consumed two kinds of fruits: fleshy fruits from 4 to 10 cm in diameter with up to 5 large seeds (Type I) and fleshy fruits larger than 10 cm in diameter with numerous small seeds (Type II). These observations offer formal and operative criteria for the distinction between fruits dispersed by megafauna (hereafter megafaunal fruits) and fruits dispersed by other agents (non megafaunal fruits). Although extinct megaherbivores could also have been efficient dispersers of the seeds of other plants and vice versa (Teng et al., 2023), in this work we consider the same criteria for comparative purposes. Therefore, we compiled data on fruit length (mm), fruit width (mm) and fruit mass (g), number of seeds per fruit and individual seeds mass (g) for the species included in our survey (Supplementary Material 2). iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 6 of 59 Chemical defenses: secondary metabolic compounds Plants generate various secondary metabolic products, compounds that are necessary for their interaction with the environment and that are produced in response to stress —e.g., terpenes, phenolic compounds, polyketides, and alkaloids, among others (Crozier et al., 2006; Iason et al., 2012). Among its functions are inter and intra-specific communication and the http://mc.manuscriptcentral.com/holocene Page 7 of 59 defense against factors such as solar radiation, freezing, pathogens and parasites. One of the most important roles is to discourage or prevent the consumption of plants by herbivores, especially on leaves and other vegetative structures (Owen-Smith, 1993). There is evidence that mammal body size is related directly to the palatability of certain plants, with megafauna having more tolerance to high concentrations of secondary metabolites than smaller mammals (Kistler et al., 2015). In environments with the presence of extant megafauna, plants show high concentrations of these compounds in reaction to high rates of herbivory (Owen Smith, 1993; Owen Smith et al., 2019). Taking this into account, we compiled data on the presence of secondary metabolic compounds from the specific bibliography (Supplementary Material 2). Mechanical defenses: spinescence and wood density A typical response of vegetation to herbivores presence and to high rates of herbivory is the occurrence of plants heavily armed with spines (Cooper and Owen-Smith, 1986). These observations have generally been made in the Paleotropical domain, but the presence of spinescence has also been recorded in the Neotropics (Owen-Smith, 2021). In order to analyze the presence of these traits in those plants that also met the operational characteristics of fruits dispersed by megafauna outlined by Guimarães et al. (2008), we compiled data on the presence of spinescence in our database, as well as the size of the thorns (Supplementary Material 2). On the other hand, it has been observed that current Paleotropical megafauna, especially the African (Loxodonta africana) and Asian (Elephas maximus) elephants can exert heavy damage on the trees during the feeding process (Charles-Dominique et al., 2019; Pradhan et al., 2007; Owen-Smith et al., 2019). We think that a similar but even more extreme situation could occur in South America, given the high number of megabrowser species, which included two species of gomphotherids, one species of megatheriid, three species of mylodons, one species of megalonychid, and two species of glyptodonts weighing more than 1000 kg (Owen Smith, 2013). By comparison, Africa has two, Australia one, North America two and Eurasia three species of browsers over 1000 kg (Owen Smith, 2013). In this context, we propose that an evolutionary trait that confers resistance to mechanical destruction, such as the density of wood, could possibly have been quickly selected (Berzaghi et al., 2023; Read and Stokes, 2006; Swenson and Enquist, 2007). Therefore, as a way of evaluating the general architecture of woody plants, we use wood density values compiled by Chave et al. (2006, 2009), and the differences between the wood density of the study area of Central Argentina and the regions analyzed by these authors were explored through an ANOVA analysis. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE Evidence of consumption: fruit size and size of the masticatory apparatus of Pleistocene megafauna species In order to detect large herbivores consumption of megafaunal fruits, we compiled published information about estimates of the megaherbivores´s masticatory apparatus size, under the premise that there would be correspondence between the sizes of the fruits and the oral cavity of the megafauna. We obtained data for the following species: Equus neogenus, Lestodon armatus, Toxodon platensis, Scelidotherium leptocephalum, Doedicurus clavicaudatus, Megatherium americanum, Glossotherium robustum and Notiomastodon platensis. We chose these species, which are a subset of all those in the area, because they represent the main http://mc.manuscriptcentral.com/holocene HOLOCENE extinct orders and families. In addition, they are representative of all animal body size categories that we defined. Also, these species are characterized by different dietary adaptations: equids, toxodonts, and armadillos had diets with high grass content and a component of mixed diets, and prosbocids, megatherids and some mylodons were browsers. Values were compared with seed-dispersing mammals and birds currently inhabiting the study area (Supplementary Material 1, Table 2). Human use of possible megafaunal dispersal syndrome plants In order to detect probable human use of plants with possible megafaunal dispersal syndrome, discuss the importance it acquired for human populations, and the impact its use had on its dispersal after the extinction of megafauna, we reviewed the ethnographic and archaeological literature of central Argentina and surrounding areas. The variables considered were dietary consumption, their use for construction, medicine, poison, insecticide, firewood, trade (when there was evidence of alien or transported plants), and to manufacture artifacts. To accommodate the archaeological cases in which the presence of a certain plant species was recorded but data about its use was not provided, the N/D category was included. The archaeological site of provenance of the data and the region in the case of ethnographic observation were recorded (Supplementary Material 3, Tables 1 and 2). Finally, following Guimarães et al. (2008), we coded the current use of plants by humans with category 0 (no use by humans), 1 when there was local consumption, 2 when consumption occurred in plantations in a region and 4 when it exceeded regional use and was cultivated commercially. rR ee rP Fo Results ev We compared the size (width and length) of fruits in our database. Under the previously indicated operational definitions of Type I and II of fruit plants in Guimarães et al. (2008), 64% of the woody vegetation for which we obtained data present characteristics of fruits possibly dispersed by megafauna (Table 1). They correspond to 17 families and 52 genera (Table 1, Supplementary Material 2). Of this total, most of the species with fruits with anachronistic features belong to the Fabaceae family, followed by Cactaceae, Bigognaceas, Zygophyllaceas, Capparaceas and Arecaceae families. iew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 8 of 59 Family Megafruits Spinescence Secondary metabolites ACHATOCARPACEAE 1 1 ANACARDIACEAE 5 9 ANNONACEA 2 APOCINACEAE 2 ARACEAE 2 ARECACEAE 3 2 1 3 2 5 ASTERACEA 2 1 http://mc.manuscriptcentral.com/holocene Page 9 of 59 BIGNONIACEAE 5 4 BORAGINACEAE 1 BROMELIACEA 3 3 3 CACTACEAE 5 5 5 1 1 1 4 CANNABACEAE CAPPARACEAE 2 CARICACEAE 1 1 CELASTRACEA 1 2 EUPHORBIACEAE 1 3 51 30 42 MALVACEAE 1 1 1 MELIACEAE 1 FABACEAE MYRTACEAE NYCTAGINACEAE POLIGONACEAE 1 1 1 RHAMNACEAE 1 3 4 iew ROSACEA RUTACEAE 1 SALICACEAE SANTALACEA 1 ev RANUNCULACEAE 1 rR PASSIFLORACEAE 2 ee OLACACEAE 1 rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE 1 2 SAPINDACEAE 1 4 2 1 1 2 2 SAPOTACEAE 1 1 SIMAROUBACEAE 1 1 SOLANACEAE 1 1 ULMACEAE 1 ZYGOPHYLLACEAE 4 1 4 Subtotal 86 67 116 Total plants 134 134 134 http://mc.manuscriptcentral.com/holocene HOLOCENE Table 1: Number of species per family exhibiting traits that suggest possible interactions with megafauna. Insert Figure 2. Figure 2 shows some examples of these fruits. When we compare the sizes of these fruits with those of the phytogeographical provinces of Brazil, they are similar, although the fruits of these last regions are wider, while those of our study region present higher values in fruit length. This is possibly linked to the importance of Fabaceae in the database, which have long and narrow fruits in diameter. Another portion of the plants included in the database has smaller sizes and possibly depends on other dispersing agents. Figure 3 also shows the muzzle and beak width of extinct and extant seed dispersing animals in the study area. The measurements considered were palatal width (PAW) and muzzle width (MZW) for current and extinct mammals and mouth width or rectal commissure and culmen or beak length for birds (sensu Caziani, 1996; Fariña et al., 1998; Janis and Ehrhardt, 1988; Mendoza et al., 2002; Montaldo, 2000; Supplementary Material 2, Table 2). Muzzle sizes of extinct animals almost do not overlap with measures of extant mammals and birds, being the extinct fauna an order of magnitude wider. When possible megafaunal dispersed fruit size and non-megafaunal fruit size are compared (Figure 3), together with palatal size of extinct and extant seed-dispersing animals, it is evident that allegedly megafaunal fruits are found mostly in the range of muzzle sizes of extinct fauna, while non-megafaunal fruit falls within muzzle sizes of extant mammalian and avian dispersers. These results do not imply that extant mammals and birds cannot be involved in the movement and dispersal of plants with possible megafaunal dispersal syndrome, but it can be pointed out that they may not be as optimal for long-distance endozoochory as extinct megafauna possibly were. Insert Figure 3. ev Insert Figure 4. rR ee rP Fo Figure 4 provides descriptive measurements of megafaunal and non-megafaunal fruits and seeds. The megafruits —i.e., fruits possibly dispersed by megafauna— have an average diameter of 22.65 mm (Figure 4a) and a high average mass of 30.42 g (Figure 4b). Moreover, the number of seeds per fruit is 45.41 (Figure 4c), while each individual seed has an average mass of 0.90 g (Figure 4d). It is worth mentioning that the dispersion of the dimensions and traits values selected to describe the fruits and their seeds analyzed in this work is manifestly greater in those from plants possibly dispersed by megafauna. Likewise, within this set, the larger measurements are constituted by outliers that visibly deviate from the mean values for all the variables selected. On the contrary, the dispersions of the fruits dispersed by other agents are smaller, constituting a more clearly delimited assemblage. iew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 10 of 59 Insert Figure 5. Of the total (N=134), 50% of plants show spinescence (Table 1, Figure 5). The average length of the spines is 52.83± 9,55 mm. Regarding the presence of secondary metabolites, 86.57% of the plants in our database also have those compounds (Table 1, Figure 5). Most of the surveyed trees and shrubs present heavy and very heavy density woods. The average wood density in the database is 0.686 g/m3. To put these results in proper context, http://mc.manuscriptcentral.com/holocene Page 11 of 59 the mean wood density of megafauna plants is higher than the South, Central and North American mean (Figure 5). It is also higher than the world average (Chave et al., 2006, 2009). To explore these differences, we perform an ANOVA using data from Chave (2009) and compared Central Argentina vs. North America (F=27.23, p-value=0.000000375), Central America (F=12.68, p-value=0.000408), South America (tropical, excluding our study area) (F=3.036, pvalue=0.0815), and the world average wood density (F=5.943, p-value=0.0148). All results are statistically significant with the exception of the comparison with the rest of South America, which makes sense since it includes our group of woods within a similar and smaller sample size. The studied plants make a rapid appearance (late Pleistocene-early Holocene) in the archaeological record —e.g., Cueva Huenul, Los Morrillos, Gruta del Indio (Llano and Barberena, 2013; Roig, 1993; Semper and Lagiglia, 1962-68; Figure 6a). The most conspicuous archaeological uses were as fuel material, food, manufacturing material for artifacts and, probably, as medicine. The ethnographic record provides a richer description of the importance of these plants for human populations. In this regard, multiple uses have been reported ethnographically. To the main uses recorded in the archaeological record is added the observation of their use as construction materials, poisons, insecticides, as well as a variety of uses related to magic (Agra et al. 2007; Arenas 2003, 2016; Karlin 2016; Noelli, 1993; Saur Palmieri et al., 2018) (Figure 6b). These species are of economic importance even today, and Figure 6c shows the degree of the current use by humans. The review of the specific literature allows us to infer that the choice by humans seems to be linked to the characteristics that this vegetation acquired in co-evolution with the megafauna. In this sense, it is observed that the large fruits are especially used for food (e.g. Geoffroea, Cereus, Opuntia, several species of Neltuma, Celtis, Annisocapparis, Vachellia), that hardwoods have been systematically selected as construction material (e.g. several species of Neltuma, Vachellia, Anadanthera), firewood (Litrhraea, Schinopsis, Schinus, Aspidoderma, Celtis, Tecoma, Neltuma) and utensils manufacturing (Enterolobium, Cereus, Erythrina, Neltuma, Vachellia, Schinus, Geoffroea). In addition, the use of secondary metabolites has been reported as substances for medicinal use (Enterolobium, Erythrina, Neltuma, Vachellia, Passiflora, Schinus, Aspidoderma, Jacaranda, Tecoma, Opuntia, Senegalia, Anadanthera, Geoffroea), as insecticides (Synandrospadix, Thaumatophyllum, Stetsonia, Bulnesia) and as poisons (Anadanthera, Enterolobium) (see Supplementary Material 3). iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE Insert Figure 6. Discussion The pattern: anachronistic traits on vegetation in the study area Our results indicate that a high proportion of the vegetation in central Argentina has fruits whose characteristics are compatible with those consumed by megafauna in Asia and Africa. Likewise, these plants show a high frequency of spinescence, secondary metabolic compounds and high-density wood. Some arguments have been put forward to explain the vegetation traits we analyzed. Typically, for example, spinescence has been associated with a strategy to reduce radiation flux (Nobel, 1988) or assist a plant to climb (Grubb, 1992). On the other hand, one possibility is that megafruits seeds were dispersed by extant species. For http://mc.manuscriptcentral.com/holocene HOLOCENE example, Teng et al. (2023) observed that in Southeast Asia plants with megafruits are also dispersed by small to medium terrestrial mammals. Likewise, the density of wood has been related to abiotic variables such as height above sea level, temperature and precipitation (Chave et al., 2006, 2009). Lastly, secondary metabolites fulfill multiple functions in plants, so their presence may not necessarily be related to conditions of high herbivory (Crozier et al., 2006; Iason et al., 2012). Although these are possibilities to consider and may be factors that act synergistically with the impact of extinct megaherbivores, they do not fully explain the presence of these traits together. In this regard, the current vegetation of Chaco, Monte and Espinal shows characteristics that are not easily explained from the interactions with extant native herbivores. Several authors have pointed out the scarcity of herbivore species, especially macro and megaherbivores. The current species also have low densities (Borghetti et al., 2019; Bucher, 1987), and the most important herbivore niches are occupied by ants and termites (Costa et al., 2008; Owen-Smith, 2021). However, many of the investigated plant species show adaptations for seed dispersal by macro and megaherbivores. Additionally, the woody vegetation of the surveyed phytogeographic provinces shows an important presence of adaptations against herbivory, particularly against predation by vertebrates. A possible explanation for the presence of these paradoxical features in the woody vegetation is that they co-evolved with a currently extinct faunal group (i.e., Pleistocene megafauna). In the first place, this vegetation overlaps with the core dispersion of extinct megafauna (Prates and Perez, 2021; Varela and Fariña, 2016). In this regard, the reconstructed distribution of megafauna species during the Pleistocene using species distribution models underscores the open and closed vegetation mosaics in which most of these species lived (Fariña et al., 2013). These environments have no modern analogues in the area (Bucher, 1987), and it is probable that the physiognomy of the current vegetation is very different from that which occurred up to 10,000 years ago. Likewise, a very important factor is the number of extinct species and their diets. Browsers had more species than grazers in the Pleistocene (Owen-Smith, 2013), which highlights the importance of woody vegetation for megafauna. South America had more than twice as many species (~16) of megaherbivores (over 1000 kg) than any other continent, and fewer small herbivores. Most of the extinct South American mammals exceeded 100 kg (Faurby and Svenning, 2016; Smith et al., 2003). Furthermore, South America had the largest and most diverse browser megafauna in the world (Catena and Croft, 2020; Owen-Smith, 2013, 2021). Almost 60% of South American mammals were browsers, and only 36% were grazers (Archibald et al., 2019; Owen-Smith, 2013). One implication of this is that present-day South American fauna is very different from that which inhabited the region throughout its evolutionary development (Catena and Croft, 2020). In addition, the evidence recovered from stable isotopes analysis (de Melo Franca et al., 2015; Domingo et al., 2012, 2020; Tomassini et al., 2020), micro and meso-wear (Asevedo et al., 2012; Corona et al., 2019) as well as plant macroremains recovered in coprolites (Marcolino et al., 2012; Martínez-Carretero et al., 2013) indicate that the Pleistocene megafauna consumed a high component of woody plants. These animals were mostly predominantly mixed-feeder and fed on both C3 and C4 plants (Tomassini et al., 2020). This again indicates the “ecotonal” character of these species (see Fariña et al., 2013) and is consistent with the premise that species with larger body sizes have greater dietary flexibility. Likewise, the importance of woody iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 12 of 59 http://mc.manuscriptcentral.com/holocene Page 13 of 59 vegetation for megafauna is also evidenced by the presence of South American grasses less adapted to supporting high rates of herbivory (Owen-Smith, 2021; Visser et al., 2016). Coevolution with extinct fauna: a plausible explanation Some characteristics of the woody vegetation of this part of South America allow us to glimpse dynamic mutualistic relationships with extinct fauna. In South America the dominant tree clades are legumes Papillonoideae and Detariodeae, with contributions from the subfamily Vochysiaceae (Archibald et al., 2019). This is reflected quantitatively by the clear dominance of Fabaceae among the plants that present megafaunal dispersal syndrome. In Africa and Asia, with extant populations of large browsers, the vegetation presents defenses such as spines and secondary metabolites, that may help counteract the high rates of herbivory (Scogings and Sankaran, 2019). Two traits of ecosystems with macro and megaherbivores are replicated in Central Argentina dry forest: the presence of physical (i.e., spinescence and high wood density), and chemical (i.e., secondary metabolic compounds) defenses. In our study area, as in a good part of Tropical America (Cooper and Owen-Smith, 1986), plants are heavily armed with spines, thorns and prickles. Observations in extant species indicate that the basic function of spinescence in woody vegetation is not to prevent herbivory, but to delay it by forcing the consumer to take small bites (Cooper and Owen-Smith, 1986). Besides, it is not clear that the plant incurs high costs by producing spines (Charles Dominique et al., 2020), but theoretically plants could present them only if their costs are lower than those that would result from losses due to herbivory (Gowda, 1996). This does not seem to be the case in the study area, where the herbivorous ecological niche is mostly occupied by insects such as leaf-cutter ants (Bucher, 1987; Costa et al., 2008), which are not affected by the presence of structural defenses such as spines. (Owen-Smith, 2021). We also present the idea that tree wood density was linked to selective pressures imposed by megafauna (Dantas and Pausas, 2022), as megaherbivores, particularly elephants, are capable of causing intense physical damage to the trees, even killing it (Asner et al., 2012; Chafota and Owen-Smith, 2009; Morrison et al., 2016; Owen-Smith, 2021; Owen-Smith et al., 2019). This constitutes a powerful selective force to generate tissues resistant to mechanical stress, which would be reflected in the density of the wood. This is corroborated in our area since many trees have hard or very hard wood, above the world and South American average (Chave et al., 2006, 2009). It is interesting to note that the presence of hardwood forests is currently recorded in Africa and Southeast Asia (Den Outer and van Veenendaal, 1976; Dudley et al., 1992; Habel et al., 2017; Pradhan et al., 2007), in addition to South America and eastern North America (Perrotti et al., 2022; Weber, 2011). In the first two places there are still populations of elephants, while in South America there were at least two species of gomphotherids. Moreover, in this region the presence of extinct giant ground sloths and glyptodonts was registered (Cione et al., 2009). Even when there are no modern analogs for these taxa, we expect a heavy damage on vegetation by these animals, based in body size and the fact that there were mostly browsers (Supplementary Material 1, Table 2). Also, in eastern North America the presence of mastodons was recorded (Haynes, 1993). The available evidence on defenses against herbivory topic suggests an evolutionary pattern in which plants developed various strategies that prevent the loss of their foliage at the hands of herbivores. A characteristic way of inhibiting its consumption is by incorporating secondary metabolites. In woody vegetation, these compounds generally take the form of tannins or other phenolic compounds, such as terpenes, polyketides, and alkaloids (Crozier et iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE al., 2006; Iason et al., 2012; Scogings and Sankaran 2019). In the case of macro and megaherbivores, these compounds have been observed to act by interfering with digestion, affecting microbes that degrade cellulose in the stomach (Owen-Smith, 1993, 2021). As in the case of spines, the metabolites that serve to stop insects do not work on large mammals and vice versa, and do not stop herbivory completely, but instead restrict rates of leaf loss and impose physiological costs on their consumers. Species with evidence of dispersal syndrome by megafauna such as Tecoma stans, Sesbania virgata, Enterolobium contortisiliquum, Vachellia astrigens, Synandrospadix vermitoxicum, Vachellia aroma, Sesbania virgata, Caesalpina paraguariensis, Cynophalla retusa, Anisocaparis speciosa, Opuntia quimilo and Aspidoderma quebracho-blanco show concentrations of secondary metabolic compounds that cause cattle to avoid them or in the case of being consumed, even causing death (Arenas, 2016; Braggio et al., 2002; Roger, 2020; Seigler et al., 1983; Slanis, 2018). As previously pointed out, this is not an isolated characteristic of some species in the area: more than half of the studied plants present some of these compounds. Ferreira do Nascimento et al. (2020) suggested that some characteristics are associated with each other. These authors, for example, propose an association between megafauna fruit size and color and spinescence in neotropical palm species. In our case, we found similar tradeoffs, such as the presence of megafauna fruits and spinescence. In some species this can be expanded to include secondary metabolites and wood density. As Janzen (1979) and Barlow (2000) pointed out, the presence of anachronistic traits in an organism is not a matter of all or nothing, but of degrees of anachronism: every organism is anachronistic in some sense, that is, it presents adaptations to past environments. (Janzen, 1979; Barlow, 2001). Barlow (2000) has suggested that we should abandon the binary concept of anachronist or non-anachronist trait or organism and think of anachronisms as a continuum. In our case, it allowed us to categorize our vegetation sample in terms of a simple scale that could classify the species as moderate, substantial and extreme anachronisms according to the characteristics presented. Besides, variables such as fruit size, spinescence and presence of secondary metabolites were derived from the observation of the herbivory patterns of current macro and megaherbivores in Africa and Asia (Feer, 1995). However, there are no modern analogues for many of the extinct South American megafauna, particularly megatheriids, mylodons, armadillos, and notoungulates. It is necessary to combine different lines of evidence to account for the adaptations of these animals. For example, from functional analysis it is evident that many of the South American megafauna were burrowers (Bargo et al., 2000; Vizcaíno et al., 2011). It would be interesting to explore in the future whether plant species with underground storage organs have adaptations to interact with these species. In this sense, it is possible that there are syndromes not yet described, such as those that would occur among burrowing megafauna, plants with underground storage organs/geophytes, spinescence, secondary metabolites, and epizoochory, as manifested by several plant species in Pampa and Patagonia. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 14 of 59 Ecological and evolutionary changes after the extinction of the megafauna: the role of humans in the dispersal of megafaunal plants The megafauna extinction must have had profound consequences for the Holocene ecosystems in the study area. This occurred on three scales, physiological/behavioral, ecological, and evolutionary (sensu Galetti and Dirzo, 2013). On a physiological/behavioral scale, the extinction of megafauna disproportionately impacted the megaherbivorous niche and within it, http://mc.manuscriptcentral.com/holocene Page 15 of 59 the browser niche. Among the main implications we find that after megafauna extinctions, Central Argentine environments went from being regulated by herbivores (Top-Down) to being regulated by physical factors that mediate the availability of nutrients (Botton-Up), such as fire, precipitation and soil chemistry (Misry, 1998; Ruggiero et al., 2002). On an ecological scale, among the main effects we find the loss of seed dispersal mechanisms. This absence often results in assemblages of closed vegetation dominated by shrubs, and monospecific sets of plants ("quebrachales", "caldenares", "talares", "babacuais") (Chapman and Chapman, 1995; Donatti et al., 2007). In certain plant species (i.e., Neltuma spp.) this has led to problems such as shrub encroachment (Cabral et al., 2003). Another change in vegetation associated with the extinction of megafauna was the increase in woody cover (Doughty et al., 2016). This, in turn, produce a reduced density of some species such as the guanaco, which avoid areas of closed and thorny vegetation such as those that dominate most of the region today (Alzogaray, 2008; Cuéllar Soto et al., 2017; Segundo et al., 2004; Sosa and Sarasola, 2005). The more closed and monospecific vegetation, in turn, is important when considering changes in fire regimes. The disappearance of megafauna and the increase in tree cover could facilitate the increase in flammability of the central zone of South America (Karp et al., 2021; Pinter et al., 2011). Also, abundant ethnographic information indicates that humans used fire extensively to create vegetation patches suitable for game species and to create corridors that facilitated mobility (Arenas, 1981, 2003; Arenas and Porini, 2009; Scarpa and Arenas, 2004; Métraux, 1946), controlling for the effects of the disappearance of megaherbivores (Pinter et al., 2011). The megafaunal extinction also has had a direct impact on mammalian diversity, leaving post-Pleistocene communities composed mainly of mesoherbivores and mesopredators (Pires et al., 2020). This is reflected in the structure of the current fauna, which presents a low variety and density of herbivores and whose largest representative is the tapir (Supplementary Material 1). Regarding the consequences of megafauna extinction for humans, our results indicate that the relationship between humans and megafaunal dispersed plants is long-standing and operated at multiple levels. These plants appear abundantly in the archaeological record, show multiple uses in the ethnographic record, and continue to be used today. It is important to note that the selection of megafaunal plants by humans is directly linked to the characteristics that this vegetation acquired in possible co-evolution processes with the megafauna: large fruits (food uses), hardwoods (construction, firewood and utensils) and the presence of secondary metabolites (medicines, insecticides and poisons). This long-standing familiarity suggests an important role in the dispersal of megafaunal plants by humans after their extinction 10,000 years ago. Humans were not strictly redundant with megaherbivores in their dispersal role, as they modify long-distance dispersal patterns, change dispersal routes, and favor certain plants over others (Bullock et al., 2018). However, for many species humans became even better dispersers by expanding the geographic range of plants that would have suffered range contractions after the disappearance of megafauna (van Zonneveld et al., 2018). Furthermore, the dispersal and management of plants initially dispersed by megafauna by humans may have played a very important role in the domestication process (Spengler, 2020; Spengler et al., 2021; van Zonneveld et al., 2018). On the other hand, certain traits of megafauna plants, such the ability to fix nitrogen in Mimosidae and Papillonoidae, is only beneficial with a high phosphorus intake. In soils deficient in this element, the disappearance of the input provided by the excrement and urine of megafauna species has been calculated to result in a 98% reduction in iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE phosphorus flux (Doughty et al., 2013). Poor soils such as the ones present in the study area (Rozas et al., 2012) combined with the absence of megafauna and the presence of few and solitary mesoherbivores proves that the only compensatory source of phosphorus for these species are human populations. The spatial redundancy observed between monospecific assemblages of some of these plants with prehistoric human settlements (e.g., Neltuma spp.; Roig, 1993) is possibly due to the high nutrient conditions that characterize human occupied areas. Humans inherited originally constructed mutualistic relationships between plants and megafauna, voluntarily or involuntarily offering dispersal services and conducive environments to some species that possibly would have reduced their distribution and density in their absence. Anachronistic adaptations: an emerging pattern Finally, on an evolutionary scale, the effects of megafaunal extinction on plants are subtle, but extend over thousands of years. Firstly, some of the plants that were dispersed by the megafauna have discontinuous distributions or are in danger of extinction (Butia yatay, Butia paraguayensis, Caesalpina paraguayensis, Ramorinoa girolae, Amburana cearensis, Bulnesia retama, Bulnesia sarmientoi, Tabebuia nodosa, Vasconcellea quercifolia). Others have azonal distributions, such as near watercourses (hydrozoochory) (Erythrina crista-galli, Ramorinoa girolae, Inga saltensis and Inga uraguensis). More than 50% of the plants dispersed by megafauna show evidence of vegetative growth and/or are dispersed by domestic livestock (Supplementary Material 2). In addition, several species do not have problems surviving without dispersers or with sub-optimal dispersers (Chapman and Chapman, 1995), forming dense groups of monospecific vegetation. Also, as noted above, many species have a long history of mutualism with past and present humans. In other words, there is a whole range of possible responses in plants regarding the loss of legitimate dispersers that explains their survival to this day. This points to the different evolutionary tempo between plants and animals (Traverse, 1988). The South American megafauna became extinct in a short period of time (Villavicencio et al., 2016; Prates and Perez, 2021), but to date there have not been plant extinctions associated with this process (Guimarães et al., 2008). However, the loss of dispersers in the long term translates into loss of genetic diversity and inbreeding, which can cause extinction processes in the future. Likewise, the forests of the study area present one of the highest deforestation rates in the world (Piquer Rodríguez et al., 2015). This is due in the first place to the advance of the agricultural frontier. The reconversion of forest to agricultural land are the main threats to the conservation of those important ecosystems. Less discussed, however, is the possibility that there are other contributing factors, such as the loss of seed dispersal mechanisms and the concomitant loss of genetic diversity. Likewise, the role that humans traditionally played in the area, as plant dispersal agents and key players in the use of fire in the area, is lost as the groups settle down and knowledge of the plant species is forgotten (Rosso and Scarpa, 2017). We believe that these should be factors to take into account when planning conservation strategies for these highly threatened ecosystems (Teng et al., 2023). The case of megafauna-dispersed fruiting plants illustrates most convincingly the point that some characteristics of organisms are not adapted to current conditions, but rather to previous ones. Finally, it is important to note that several of these anachronistic characteristics occur together in a high percentage of species. This is a notion to be explored in the future, since similar trade-offs between spinescence, large fruits, hard wood, and high concentrations of secondary metabolic compounds occur in a good number of the surveyed species. This suggests iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 16 of 59 http://mc.manuscriptcentral.com/holocene Page 17 of 59 a genetically based link. Likewise, this raises the possibility of an interplay between antagonistic (spininess plus secondary metabolites) and mutualistic (fruit size) interactions in plant-animal relationships in the past. Conclusions In this work we study the relationships between plants and extinct megafauna in the central region of Argentina, in the phytogeographic provinces of Espinal, Monte and Chaco. We propose that several characteristics of the vegetation, such as the presence of large fruits, spinescence, secondary metabolic compounds and high wood density, respond to selective pressures generated by the extinct Pleistocene megafauna, which disappeared around 10,000 years ago. Consequently, the loss of megafauna, in turn, probably had dramatic consequences on this vegetation, including demography, long-distance dispersal capacity, distribution in the landscape, and fire susceptibility of these post-pleistocene communities. Several characteristics of these species, such as vegetative reproduction, dispersal by sub-optimal mechanisms, and dispersal by introduced herbivores, were factors that ensured their long-term survival. An additional factor was the presence of humans, who colonized the area just before the extinction, and who have a long history of using these vegetable species for various purposes. By colonizing the area, humans not only adapted to the particular environmental conditions and constructed a particular niche, but also inherited mutualistic relationships that the vegetation had established with the megafauna for millions of years. It is possible that this type of relationship has occurred many times in different parts of the world, and that unraveling this history may be an important factor in explaining processes such as plant domestication. Acknowledgements rR ee rP Fo We are grateful to Ivan Perez for collaborating in the discussions on the topics covered in this work and Nahuel A. Muñoz for the revision of the Supplementary Table 1. We also thank the editors for all their work and, especially, the anonymous reviewers that substantially contribute to the improvement of the paper with their detailed and thorough comments. Finally, this work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (PIP Conicet 2974) and Universidad Nacional de La Plata (PI N959). iew ev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE References Abraham de Noir F and Bravo S (2014) Frutos de Leñosas Nativas de Argentina. Santiago del Estero: Universidad Nacional de Santiago del Estero. Adeleye AM, Andrew SC, Gallagher R, Van Der Kaars S, De Deckker P, Hua Q and Haberle SG (2023) On the timing of megafaunal extinction and associated floristic consequences in Australia through the lens of functional palaeoecology. Quaternary Science Reviews 316: 108263. Agra MDF, Freitas PFD and Barbosa-Filho JM (2007) Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Revista Brasileira de Farmacognosia 17: 114-140. Alzogaray AL (2008) Efecto del fuego sobre una población de guanacos (Lama guanicoe) en el Parque Nacional Lihue Calel. PhD Thesis, Universidad Nacional de La Pampa, Argentina. Anton AM and Zuloaga FO (Directors) Flora Argentina. Available at: www.floraargentina.edu.ar (accessed February 2022). http://mc.manuscriptcentral.com/holocene HOLOCENE Apodaca MJ, Crisci JV and Katinas L (2015) Las provincias fitogeográficas de la República Argentina: definición y sus principales áreas protegidas. In: Casas RR and Albarracín GF (eds) El Deterioro del Suelo y del Ambiente en la Argentina. Buenos Aires: Fundación para la Educación, la Ciencia y la Cultura, pp.79-101. Archibald S, Bond WJ, Hoffmann W, Lehmann C, Staver C and Stevens N (2019) Distribution and determinants of savannas. In: Scogings PF and Sankaran M (eds) Savanna Woody Plants and Large Herbivores. New Jersey: John Wiley & Sons Ltd, pp.1-24. Arenas P (1981) Etnobotánica Lengua-Maskoy. Buenos Aires: Fundación para la Educación, la Ciencia y la Cultura. Arenas P (2016) Etnobotánica de Synandrospadix vermitoxicus (Araceae) en el Gran Chaco y en regiones aledañas. Boletín de la Sociedad Argentina de Botánica 51(2): 379-399. Arenas P (2003). Etnografía y Alimentación entre los Toba-Nachilamole# ek y Wichí-lhuku'tas del Chaco Central (Argentina). Buenos Aires: Pastor Arenas. Arturi M (2006) Situación ambiental en la Ecorregión Espinal. In: Brown A, Martinez Ortiz U, Acerbi M and Corcuera J (eds) La Situación Ambiental Argentina 2005. Buenos Aires: Fundación Vida Silvestre, pp.241-245. Asevedo L, Winck GR, Mothé D and Avilla LS (2012) Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland midlatitudes of South America: Stereomicrowear and tooth calculus analyses combined. Quaternary International 255: 42-52. Asner GP and Levick SR (2012) Landscape-scale effects of herbivores on treefall in African savannas. Ecology Letters 15(11): 1211-1217. Bargo MS, Vizcaíno SF, Archuby FM and Blanco RE (2000) Limb bone proportions, strength and digging in some Lujanian (Late Pleistocene-Early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). Journal of Vertebrate Paleontology 20(3): 601-610. Barlow C (2000) The Ghosts of Evolution: Nonsensical Fruit, Missing Partners, and other Ecological Anachronisms. New York: Basic Books. Barnosky AD, Koch PL, Feranec RS, Wing, SL and Shabel AB (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306(5693): 70-75. Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA, Wanket J and Marshall CR (2016) Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences 113(4): 856-861. Bartlett LJ, Williams DR, Prescott GW, Balmford A, Green RE, Eriksson A, Valdes PJ, Singarayer JS and Manica A (2016) Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography 39(2): 152-161. Berzaghi F, Bretagnolle F, Durand-Bessart C and Blake S (2023) Megaherbivores modify forest structure and increase carbon stocks through multiple pathways. Proceedings of the National Academy of Sciences 120(5): e2201832120. Borghetti F, Barbosa E, Ribeiro L, Ribeiro JF and Walter BMT (2019) South American Savannas. In: Scogings PF and Sankaran M (eds) Savanna Woody Plants and Large Herbivores. New Jersey: John Wiley & Sons Ltd, pp.77-122. Braggio MM, Lima MEL, Veasey EA and Haraguchi M (2002) Atividades farmacológicas das folhas da Sesbania virgata (Cav.) Pers. Revista Arquivo do Instituo de Biologia 69(4): 49-53. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 18 of 59 http://mc.manuscriptcentral.com/holocene Page 19 of 59 Broughton JM and Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature Communications 9(1): 5441. Bucher EH (1987) Herbivory in arid and semi-arid regions of Argentina. Revista Chilena de Historia Natural 60(2): 265-273. Bullock JM, Bonte D, Pufal G, Da Silva Carvalho C, Chapman DS, García C, García D, Matthysen E and Delgado MM (2018) Human-mediated dispersal and the rewiring of spatial networks. Trends in Ecology & Evolution 33(12): 958-970. Cabido M, Zeballos SR, Zak M, Carranza ML, Giorgis MA, Cantero JJ and Acosta AT (2018) Native woody vegetation in central Argentina: classification of Chaco and Espinal forests. Applied Vegetation Science 21(2): 298-311. Cabral AC, De Miguel JM, Rescia AJ, Schmitz MF and Pineda FD (2003) Shrub encroachment in Argentinean savannas. Journal of Vegetation Science 14(2): 145-152. Cantero JJ, Núñez CO, Mulko J, Amuchastegui MA, Palchetti MV, Brandolin PG, Iparraguirre J, Virginil N, Bernardello GLM and Ariza Espinar L (2019) Las Plantas de Interés Económico en Argentina. Río Cuarto: UniRío Editora. Catena AM and Croft DA (2020) What are the best modern analogs for ancient South American mammal communities? Evidence from ecological diversity analysis (EDA). Palaeontologia Electronica 23(1): a03. DOI: 10.26879/962. Caziani SM (1996) Interacción plantas-aves dispersoras de semillas en un bosque chaqueño semiariado. PhD Thesis, Universidad de Buenos Aires, Argentina. Chapman CA and Chapman LJ (1995) Survival without dispersers: seedling recruitment under parents. Conservation Biology 9(3): 675-678. Charles-Dominique T, Barczi JF and Chamaillé-Jammes S (2019) Woody plant architecture and effects on browsing herbivores in savannas. In: Scogings PF and Sankaran M (eds) Savanna Woody Plants and Large Herbivores. New Jersey: John Wiley & Sons Lt, pp.469-488. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege, HT and Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16(6): 2356-2367. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG and Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12(4): 351-366. Chafota J and Owen-Smith N (2009) Episodic severe damage to canopy trees by elephants: interactions with fire, frost and rain. Journal of Tropical Ecology 25(3): 341-345. Cione AL, Tonni EP and Soibelzon L (2009) Did humans cause the Late Pleistocene-Early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes G (ed) American Megafaunal Extinctions at the End of the Pleistocene. New York: Springer International Publishing, pp.125-144. Corona A, Ubilla M and Perea D (2019) New records and diet reconstruction using dental microwear analysis for Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae). Andean Geology 46(1): 153-167. Costa AN, Vasconcelos HL, Vieira-Neto EH and Bruna EM (2008) Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. Journal of Vegetation Science 19(6): 849-854. Cooper SM and Owen-Smith N (1986) Effects of plant spinescence on large mammalian herbivores. Oecologia 68: 446-455. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Crozier A, Clifford MN and Ashihara H (2006) Plant Secondary Metabolites. Occurrence, Structure and Role in the Human Diet. Oxford: Blackwell-Publishers. Cuéllar Soto E, Segundo J and Banegas J (2017) El guanaco (Lama guanicoe Müller 1776) en el Gran Chaco boliviano: una revisión. Ecología en Bolivia 52(1): 38-57. Dantas VL and Pausas JG (2022). The legacy of the extinct Neotropical megafauna on plants and biomes. Nature Communications 13(1): 129. Defler T (2019) History of Terrestrial Mammals in South America: How South American Mammalian Fauna Changed from the Mesozoic to Recent Times. New York: Springer International Publishing. Demaio PH, Karlin UO and Medina M (2015) Árboles Nativos del Centro de Argentina. Buenos Aires: L.O.L.A. De Melo França L, De Asevedo L, Dantas MAT, Bocchiglieri A, Dos Santos Avilla L, Lopes RP and Da Silva JLL (2015) Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth-Science Reviews 140: 158-165. Den Outer RW and Van Veenendaal WLH (1976) Variation in wood anatomy of species with a distribution covering both rain forest and savanna areas of the Ivory Coast, West-Africa. Leiden Botanical Series 3(1): 182-195. Domingo L, Prado JL and Alberdi MT (2012) The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quaternary Science Reviews 55: 103-113. Domingo L, Tomassini RL, Montalvo CI, Sanz-Pérez D and Alberdi MT (2020) The great American biotic interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Scientific Reports 10(1): 1608 DOI: 10.1038/s41598-020-58575-6. Donatti CI, Galetti M, Pizo MA, Guimarães PJ and Jordano P (2007) Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. In: Dennis AJ, Schupp EW, Green RJ and Westcott DA (eds) Seed Dispersal: Theory and its Application in a Changing World. Wallingford: CABI, pp.104-123. Doughty CE, Wolf A and Malhi Y (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 6(9): 761-764. Doughty CE, Faurby S and Svenning JC (2016) The impact of the megafauna extinctions on savanna woody cover in South America. Ecography 39(2): 213-222. Dudley JP, Mensah-Ntiamoah AY and Kpelle DG (1992) Forest elephants in a rainforest fragment: preliminary findings from a wildlife conservation project in southern Ghana. African Journal of Ecology 30(2): 116-126. Faith JT, Rowan J and Du A (2019) Early hominins evolved within non-analog ecosystems. Proceedings of the National Academy of Sciences 116(43): 21478-21483. Fariña RA, Vizcaíno SF and Bargo MS (1998) Body mass estimations in Lujanian (late Pleistoceneearly Holocene of South America) mammal megafauna. Mastozoología Neotropical 5(2): 87-108. Fariña RA, Vizcaíno SF and De Iuliis G (2013) Megafauna: Giant Beasts of Pleistocene South America. Bloomington: Indiana University Press. Faurby S and Svenning JC (2016) Resurrection of the Island Rule: human-driven extinctions have obscured a basic evolutionary pattern. American Naturalist 187:812–820. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 20 of 59 http://mc.manuscriptcentral.com/holocene Page 21 of 59 Feer F (1995) Morphology of fruits dispersed by African forest elephants. African Journal of Ecology 33(3): 279-284. Nascimento LFD, Guimarães PR, Onstein RE, Kissling WD and Pires MM (2020) Associated evolution of fruit size, fruit colour and spines in Neotropical palms. Journal of Evolutionary Biology 33(6): 858-868. Firestone RB, West A, Kennett JP, Becker L, Bunch TE, Revay ZS, Schultz PH, Belgya T, Kennett DJ, Erlandson JM. and Dickenson OJ (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences 104(41): 16016-16021. Fuller DQ (2018) Long and attenuated: comparative trends in the domestication of tree fruits. Vegetation History and Archaeobotany 27(1): 165-176. Galetti M and Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biological Conservation 163: 1-6. Gowda JH (1996) Spines of Acacia tortilis: what do they defend and how? Oikos: 279-284. Grubb PJ (1992) A positive distrust in simplicity-lessons from plant defenses and from competition among plants and among animals. Journal of Ecology 80: 585-610. Guimaraes PR Jr, Galetti M and Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PloS one 3(3): e1745 DOI: 10.1371/journal.pone.0001745. Habel JC, Casanova ICC, Zamora C, Teucher M, Hornetz B, Shauri H, Mulwa RK and Lens L (2017) East African coastal forest under pressure. Biodiversity and Conservation 26: 2751-2758. Haynes G (1993) Mammoths, Mastodonts, and Elephants: Biology, Behavior and the Fossil Record. Cambridge: Cambridge University Press. Hughes CE, Ringelberg JJ, Lewis GP and Catalano SA (2022) Disintegration of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PhytoKeys 205: 147-189. Iason GR, Dicke M and Hartley SE (eds) (2012) The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge: Cambridge University Press. Janis CM and Ehrhardt D (1988) Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society 92(3): 267284. Janzen DH (1979) New horizons in the biology of plant defenses. In: Rosenthal GA and Janzen DH (eds.) Herbivores, Their Interaction with Secondary Plant Metabolites. New York: Academic Press, pp.331-348. Janzen DH (1984) Dispersal of small seeds by big herbivores: foliage is the fruit. The American Naturalist 123(3): 338-353. Janzen DH and Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215(4528): 19-27. Karlin MS (2016) Ethnoecology, ecosemiosis and integral ecology in Salinas Grandes (Argentina). Etnobiología 14(1): 23-38. Karp AT, Faith JT, Marlon JR and Staver AC (2021) Global response of fire activity to late Quaternary grazer extinctions. Science 374(6571): 1145-1148. Kistler L, Newsom LA, Ryan TM, Clarke AC, Smith BD and Perry GH (2015) Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proceedings of the National Academy of Sciences 112(49): 15107-15112. Kuznar LA (1993) Mutualism between Chenopodium, herd animals, and herders in the south central Andes. Mountain Research and Development: 257-265. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Llano C and Barberena R (2013) Explotación de especies vegetales en la Patagonia septentrional: el registro arqueobotánico de Cueva Huenul 1 (Provincia de Neuquén, Argentina). Darwiniana 1(1):5-19. Lemoine RT, Buitenwerf R and Svenning JC (2023) Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene: 100403. Lewis JP, Prado D and Noetinger S (2004) Los remanentes de bosques del Espinal en el este de la provincia de Córdoba. Agromensajes 13: 23-27. Lewis JP, Pire EF, Barberis I and Prado D (2006) Los bosques del Espinal Periestépico en las proximidades de la localidad de Coronda, provincia de Santa Fe (Argentina). Revista de Investigaciones de la Facultad de Ciencias Agrarias – UNR 10: 13-26. Lewis JP, Noetinger S, Prado DE and Barberis IM (2009) Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodiversity and Conservation 18: 3615-3628. Lima-Ribeiro MS and Diniz-Filho JAF (2013) American megafaunal extinctions and human arrival: improved evaluation using a meta-analytical approach. Quaternary International 299: 3852. Lyons SK, Smith FA and Brown JH (2004) Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research 6(3): 339-358. Marcolino CP, dos Santos Isaias RM, Cozzuol MA, Cartelle C and Dantas MAT (2012) Diet of Palaeolama major (Camelidae) of Bahia, Brazil, inferred from coprolites. Quaternary International 278: 81-86. Martínez-Carretero EM, Garcia A and Dacar M (2013) Paleoenvironmental reconstruction of central-western Argentina from analysis of Late-Pleistocene mammal droppings. Journal of Arid Environments 97: 160-169. Martin PS and Wright, HE (1967) Pleistocene Extinctions; the Search for a Cause. New Haven and London: Yale University Press. Martin PS and Klein RG (1984) Quaternary Extinctions: A Prehistoric Revolution. Tucson, Arizona: The University of Arizona Press. Matteucci SD (2012) Ecorregión monte de llanuras y mesetas. In: Morello J, Matteucci S, Rodríguez A and Silva M (eds) Ecorregiones y Complejos Ecosistémicos Argentinos. Buenos Aires: Orientación Gráfica Editora, pp.309-348. MacPhee RDE and Marx PA (1997) The 40,000-year plague: humans, hyperdisease, and firstcontact extinctions. In: Goodman SM and Patterson BD (eds) Natural Change and Human Impact in Madagascar. Washington and London: Smithsonian Institution Press, pp.169-217. Mendoza M, Janis CM and Palmqvist P (2002) Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. Journal of Zoology 258(2): 223-246. Métraux A (1946) Indians of the Gran Chaco. In: J. Steward (ed) Handbook of South American Indians: The Marginal Tribes. Washington: United States Government Printing Office, pp.197-370. Mistry J (1998) Fire in the cerrado (savannas) of Brazil: an ecological review. Progress in Physical Geography 22(4): 425-448. Montaldo NH (2000) Éxito reproductivo de plantas ornitócoras en un relicto de selva subtropical en Argentina. Revista Chilena de Historia Natural 73(3): 511-524. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 22 of 59 http://mc.manuscriptcentral.com/holocene Page 23 of 59 Morrison TA, Holdo RM and Anderson TM (2016) Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti. Journal of Ecology 104(2): 409-418. Morrison JC, Sechrest W, Dinerstein E, Wilcove DS and Lamoreux JF (2007) Persistence of large mammal faunas as indicators of global human impacts. Journal of Mammalogy 88(6): 13631380. Nobel PS (1988) Environmental Biology of Agaves and Cacti. Cambridge: Cambridge University Press. Noelli FS (1993) Em busca de um modelo etnoarqueológico da aldeia e da subsistência Guarani e sua aplicação a uma Área de Domínio no Delta do Rio Jacuí-RS. Master Thesis, Pontifícia Universidade Católica, Porto Alegre, Brazil. Novaro AJ, Funes MC and Walker RS (2000) Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biological Conservation 92(1): 25-33. Owen-Smith RN (1988) Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge: Cambridge University Press. Owen-Smith RN (1993) Woody plants, browsers and tannins in southern African savannas. South African Journal of Science 89(10): 505-510. Owen-Smith N (2013) Contrasts in the large herbivore faunas of the southern continents in the late Pleistocene and the ecological implications for human origins. Journal of Biogeography 40(7): 1215-1224. Owen-Smith RN (2021) Only in Africa: The Ecology of Human Evolution. Cambridge: Cambridge University Press. Owen-Smith N, Page B, Teren G and Druce DJ (2019) Megabrowser impacts on woody vegetation in savannas. In: Scogings PF and Sankaran M (eds) Savanna Woody Plants and Large Herbivores. New Jersey: John Wiley & Sons Ltd, pp.585-611. Perrotti AG, Kiahtipes CA, Russell JM, Jackson ST, Gill JL, Robinson GS, Krause T and Williams JW (2022) Diverse responses of vegetation and fire after pleistocene megaherbivore extinction across the eastern US. Quaternary Science Reviews 294: 107696. Pino M, Abarzúa AM, Astorga G, Martel-Cea A, Cossio-Montecinos N, Navarro RX, Lira MP, Labarca R, LeCompte MA, Adedeji V and Moore CR (2019) Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports 9(1): 4413. DOI: 10.1038/s41598-018-38089-y Piquer-Rodríguez M, Torella S, Gavier-Pizarro G, Volante J, Somma D, Ginzburg R and Kuemmerle T (2015) Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landscape Ecology 30: 817-833. Pinter N, Fiedel S and Keeley JE (2011) Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quaternary Science Reviews 30(3-4): 269-272. Pires MM, Galetti M, Donatti CI, Pizo MA, Dirzo R and Guimarães Jr PR (2014) Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175: 1247-1256. Pires MM, Rindel D, Moscardi B, Cruz LR, Guimarães Jr PR, dos Reis SF and Perez SI (2020) Before, during and after megafaunal extinctions: Human impact on Pleistocene-Holocene trophic networks in South Patagonia. Quaternary Science Reviews 250: 106696. DOI:10.1016/j.quascirev.2020.106696. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Pradhan NMB, Wegge P and Moe SR (2007) How does a re-colonizing population of Asian elephants affect the forest habitat? Journal of Zoology 273(2): 183-191. Prates L and Perez SI (2021) Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nature Communications 12(1): 2175. DOI: 10.1038/s41467-021-22506-4. Prates L, Politis GG and Perez SI (2020) Rapid radiation of humans in South America after the last glacial maximum: A radiocarbon-based study. PloS One 15(7): e0236023. DOI: 10.1371/journal.pone.0236023. Purugganan MD and Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(7231): 843-848. Read J and Stokes A (2006) Plant biomechanics in an ecological context. American Journal of Botany 93(10): 1546-1565. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP and Schmitz OJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343(6167): 1241484. DOI: 10.1126/science.1241484. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GI, Levi T, Lindsey PA and Macdonald DW (2015) Collapse of the world’s largest herbivores. Science Advances 1(4): e1400103. DOI: 10.1126/sciadv.1400103. Roger E (2020) Conocimiento ecológico asociado a las prácticas silvopastoriles en la Región Chaqueña Semiárida (Santiago del Estero, Argentina). Boletín de la Sociedad Argentina de Botánica 55(4): 1-10. DOI: 10.31055/1851.2372.v55.n4.29050. Roig FA (1993) Aportes a la etnobotánica del género Prosopis. Unidades de Botánica y Fisiología Vegetal (IADIZA) (eds) Contribuciones Mendocinas a la Quinta Reunión Regional para América Latina y el Caribe de la Red de Forestación del CIID, Conservación y Mejoramiento de Especies del Género Prosopis. Mendoza: Universidad Nacional de Cuyo, pp.99-121. Rosso CN and Scarpa GF (2017) Etnobotánica de la alimentación entre los indígenas moqoit actuales de la provincia del Chaco (Argentina) y comparación con fuentes históricas de los siglos XVIII y XX. Boletín de la Sociedad Argentina de Botánica 52(4): 827-840. Rozas HS, Echeverría H and Angelini H (2012) Fósforo disponible en suelos agrícolas de la región Pampeana y ExtraPampeana argentina. Revista de Investigaciones Agropecuarias 38(1): 3339. Ruggiero PGC, Batalha MA, Pivello VR and Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forests, Southeastern Brazil. Plant Ecology 160: 1–16. DOI: 10.1023/A:1015819219386. Sabattini RA, Muzzachiodi N and Dorsch AF (2002) Manual de Prácticas de Manejo del Monte Nativo. Oro Verde: Universidad Nacional de Entre Ríos. Saur Palmieri V, López ML and Trillo C (2018) Aproximaciones etnobotánicas de las especies y prácticas de frutos nativos comestibles de la actualidad. Aportes para la interpretación del pasado prehispánico de Cerro Colorado (Córdoba, Argentina). Boletín de la Sociedad Argentina de Botánica 53(1): 1-10. Semper JV, and Lagiglia HA (1962-1968) Excavaciones arqueológicas en el Rincón del Atuel (Gruta del Indio), Departamento de San Rafael (Mendoza). Revista Científica de Investigaciones del Museo de Historia Natural de San Rafael 1(4): 89-158. Scogings PF and Sankaran M (eds) (2019) Savanna Woody Plants and Large Herbivores. New Jersey: John Wiley & Sons. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 24 of 59 http://mc.manuscriptcentral.com/holocene Page 25 of 59 Segundo J, Castro G and Cuéllar E (2004) Uso de hábitat por el guanaco (Lama guanicoe) en el suroeste del Parque Nacional Kaa-Iya, Santa Cruz, Bolivia. Memorias: Manejo de Fauna Silvestre en Amazonia y Latinoamérica. Sitio Argentino de Producción Animal: 279-282. Seigler DS, Dunn JE, Conn EE and Pereira J (1983) Cyanogenic glycosides from four Latin American species of Acacia. Biochemical Systematics and Ecology 11(1): 15-16. Simpson GG (1980) Splendid Isolation: The Curious History of South American Mammals. New Haven: Yale University Press. Slanis AC (2018) Oreja de negro, pacará, timbó (Enterolobium contortisiliquum). In: Scrocchi GJ and Szumik C (eds) Universo Tucumano 7. San Miguel de Tucumán: Fundación Miguel Lillo, pp.1-10. Smith FA, Lyons SK, Ernest S, Jones K, Kaufman D, Dayan T, Marquet P, Brown J and Haskell J (2003) Body mass of late quaternary mammals. Ecology 84: 3403. Spengler RN (2019) Origins of the apple: the role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Frontiers in Plant Science 10: 617. Spengler RN (2020) Anthropogenic seed dispersal: rethinking the origins of plant domestication. Trends in Plant Science 25(4): 340-348. Spengler RN, Petraglia M, Roberts P, Ashastina K, Kistler L, Mueller NG and Boivin N (2021) Exaptation traits for megafaunal mutualisms as a factor in plant domestication. Frontiers in Plant Science 12: 649394. DOI: 10.3389/fpls.2021.649394. Spengler RN and Mueller NG (2019) Grazing animals drove domestication of grain crops. Nature Plants 5(7): 656-662. Society for Ecological Restoration, International Network for Seed Based Restoration and Royal Botanic Gardens Kew (2023) Seed Information Database (SID). Available at: ser-sid.org/ (accessed February 2023). Sosa RA and Sarasola JH (2005) Habitat use and social structure of an isolated population of guanacos (Lama guanicoe) in the Monte Desert, Argentina. European Journal of Wildlife Research 51: 207-209. Swenson NG and Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany 94(3): 451-459. Teng SN, Svenning JC and Xu C (2023) Large mammals and trees in eastern monsoonal China: anthropogenic losses since the Late Pleistocene and restoration prospects in the Anthropocene. Biological Reviews DOI: /10.1111/brv.12968. Tomassini RL, Montalvo CI, Garrone MC, Domingo L, Ferigolo J, Cruz LE, Sanz-Pérez D, FernándezJalvo Y and Cerda IA (2020) Gregariousness in the giant sloth Lestodon (Xenarthra): multiproxy approach of a bonebed from the Last Maximum Glacial of Argentine Pampas. Scientific Reports 10(1): 10955. DOI: 10.1038/s41598-020-67863-0. Torres Robles SS, Arturi MF, Contreras C, Peter G and Zeberio JM (2015) Variaciones geográficas de la estructura y composición de la vegetación leñosa en el límite entre el espinal y el monte en el Noreste de la Patagonia (Argentina). Boletín de la Sociedad Argentina de Botánica 50(2): 209-215. Traverse A (1988) Plant evolution dances to a different beat: plant and animal evolutionary mechanisms compared. Historical Biology 1(4): 277-301. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Ugarteche O, Fermani Marambio S, Day Corominas M, Lagos Slinik S and Acordinaro N (2011) Manual de Bosques Nativos. Un Aporte a la Conservación Desde la Educación Ambiental. Mendoza: Secretaría de Medio Ambiente. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P and Medel R (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology 29(3): 299-307. Van Zonneveld M, Larranaga N, Blonder B, Coradin L, Hormaza JI and Hunter D (2018) Human diets drive range expansion of megafauna-dispersed fruit species. Proceedings of the National Academy of Sciences 115(13): 3326-3331. Varela L and Fariña RA (2016) Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quaternary Research 85(1): 66-74. Villavicencio NA, Lindsey EL, Martin FM, Borrero LA, Moreno PI, Marshall CR and Barnosky D (2016) Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39(2): 125-140. Visser V, Wilson JR, Fish L, Brown C, Cook GD and Richardson DM (2016) Much more give than take: South Africa as a major donor but infrequent recipient of invasive non-native grasses. Global Ecology and Biogeography 25(6): 679-692. Vizcaíno SF, Cassini GH, Fernicola JC and Bargo MS (2011) Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra). Ameghiniana 48(3): 305-319. Weber TC (2011) Maximum entropy modeling of mature hardwood forest distribution in four US states. Forest Ecology and Management 261(3): 779-788. rR ee rP Fo FIGURE CAPTIONS Figure 1. Chaco, Espinal and Monte phytogeographical provinces. ev Figure 2. Photographs of some plants considered in this study, showing fruits: a) Ceiba chodatii, b) Vachellia caven, c) Pseudananas sagenarius, d) Passiflora caerulea, e) Aspidosperma quebracho-blanco, f) Cereus forbesii, g) Vachellia aroma, h) Geoffroea decorticans, i) Senna aphylla, j) Chloroleucon tenuiflorum, k) Vachellia astrigens, l) Neltuma alpataco; and spines: m) Gleditzia amorphoides, n) Acrocomia aculeata, o) Ceiba chodatii. Images modified from Darwinion Botanical Institute (http://www.darwin.edu.ar/). iew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 26 of 59 Figure 3. Dimensions (diameter and length in mm) of possible megafaunal dispersed fruits from Argentina and Brazil versus non-megafaunal fruits from Argentina and muzzle and beak size of extant and extinct mammals and birds. Extinct mammals: Glyptodon reticulatus, Panochtus tuberculatus, Doedicurus clavicaudatus, Megatherium americanum, Lestodon armatus, Glossotherium robustum, Scelidotherium leptocephalum, Macrauchenia patachonica, Toxodon platensis, Hippidion principale, Stegomastodon superbus; Extant mammals: Lama guanicoe, Vicugna vicugna, Blastoceros dichotomus, Hippocamelus bisulcus, Mazama americana, Ozotocerus bezoarticus, Tapirus terrestris, Dicotyles tajacu, Tayassu pecari; Birds: Leptotila verrauxi, Columba picazuro, Pitangus sulphuratus, Elaienia parvirostris, Turdus rufiventris, Turdus amaurochalinus, Thraupis sayaca, Stephanophorus diadematus, Ortalis canicollis, Elaienia albiceps. http://mc.manuscriptcentral.com/holocene Page 27 of 59 Figure 4. Boxplots of most diagnostic dimensions of the fruits analyzed and their seeds. Figure 5. a) Percentage of plants with spinescence, secondary metabolites and megafaunal dispersed fruits (N=134); b) Mean wood density value of megafaunal plants compared with South, Central and North American and global wood density mean (data from Chave et al., 2009); c) Anachronism scoring (N=76). Figure 6. a) Percentage of megafaunal plants with archaeological use (N=134); b) Percentage of megafaunal plants with ethnographic use (N=134); c) Current human use of megafaunal plants (N=132); restricted: local use, medium: regional use, and widespread: extra-regional commercial use (e.g., plantations). iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 28 of 59 Figure 1. Chaco, Espinal and Monte phytogeographical provinces. 212x286mm (600 x 600 DPI) http://mc.manuscriptcentral.com/holocene Page 29 of 59 ev rR ee rP Fo Figure 2. Photographs of some plants considered in this study, showing fruits: a) Ceiba chodatii, b) Vachellia caven, c) Pseudananas sagenarius, d) Passiflora caerulea, e) Aspidosperma quebracho-blanco, f) Cereus forbesii, g) Vachellia aroma, h) Geoffroea decorticans, i) Senna aphylla, j) Chloroleucon tenuiflorum, k) Vachellia astrigens, l) Neltuma alpataco; and spines: m) Gleditzia amorphoides, n) Acrocomia aculeata, o) Ceiba chodatii. Images modified from Darwinion Botanical Institute (http://www.darwin.edu.ar/). iew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE 153x138mm (1000 x 1000 DPI) http://mc.manuscriptcentral.com/holocene HOLOCENE rP Fo Figure 3. Dimensions (diameter and length in mm) of possible megafaunal dispersed fruits from Argentina and Brazil versus non-megafaunal fruits from Argentina and muzzle and beak size of extant and extinct mammals and birds. Extinct mammals: Glyptodon reticulatus, Panochtus tuberculatus, Doedicurus clavicaudatus, Megatherium americanum, Lestodon armatus, Glossotherium robustum, Scelidotherium leptocephalum, Macrauchenia patachonica, Toxodon platensis, Hippidion principale, Stegomastodon superbus; Extant mammals: Lama guanicoe, Vicugna vicugna, Blastoceros dichotomus, Hippocamelus bisulcus, Mazama americana, Ozotocerus bezoarticus, Tapirus terrestrial, Dicotyles tajacu, Tayassu pecari; Birds: Leptotila verrauxi, Columba picazuro, Pitangus sulphuratus, Elaienia parvirostris, Turdus rufiventris, Turdus amaurochalinus, Thraupis sayaca, Stephanophorus diadematus, Ortalis canicollis, Elaienia albiceps. ev rR ee 160x89mm (1200 x 1200 DPI) iew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 30 of 59 http://mc.manuscriptcentral.com/holocene Page 31 of 59 ee rP Fo Figure 4. Boxplots of most diagnostic dimensions of the fruits analyzed and their seeds. 276x177mm (600 x 600 DPI) iew ev rR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 32 of 59 Figure 5. a) Percentage of plants with spinescence, secondary metabolites and megafaunal dispersed fruits (N=134); b) Mean wood density value of megafaunal plants compared with South, Central and North American and global wood density mean (data from Chave et al., 2009); c) Anachronism scoring (N=76). 170x227mm (600 x 600 DPI) http://mc.manuscriptcentral.com/holocene Page 33 of 59 iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE Figure 6. a) Percentage of plants with archaeological use (N=134); b) Percentage of plants with ethnographic use (N=134); c) Current human use of megafaunal plants (N=132); restricted: local use, medium: regional use, and widespread: extra-regional commercial use (e.g., plantations). 202x233mm (600 x 600 DPI) http://mc.manuscriptcentral.com/holocene HOLOCENE Supplementary Material 1 - Table 1.Timing of different mammalian taxa arrival to South America. Taxa Geologic Age Didelphimorphia, Paucituberculata, Microbiotheria, Sparassodonta Paleocene Salma Age References Tiupampan, Peligran, Itaborian, Riochican 64.5-42.0 MA Defler 2019 Condilartha, Liptoterma, Notoungulata, Astrapotheria, Pyrotheria, Xenungulata Paleocene Tiupampan, Peligran, Itaborian, Riochican 64.5-42.0 MA Defler 2019 Xenarthrans Paleocene Tiupampan, Peligran, Itaborian, Riochican 64.5-42.0 MA Defler 2019 Caviomorphs Mid-Eocene Divisaderan 42.0-36.0 MA Defler 2019 Eocene Divisaderan-Tinguirican 37.0-35.0 MA Defler 2019 Miocene-Pliocene Pleistocene Chasicoan-Huayquerian Uquian-Lujanian 10.0-6.8 MA Defler 2019 3.0-0.011 MA Defler 2019 Primates Proboscidea, Camelidae, Tayassuidae and Procyonidae Equidae, Canidae, Felidae, Ursidae, Mustelidae, Mephitidae, Tapiridae, Cervidae, Sigmodontinae iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 34 of 59 http://mc.manuscriptcentral.com/holocene Page 35 of 59 Supplementary Material 1 -Table 2. Extant and extinct species in the study area. Modified from Owen Smith 2013 and Cione et al. 2009 Continent Mass range Order Family Genus Species Diet of genera Status of genera SOUTH > 1000 Proboscidea Gomphotheriidae Cuvieronius Cuvieronius Hyodon B E (kg) kg AMERICA Proboscidea Gomphotheriidae Stegomastodon Stegomanstodon platensis B-G E Notoungulata Toxodontidae Toxodon Toxodon platensis G E Xenarthra Megaheriidae Megatherium Megatherium americanum B E Xenarthra Mylodontidae Glossotherium Glossotherium robustum G E Xenarthra Mylodontidae Lestodon Lestodon armatus G E Xenarthra Mylodontidae Scelidotherium Scelodotherium leptocephalum B E Xenarthra Megalonychidae Plaxhaplous Plaxhaplous canaliculatus B E Xenarthra Glyptodontidae Glyptodon Glyptodon reticulatus G E Xenarthra Glyptodontidae Doedicurus Doedicurus clavicaudatus B E 100-1000 kg Perissodactyla Equidae Equus Equus neogeus G E Perissodactyla Equidae Hippidion Hippidion principale G E Perissodactyla Equidae Hippidion Hippidion saldiasi G E Perissodactyla Equidae Hippidion Hippidion devillei G E Perissodactyla Tapiridae Tapirus Tapirus cristatelus B E Perissodactyla Tapiridae Tapirus Tapirus terrestris B P Artiodactyla Cervidae Paraceros Paraceros fragilis B E Artiodactyla Camelidae Lama Lama guanicoe B-G P Artiodactyla Camelidae Lama Lama gracilis B-G E Artiodactyla Camelidae Hemiauchenia Hemiauchenia paradoxa B E Notoungulata Toxodontidae Mixotoxodon Mixotoxodon larensis G E Liptoterna Macraucheniidae Macrauchenia Macrauchenia patachonica B E Xenarthra Pampatheriidae Pampatherium Pampatherium humboldti G E Xenarthra Pampatheriidae Pampatherium Pampatherium typum G E Xenarthra Pampatheriidae Holmesina Holmesina paulacoutoi B E Xenarthra Glyptodontidae Glyptodon Neosclerocalyptus paskoensis G E Xenarthra Glyptodontidae Panochthus Panochtus tuberculatus B E Xenarthra Glyptodontidae Neuryurus Neuryurus n. sp. B E Xenarthra Glyptodontidae Hoplophorus Hoplophorus euphractus B E Xenarthra Megalonychidae Nothrotherium Nothrotherium roverei B E Xenarthra Mylodontidae Glossotherium Glossotherium myloides G E Xenarthra Mylodontidae Scelidodon Scelidodon cuvieri B E Xenarthra Mylodontidae Scelidodon Scelidodon chiliense B E Xenarthra Megalonychidae Nothropus Nothropus priscus B E Rodentia Hydrochoeridae Neochoerus Neochoerus aesopi G E 10-100 kg Artiodactyla Cervidae Blastocerus Blastocerus dichotomus B P Artiodactyla Cervidae Ozotoceros Ozotocerus bezoarticus G P Artiodactyla Cervidae Hippocamelus Hippocamelus bisulcus B P Artiodactyla Cervidae Mazama Mazama gouazoubira B P Artiodactyla Cervidae Mazama Mazama americana B P Artiodactyla Cervidae Mazama Mazama nana B P Artiodactyla Cervidae Pudu Pudu puda ¨B P Artiodactyla Cervidae Morenelephus Morenelaphus lujanensis B E Artiodactyla Camelidae Vicugna Vicugna vicugna G P Artiodactyla Tayasuidae Tayassu Tayassu pecari O P Artiodactyla Tayasuidae Dicotyles Dycotiles tajacu O P Artiodactyla Tayasuidae Catagonus Catagonus wagneri O P Rodentia Hydrochoeridae Hydrochoerus Hydrochoerus hidrochaeris G P Assignments to body size ranges based on adult females are from Owen-Smith (1988: Appendix Table I.1) and Macdonald (1984) for extant species, and from Smith et al. (2003) for extinct species. G= grazer; B= browser; B-M= mixed feeders; O= omnivore. iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Supplementary Material 1 - Table 3. muzzle and beak size of seed dispersal animals in the area Taxa Muzzle width (cm.) Palatal width Reference Glyptodon reticulatus 9.5 4 Fariña et al. 1998 (cm.) Panochtus tuberculatus 13.5 6 Fariña et al. 1998 Doedicurus clavicaudatus 10.5 6 Fariña et al. 1998 Megatherium americanum 14 15 Fariña et al. 1998 Lestodon armatus 16.5 7 Fariña et al. 1998 Glossotherium robustum 14 6 Fariña et al. 1998 Scelidotherium leptocephalum 8.6 2.9 Fariña et al. 1998 Macrauchenia patachonica Toxodon platensis Hippidion principale Stegomastodon platensis* Lama guanicoe Vicugna vicugna Blastoceros dichotomus Hippocamelus bisulcus Mazama americana Ozotocerus bezoarticus Tapirus terrestris Dicotyles tajacu Tayassu pecari Leptotila verrauxi Columba picazuro Pitangus sulphuratus Elaienia parvirostris Turdus rufiventris Turdus amaurochalinus Thraupis sayaca Stephanophorus diadematus 6.7 10 6.4 60 2.95 2.06 3.18 3.17 2.06 2.4 4.17 2.7 4.6 0.92 1.42 1.77 0.77 1.42 1.36 1.03 1.07 5 13 7.5 12 3.4 3.49 4.49 4.23 3.49 3.2 5.6 1.7 2 1.96 1.86 3.1 0.97 2.08 1.92 1.38 1.12 Fariña et al. 1998 Fariña et al. 1998 Fariña et al. 1998 Fariña et al. 1998 Janis and Ehrhardt 1988 Janis and Ehrhardt 1988 Janis and Ehrhardt 1988 Janis and Ehrhardt 1988 Janis and Ehrhardt 1988 Mendoza et al. 2002 Janis and Ehrhardt 1988 Mendoza et al. 2002 Mendoza et al. 2002 Montaldo 2000 Montaldo 2000 Montaldo 2000 Montaldo 2000 Montaldo 2000 Montaldo 2000 Montaldo 2000 Montaldo 2000 5.52 1.49 Caziani 1996 Caziani 1996 iew ev Ortalis canicollis 1.93 Elaienia albiceps 1.1 * Stegomastodon superbus in Fariña et al. 1998 rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 36 of 59 http://mc.manuscriptcentral.com/holocene Page 37 of 59 Supplementary Material 2-Table 1. Studied plants Leng 22-16 130-70 40 50-30 40-28 200-80 300-250 300-200 70-55 210-70 200-100 85-50 100-70 100-80 100-80 50-36.7 60 100-40 50-40 200-50 150-90 100-50 160-70 150-70 250-100 300-120 35-17 60-20 35-20 160-100 100-35 80-40 70-25 150-80 250-120 170-70 200-100 180-90 280-50 300-100 180-70 115 200-80 53.57 240-60 70 110-50 150-70 70-40 255-160 100-70 80-26 234-204 120-60 63-40 90-50 ev rR ee rP Cod ROLLEMA ASPIQUE AACU BUTYAY BUPAR TABENO HAHEP HANIM JAMIM TESTA CEICO CETIOPS CEFORB OPUQUI OPUFI STECORY ASPE CAPPUSA VASQUER AAROM AATRAM ABONA APRAE AVIS ACOLU ERYGA GEODE CAEPAR MIMOCAR PARAPEX PARATA PARECOX PROABBRE PROAFFI PROALBA PROALPA PROCAL PROCHI PROFLEX PROKUN PRONI PROPU PRORU PROSTRO PROVIN RAMOGI SENEGI SECORY VACHECA BAUFOR CAEGI CHLOTE ENCON GLAMOR MIMODE PELDU Diam 40-20 60-40 42.5 30-20 30-20 15-10 15-10 20 60-45 70-50 100-50 40-25 50-25 60-50 70-40 40-27.4 45-30 8-5 30-20 10 20-10 20-10 25-15 25-15 30-20 15 30-20 20 16-5 14-6 6.8-5 12-7 6.14-4 20-10 10-5 12-6 14.4-9.6 18-10 15-7 20 10 0.9 10 4.07 12-6 40 35-10 10-7 25-15 25-15 20-15 45217 39-29.8 35-25 15-10 20-10 iew Fam Gen SP ANNONACEA Rollinia emarginata APOCYNACEAE Aspidospermaquebracho-blanco ARECACEAE Acrocomia aculeata ARECACEAE Butia yatay ARECACEAE Butia paraguayensis BIGNONIACEAE Tabebuia nodosa BIGNONIACEAE Handroanthus heptaphyllus BIGNONIACEAE Handroanthus impetiginosus BIGNONIACEAE Jacaranda mimosifolia BIGNONIACEAE Tecoma stans MALVACEAE Ceiba chodatii CACTACEAE Cereus aethiops CACTACEAE Cereus forbesii CACTACEAE Opuntia quimilo CACTACEAE Opuntia ficus-indica CACTACEAE Stetsonia coryne CAPPARACEAE Annisocapparis speciosa CAPPARACEAE Cynophalla retusa CARICACEAE Vascocellea quercifolia FABACEAE Acacia aroma FABACEAE Acacia atramentaria FABACEAE Acacia bonariensis FABACEAE Acacia praecox FABACEAE Acacia visco FABACEAE Anadenanthera colubrina FABACEAE Erythrina crista-galli FABACEAE Geoffroea decorticans FABACEAE Caesalpìnia paraguariensis FABACEAE Minozyganthus carinatus FABACEAE Parapiptadenia excelsa FABACEAE Parkinsonia aculeata FABACEAE Parkinsonia praecox FABACEAE Strombocarpa abbreviata FABACEAE Neltuma affinis FABACEAE Neltuma alba FABACEAE Neltuma alpataco FABACEAE Neltuma caldenia FABACEAE Neltuma chilensis FABACEAE Neltuma flexuosa FABACEAE Neltuma kuntzei FABACEAE Neltuma nigra FABACEAE Neltuma pugionata FABACEAE Neltuma ruscifolia FABACEAE Strombocarpa strombulifera FABACEAE Neltuma vinalillo FABACEAE Ramorinoa girolae FABACEAE Senegalia gilliesii FABACEAE Senna corymbosa FABACEAE Vachelia caven FABACEAE Bauhinia forficata FABACEAE Caesalpìnia gilliesii FABACEAE Chloroleucon tenuiflorum FABACEAE Enterolobium contortisiliquum FABACEAE Gleditsia amorphoides FABACEAE Mimosa detinens FABACEAE Peltophorum dubium Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene FRFM 69 34 9.25 2.5-2 300 139.3-24.8 12.5 1.9 4.3 4.92 5.40-2.8 0.38 9.11 1.6 8.1 15-5 6912 8.77-0.98 13.5 5.4 11.50-9.90 4.8 21.96-21.71 0.25 HOLOCENE 50-40 61.407 120-60 110-40 90-70 250-100 80-40 70-40 46.4-40.5 63.69 180-150 72-49.3 45 40-38 30-25 65-35 10.28 750 105 237-180 150-50 140-65 223-56 33.1 45 200 60-20 70-60 250 200 6-5 8-6 30 30-23 33-27 6-4 8 30-20 18.3 15-12.8 35 10-9 9-6 30-20 10-8 6.4 13-4 9.2 8.36 26.5 23.4 12-10 15.1 15 15.048 18-15 5-3.5 8-6 10 10-8 25-15 22.5-20.75 44.03 10 44-33 10 40-35 25 45-35 10 35 10 24-15 45-10 23-12 25-15 20.5 20 100 55-28 40-25 40 80 5-4 5-4 10 10-7 12-8 7-5 7-3 20-10 14.9 20-8 32 4 0.5-0.4 5-4 30-10 6-5 3.9 9-3 15-7 9.72 30-25 17.7 10-6 30-17.6 21.2 9 8 8 19.6 4-3 4 4 ev rR ee rP PTERONITE MYROXYPE AMCEAR SEAPHY SEBI SESPE SESVIR TIPUTI CEBAL PACAE AFALCA SOLABE PHYLLORA BULBONA BULRE BULSAR PORMIC IEDU IMAR ISAL IURA CHLOCHA CHLOFO BROSE BROBA PSEUSA ANNORU ARABRA THAUBI SYNAVER ACHANI LITHMO SCHIBA SCHILO SCHIMA SCHINARA SCHILO SYARO COPAL TRICAM TRISCHI TESSIN CORTRI CEBERG CATWEE CAPPATA MAYARIA MAYSPI SAHAEMA SECOMM JAMACRO PROTOR MYRCIS EUNI BOUSTIPI XIAM RUPRETA RUPRETRI RUPRELA iew FABACEAE Pterogyne nitens FABACEAE Myroxylon peruiferum FABACEAE Amburana cearensis FABACEAE Senna aphylla FABACEAE Senna bicapsularis FABACEAE Senna spectabilis FABACEAE Sesbania virgata FABACEAE Tipuana tipu MELIACEAE Cedrela balansae PASSIFLORACEAE Passiflora caerulea SANTALACEA Acanthosyris falcata SOLANACEAE Solanum betaceum ULMACEAE Phyllostylon rhamnoides ZYGOPHYLLACEAE Bulnesia bonariensis ZYGOPHYLLACEAE Bulnesia retama ZYGOPHYLLACEAE Bulnesia sarmientoi ZYGOPHYLLACEAE Porlieria microphylla FABACEAE Inga edulis FABACEAE Inga marginata FABACEAE Inga saltensis FABACEAE Inga uraguensis FABACEAE Chloroleucon chacoense FABACEAE Chloroleucon foliolosum BROMELIACEAE Bromelia serra BROMELIACEAE Bromelia balansae BROMELIACEAE Pseudananas sagenarius ANNONACEA Annona rugulosa APOCYNACEAE Araujia brachystephana ARACEAE Thaumatophyllumbipinnatifidum ARACEAE Synandrospadix vermitoxicum ACHATOCARPACEAEAchatocarpus praecox ANACARDIACEAE Lithraea molleoides ANACARDIACEAE Schinopsis balansae ANACARDIACEAE Schinopsis lorentzii ANACARDIACEAE Schinopsis marginata ANACARDIACEAE Schinus areira ANACARDIACEAE Schinus longifolius ARACACEAE Syagrus romanzoffiana ARECACEAE Copernisia alba ARECACEAE Trithrinax campestris ARECACEAE Trithrinax schizophylla ASTERACEA Tessearia integrifolia BORAGINACEAE Cordia trichotoma CANNABACEAE Celtis ehrenbergiana CAPPARACEAE Capparicordis tweediana CAPPARACEAE Capparis atamisquea CELASTRACEA Maytenus boaria CELASTRACEA Maytenus spinosa EUPHORBIACEAE Sapium haematospermum EUPHORBIACEAE Sebastiania commersoniana EUPHORBIACEAE Jatropha macrocarpa FABACEAE Strombocarpa torquata MYRTACEAE Myrcianthes cisplatensis MYRTACEAE Eugenia uniflora NYCTAGINACEAE Bougainvillea stipitata OLACACEAE Ximenia americana POLIGONACEAE Ruprechtia apetala POLIGONACEAE Ruprechtia triflora POLIGONACEAE Ruprechtia laxiflora Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 38 of 59 http://mc.manuscriptcentral.com/holocene 0.18-0.1771 0.558 0.6351 17933 7.71-6.92 0.85 0.66-0.58 6.5962-2.9186 34.89 64.3-40.58 0.034 600-250 21.2 4.35 0.56 4.06 1.57 18.9 45.49 0.037 5.61 1.01 3266 0.343 0.067 4 5.05-3.32 5.44 0.0297 Page 39 of 59 RANUNCULACEAE Clematis campestris RHAMNACEAE Condalia buxifolia RHAMNACEAE Ochetophila trinervis RHAMNACEAE Scutia buxifolia RHAMNACEAE Ziziphus mistol ROSACEA Kageneckia lanceolata ROSACEA Polylepis australis RUTACEAE Zanthoxylum coco SALICACEAE Salix humboldtiana SANTALACEA Jodina rhombifolia SAPINDACEAE Allophylus edulis SAPINDACEAE Sapindus saponaria SAPOTACEAE Sideroxylon obtusifolium SIMAROUBACEAE Castella coccinea ANACARDIACEAE Schinus fasciculatus ANACARDIACEAE Schinus myrtifolia ANACARDIACEAEMyracrodruon balansae ANACARDIACEAEMyracrodruon urundeuva APOCYNACEAE Vallesia glabra CLESTRIS CONBUX OCHETRI SCUBU ZIMI KAGELAN POAUSTRA ZANCO SAHUM JOLIA ALEDU SASA SIDOBTU CASCOCC SCHIFA SCHIMY MYRABA MYRAURU VAGLA 3.5-3 9-7 3 7.5 15-10 21.5 8.34-5.47 6-5 5-4 7 8.49 16.07 17-10 12-9 5-4 7.3-5.5 3.5 3.9-2.8 12-10 2.5-2 4 3 8-3 15-10 30-20 6.44-3.8 3-4 2 9 8.16 20-15 10-6 9-7 5-3 8-5.8 2.8 3.5-2.8 9-6 iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene 1.66 0.01 3.36 1.52-1.06 0.029 0.017 0.169 HOLOCENE Seedm SDM 0.307-0.141 28.57 0.37 0.84 0.04 0.018-0.010 0.1043 0.0117 0.008-0.0048 0.059 0.00187 0.00085 0.0000028 3.5-3.8 0.0006 0.027 0.000048 6.7 9-6 0.0433 0.015 0.161-0.09 0.06 0.42 0.0057 0.0168 0.004 0.00256 0.0083 0.0802 0.00914 0.0262 0.0939 0.2064 0.095 0.0789-0.06 0.34-0.22 0.2439 0.055 0.7-0.4 0.5-0.3 0.2-0.1 0.0466 1-0.7 1.49 1.2-0.82 0.6-0.4 0.7 1-0.8 0.9-0.8 0.6-0.5 1-0.7 1.2-1 0.5-0.4 1-0.8 0.7-0.5 1.11 0.7-0.5 0.45-0.30 0.6-0.5 0.8 0.8-0.7 0.4 0.6-0.4 0-8-0.7 0.4-0.3 0.5-0.35 0.8 0.62 0.017 0.017 0.01643 0.01548 0.22 0.2-0.1 0.98 0.2 0.1 4.65 1-0.6 0.55-0.32 0.3-0.19 0.22-0.12 0.2-0.1 0.1 0.6-0.5 0.4-0.3 0.18-0.10 0.4-0.3 0.2-0.1 iew 0.034 0.0521 0.027 0.0327-0.0202 0.0384 0.0576 Sheight ev 0.047 0.0079 0.032 0.048 rR 0.186-0.05 0.0342 0.16-0.14 0.26-0.08 0.63 Sdiam 0.6-0.4 4.5 3 1.36 1.5-0.8 0.8-0.4 1-0.7 1.2 1.3-1.1 0.8-0.5 6.21 0.22 0.142 0.7-0.5 0.32 0.11 1.2-0.8 0.4 0.35-0.30 0.5-0.7 0.67-0.40 0.53-0.37 0.4-0.3 1-0.8 1.5-1 0.7 0.8-0.7 0.7-0.5 0.75-0.54 0.7 0.5-0.3 0.6-0.4 0.378 1.4-0.7 0.5-0.4 1-0.9 0.429-0.317 0.51-0.34 0.57-0.50 0.6-0.5 0.6-0.5 ee 7.3 0.0032 Sleng 1.5-1 3.5 3 2.41 2.8-2 2.5-2 3-2.5 3.9 1.8-1.3 2.5-2 7.78 0.25 0.199 0.8-0.6 0.51-0.46 0.17 1.1-0-6 0.8 0.5-0.4 0.6-0.7 0.8-0.61 10-6.3 0.6 1.2-1 1.2 1.5-1 1-0.9 1-0.7 0.8-0.4 1.2-0.8 1-0.8 1-0.8 0.51 1-0-70 0.8-0.5 1.1-0.85 0.679-0.539 0.8-0.6 0.85-0.80 1.3-0.8 0.9-0.6 rP Seeds 17 45 1 3-1 3-1 20 195-150 192 69 35-25 30-13 >100 >100 158 448-10 1212 10-4 13-2 44 20 12 12-6 10-5 12-8 18 12-6 2-1 5-1 1-2 15-4 6-1 6-1 15 19-8 30-15 18-8 25-20 30-20 18-10 14-6 20-10 16 20-10 20-10 25-10 5-1 10-5 20 12-6 8-6 8-4 10 20-8 8-6 6-4 3-1 Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 40 of 59 0.4-0.3 0.2-0.1 0.230-0.202 0.25-0.18 0.2-0.1 Fcolor Yellow Green Brown Orange Yellow Brown Brown Dark brown/black Dark brown/black Brown Green Red Purple Green Red Yellow Green Brown Yellow Brown Purple Greenish/brown Greenish/brown Yellow/brown Brown/red Brown Redish/brown Black Brown Brown Brown Brown Brown Yellow Brown Yellow Yellow Yellow Yellow Dark brown/black Yellow brown Yellow Yellow Yellow brown Brown Brown 0.24-0.18 Brown 0.4 Dark brown/black 0.3-0.2 Brown 0.2 Brown Brown 0.5 Dark brown/black 0.5-0.4 Black 0.1 Brown 0.2-0.1 Brown http://mc.manuscriptcentral.com/holocene Page 41 of 59 0.00008055 0.013 0.08 0.087 0.539 0.2 0.38 0.36 0.078 0.08-0.067 0.035 0.031 0.97 0.00089 0.0094 0.082 0.1392 0.019 0.022 0.001658 0.5-0.4 0.6 1.3-1.2 0.9 1.8-1.2 0.5-0.4 3.25 1 1.2-1 1.8-1.12 0.8-0.55 0.85-0.57 0.5 0.7-0.6 0.455 1.4-0.9 0.6 0.4-0.35 0.8 1.101-1.0658 0.3253-0.3201 Brown 1.11 0.62 Yellow 1.6-1.594 Black 0.3-0.25 0.15-0.10 Brown 0.4-0.3 0.2-0.1 Brown 0.6-0.4 0.3-0.1 Black 0.5-0.4 0.3 Dark brown/black 0.2-0.1 Brown 0.46-0.41 Brown 0.39 0.26 Orange 1.2-0.7 Yellow 0.4-0.3 Red 0.4 Brown 1.1-0.9 Greenish/brown 0.3 Brown 1.3-1 Brown/green 0.3 Black 2 Green 0.5 Green 0.78 Brown 1.12-0.55 0.87-0.55 Yellow 0.7-0.4 0.25-0.12 Redish/brown 0.61-0.41 0.42-0.13 Brown 0.3 0.7 Yellow 0.2 0.7 Yellow 0.281 Brown 0.8-0.4 Green 0.25 Green 0.18-0.17 White/yellow 0.4 0.3 Greenish/white 0.3 White-traslucid 0.2 Green 0.2 Brown 0.5 Brown 0.6 Brown 0.2178 Purple Purple 1 0.15 Yellow 0.68 0.77 Yellow 1.3 Yellow 1.5 Yellow White 0.2 0.5-0.4 Brown 0.4-0.3 Yellow 0.5 Yellow 0.25 Brown 0.2 Red 0.3-0.15 Red 0.6-0.5 Red 0.401 0.341 Brown 1 Brown 0.32 Purple 0.38 0.35 Black 1.2 Red 0.00334 0.1 0.81 3021 0.49 1334 0.53 0.48 0.408 0.0449 0.047 0.137 0.024 0.35 0.04 0.026 0.55 0.018 0.287 0.98-0.76 0.071 0.23-0.19 0.85 0.022 0.1562 0.74 2.5 0.97 1.5 2 0.6 0.6-0.4 0.8 0.5-0.4 5-4.5 0.8-0.6 0.434 0.595 1.5-1.3 0.48 0.6 1.5 1 0.8-0.5 0.5 0.6 iew 0.18 0.03 0.4 0.6-0.5 0.7 0.9 0.122 ev rR 1 1 1 1 0.00518 0.03549 1.7433-1.635 1.88 5.888-5.830 0.5-0.3 0.6-0.4 0.7-0.5 0.7-0.6 0.7-0.6 2.85-2.56 0.64 ee 120-60 >100 5-3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12-3 2 1-2 1-2 3 3 3-1 13-8 2-1 3 0.1169 0.64 0.28498 0.51 0.5807-0.5765 1.09 0.0076 0.02527-0.01498 0.0008353 0.036-0.021 0.004669 0.00778 0.00915 0.4981 0.7546 0.033-0.017 0.005 0.01 0.00028 rP 1 1 1 14-8 47-20 65-50 7-4 4-1 56-45 149.43 1 200 1 5 5-4 2 4-1 15 11 9-2 7-1 6 20 23.62 23.3 247 Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE 0.7 0.5 0.3 0.3 http://mc.manuscriptcentral.com/holocene Yellow Red Pink brown Red HOLOCENE 2-1 3-1 2-4 3-1 75-65 1 1 >100 1 1 1 1 1 1 1 1 1 2-1 0.001869 0.033 0.0022 0.018 0.0013 0.0063-0.0039 0.014-0.0049 0.002 0.2 1.51 0.20-0.15 0.4494 0.13 0.015 0.5172 0.0058 0.017-0.014 0.047-0.027 0.8235 0.2781 0.13 0.2 0.5 0.5 0.20-0.11 0.302 0.4 0.07-0.05 0.5 0.746 10.17 1.4-0.7 0.9-0.8 0.3-0.2 0.33 0.5 0.3-0.2 0.8-0.6 0.05 0.25 0.4 0.37 0.45 0.147 0.3 0.02 0.7 0.56 1-0.8 0.4-0.1 0.7-0.6 0.4-0.24 0.24 0.15-0.10 0.2 0.25 iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 42 of 59 http://mc.manuscriptcentral.com/holocene 0.498 0.1 Redish/brown Redish/brown Brown Dark brown/black Red/Brown Brown Brown Purple Brown Red Red Yellow/Green Purple Yellow Purple Pink Brown Brown White Page 43 of 59 OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN CLOSE OPEN Mixed Type 1 2 1 1 1 2 2 2 2 2 2 1 1 2 2 1 1 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 Usage by humans 2 3 1 3 2 1 3 2 1 1 2 1 1 3 3 3 3 2 1 2 1 2 2 3 2 2 3 3 2 1 2 2 1 2 3 1 3 3 3 3 3 1 2 Mixed Terra Terra RIVER Mixed Terra Terra Mixed Mixed Mixed Terra Mixed 2 1 2 2 2 2 2 2 2 2 2 1 2 3 1 1 3 2 1 1 2 2 1 1 iew Chac Mon Chac-Mon Mixed Mixed Mixed Mixed Chac-Esp Chac-Esp Chac-Esp Chac-Esp Chac-Esp Site RIVER Mixed Terra Mixed Terra RIVER Mixed Mixed Mixed Terra Terra Terra Terra Terra Terra Terra Terra Terra Mixed Terra Terra Terra Mixed RIVER Terra RIVER Mixed Mixed Mixed Terra RIVER Terra Terra Mixed Mixed Terra Terra RIVER Mixed Terra Mixed Mixed Mixed ev 2 1 2 2 3 3 1 3 2 2 1 2 Canopy OPEN Mixed OPEN Mixed OPEN OPEN CLOSE CLOSE OPEN CLOSE CLOSE OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN Mixed OPEN CLOSE Mixed CLOSE OPEN OPEN Mixed OPEN OPEN Mixed OPEN OPEN OPEN OPEN Mixed OPEN OPEN OPEN OPEN Mixed OPEN OPEN OPEN rR Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Mainveg Chac Mixed Chac Chac-Esp Chac-Esp Chac Chac-Esp Chac Chac-Esp Chac Chac Chac-Mon Chac-Mon Chac-Esp Chac-Esp Chac Chac Chac Chac Mixed Chac-Esp Mixed Mixed Chac-Mon Chac-Esp Chac Mixed Chac Chac-Mon Chac Mixed Chac-Mon Mixed Chac-Esp Mixed Mon-Esp Mon-Esp Mixed Mixed Chac Chac-Esp Chac-Mon Chac ee Range 1 3 3 2 2 2 2 3 3 4 3 2 2 2 4 2 1 1 3 3 3 3 3 2 3 2 3 2 1 2 2 4 2 2 3 1 1 2 2 1 2 1 2 rP Fruit Type Berry Capsule Drupe Drupe Drupe Legume Legume Legume Capsule Legume Capsule Berry Berry Berry Berry Berry Berry Capsule Berry Legume Legume Legume Legume Legume Legume Legume Drupe Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Legume Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Chac Chac Chac Mixed Chac-Esp Chac-Esp Mixed Chac-Esp Chac Mixed Chac-Esp Chac Chac Mixed Chac-Mon Chac Mixed Chac Chac Chac Chac-Esp Chac Chac Chac Chac-Esp Chac-Esp Chac Mixed Chac Chac-Mon Chac-Esp Chac-Esp Chac Chac Chac Chac Mixed Chac-Esp Chac-ESp Chac-Esp Chac Chac-Mon Chac Mixed Mixed Mixed Mixed Mixed Chac-Esp Chac-Esp Chac-Mon Chac-Mon Chac-Mon Chac-Esp Chac-Esp Mixed Chac-Esp Chac Chac-Esp OPEN Mixed CLOSE Mixed OPEN OPEN OPEN OPEN Mixed OPEN OPEN CLOSE OPEN OPEN OPEN OPEN Mixed OPEN OPEN OPEN OPEN OPEN OPEN CLOSE CLOSE CLOSE OPEN Mixed CLOSE Mixed CLOSE OPEN OPEN OPEN OPEN CLOSE OPEN OPEN OPEN OPEN OPEN OPEN OPEN Mixed OPEN CLOSE OPEN OPEN OPEN OPEN OPEN OPEN Mixed Mixed Mixed OPEN OPEN OPEN OPEN Mixed Mixed Mixed Mixed RIVER RIVER RIVER Terra Mixed Terra Terra Terra Mixed Terra Terra RIVER Mixed RIVER Mixed RIVER RIVER Terra Terra Terra Terra Terra Terra Mixed RIVER Terra Terra Terra Mixed Terra Terra Terra Mixed Mixed Terra Terra Terra RIVER Mixed Mixed RIVER RIVER Mixed Mixed RIVER RIVER Mixed Terra RIVER Terra RIVER Terra Terra Terra Terra iew ev rR ee Drupe Aquenio Aquenio Aquenio 2 4 3 1 3 3 2 2 3 4 1 3 4 3 2 2 1 4 4 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 1 3 3 2 1 1 1 4 2 4 2 2 3 2 2 2 1 1 1 3 2 3 1 2 3 rP Samara Samara Legume Legume Legume Legume Legume Samara Capsule Berry Drupe Berry Samara Capsule Capsule Capsule Capsule Legume Legume Legume Legume Legume Legume Pineapple Pineapple Pineapple Berry Folicle Berry Berry Drupe Drupe Samara Samara Samara Drupe Drupe Drupe Drupe Drupe Drupe Aquenio Drupe Drupe Berry Berry Capsule Capsule Capsule Capsule Capsule Legume Berry Berry Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 44 of 59 http://mc.manuscriptcentral.com/holocene 1 2 1 2 2 2 2 1 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 2 2 2 2 1 1 1 3 3 1 2 1 3 1 1 2 1 1 1 1 3 3 3 2 3 1 3 1 2 3 3 3 1 2 3 2 3 3 1 3 3 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 Page 45 of 59 Berry Drupe Capsule Drupe Drupe Capsule Berry Berry Capsule Capsule Drupe Drupe Berry Drupe Drupe Drupe Drupe Drupe Drupe 3 3 1 2 2 1 1 2 4 3 3 4 4 1 3 2 2 2 4 Mixed Mixed Mon Mixed Chac Chac-Esp Chac-Esp Chac Mixed Mixed Mixed Chac-Esp Mixed Chac-Esp Mixed Chac Chac Chac Chac CLOSE CLOSE OPEN OPEN CLOSE CLOSE OPEN OPEN OPEN CLOSE Mixed OPEN CLOSE OPEN CLOSE CLOSE Mixed Mixed Mixed Terra Terra RIVER Mixed Terra Terra RIVER Terra RIVER Terra Mixed Terra RIVER Terra Terra Terra Mixed Mixed RIVER iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 2 2 1 1 3 2 1 3 1 2 2 3 HOLOCENE DISP Hydrochory Anemochory Ornithocory Zoochory Anemochory Anemochory Anemochory Anemochory Anemochory Anemochory Ornithocory X X X X X X X 50-20 150 30 60-30 40-20 100 40-20 10-3 80-10 60-5 70-30 2-6 1-6 X X X X X X X? X X X X X X X 30-7 30-10 25-3 40 60-3 20-5 60 40 80-500 35 20-95 10-330 5-120 18-5 30-15 7-2 15-5 150 15-6 Hardness H VH Specific weight 930 1100 VH VH H H 1100 1020 VH 1080 VH VH VH VH H VH VH VH 1155 1230 1200 590 970 1290 1280 1115 M 800 VH 1040 H VH 980 1030 VH VH H VH 1350 1170 VH 1015 VH 1230 MP 1195 H VH VH 910 705 1135 VH 1150 iew X X X X 20-14 SM 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 ev X 13-7 40-20 rR Zoochory Hydrochory Autochory Autochory Zoochory Autochory Autochory Autochory Autochory Endozoochory Autochory Anemochory X X LSPI ee Autochory Autochory Autochory Hydrochory Endozoochory Zoochory Zoochory Autochory Autochory Autochory Autochory Autochory Zoochory Autochory Zoochory Zoochory Zoochory Endozoochory Zoochory Zoochory Zoochory X SPI 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 rP Endozoochory Endozoochory Zoochory Endozoochory Zoochory Zoochory Endozoochory Vegt X Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 46 of 59 http://mc.manuscriptcentral.com/holocene 950 1115 Page 47 of 59 X X X X X X X X X X X X X X X 10 15-3 10-5 10-5 10-3 5 20-10 20 20 65 100 150-100 200 15-3 20 45 30 1-40 25-1 30 iew X 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ev X X 5 rR Zoochory Anemochory Anemochory Anemochory X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 ee Ornithochory Endozoochory Anemochory Anemochory Anemochory Autochory Ornithochory Zoochory Zoochory Autochory Autochory Anemochory Autochory Ornithochory Zoochory Zoochory Autochory Autochory Endozoochory Autochory Autochory Zoochory Hydrochory Zoochory X X rP Anemochory Autochory Autochory Autochory Autochory Endozoochory Autochory Anemochory Autochory Autochory Ornithochory Zoochory Anemochory Autohcory Autochory Autochory Endozoochory Autochory Autochory Hydrochory Hydrochory Autochory Autochory Zoochory Zoochory Zoochory Autochory Anemochory Zoochory Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene VH VH H 1100 1190 960 H 880 VH H 1010 810 VH 1050 VH 1180 VH VH 1185 1220 H VH 985 1015 VH 1035 VH H VH VH 1135 VH 1005 H 970 M VH M VH VH H 700 960 1035 1145 960 M 730 VH VH VH 1300 1110 1215 VH 1060 VH 1060 1340 1320 HOLOCENE Endozoochory Hydrochory Ornithochory Zoochory Anemochory Autochory Zoochory Anemochory Zoochory Ornithochory Autochory Hydrochory Zoochory Zoochory Zoochory Anemochory Anemochory Zoochory X X X X X X 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 70-30 15-5 40-10 13 10-6 10 30 28-24 30 iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 48 of 59 http://mc.manuscriptcentral.com/holocene VH 1230 VH VH H VH H H VH H H H VH VH 1250 1095 VH VH 1300 1250 1165 880 850 1110 985 940 830 1115 1005 Page 49 of 59 Dry weight 590 920-875 835 960 580 Density 1.020-0.99 0.935 1.065 0.76 0.76 0.76 1,150 0.8 695 1025 960 540 360 870 0.39-0.35 0.89-0.80 900 0.90-0.85 iew 810 AS 3 4 3 3 1 2 3 3 3 2 3 3 3 3 3 3 2 2 2 4 3 2 3 2 3 4 4 3 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 0 4 2 3 2 4 3 2 3 3 4 2 3 ev 1160 900 rR 650 725 ee 1.2-1.195 rP 0.90-0.80 0.98-0.90 0.29-0.25 560 730 Rdiam 0.885 790 915 1015 950 250 635 1150 1150 910-840 Rleng Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE 820 970 600 0.88-0.80 0.98-0.95 0.61-0.59 500 700-680 440 0.75-0.67 0.55-0.45 750 950-900 950 1150 1.1-0.92 1.1-0.92 660 695 0.54 0.57 Fo 730 870 635 330 780-600 730 890 625 385 1180 830 990 760 750 0.49-0.47 0.92 0.67-0.60 0.82-0.78 iew 690 1.39-1.25 3 3 3 1 2 3 2 3 3 2 4 2 2 2 2 3 3 3 3 1 3 2 3 3 3 3 2 2 2 2 3 2 3 3 2 1 3 0 2 1 1 2 2 3 2 3 2 2 2 2 1 3 2 2 2 2 2 1 2 ev 1200 1180 rR ee rP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 50 of 59 http://mc.manuscriptcentral.com/holocene Page 51 of 59 1 3 2 3 3 2 2 3 2 3 2 2 3 3 3 0 1 1 1 1025 1060 810 925 540 480 830 600 600 845 690 1100 1180 1.25-1.10 1.19 iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE Columm Codes 300-500 kg/m3 500-800 kg/m3 800-1000 kg/m3 more than 1000 kg/m3 gr/cm3 L M H VH iew Rhizome lenght (mm) Rhizome diameter (mm) Anachronism Scoring ev Density Rlen Rdiam AS Dispersor Vegetative resprouting Spiniscence Spine lenght (mm) Secondary metabolites Light Medium/light heavy Heavy Very heavy rR DISP VEGT SPI LSPI SM Hardness (Weight/density) 1= Restricted 2= Medium 3= Widespread ee USAGE BY HUMANS Description Family Genus Species Species code Fruit length (mm) Fruit diameter (mm) fresh fruit mass (g) Number of seeds per fruit Seed mass (g) Seed mass(g) per fruit Seed length (cm) Seed diameter (cm) Seed height (cm) Fruit color Fruit type Geographic range Main vegetation type Type of forest canopy Type of forest site Fruit type, according to Feer's criteria of Type I and Type II elephant fruits Type of use by humans rP Code FAM GEN SP COD LENG DIAM FRFM SEEDS SEEDM SDM SLENG SDIAM SHEIGHT FCOLOR FRUIT TYPE RANGE MAINVEG CANOPY SITE TYPE Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 52 of 59 0-1= No anachronistic 2= Light anachronistic 3= Middle anachronistic 4= Extreme Anachronistic http://mc.manuscriptcentral.com/holocene Page 53 of 59 Supplementary Material 3 - Table 1. Plant´s human use-Archaeology Fam Gen SP Cod Food ACHATOCARPACEAE Achatocarpus praecox ACHANI 1 ANACARDIACEAELithraea molleoides LITHMO 1 ANACARDIACEAELithraea ANACARDIACEAEMyracrodruon ANACARDIACEAEMyracrodruon ANACARDIACEAESchinopsis sp. balansae urundeuva balansae MYRABA MYRAURU SCHIBA ANACARDIACEAESchinopsis ANACARDIACEAESchinopsis lorentzii marginata SCHILO SCHIMA ANACARDIACEAESchinopsis ANACARDIACEAESchinus ANACARDIACEAESchinus sp. areira fasciculatus SCHINARA SCHIFA ANACARDIACEAESchinus ANACARDIACEAESchinus longifolius myrtifolia SCHILO SCHIMY ANACARDIACEAESchinus ANNONACEA Annona ANNONACEA Rollinia APOCINACEAE Aspidosperma Construction Medicinal Poison Insecticide Firewood Artifacts Commerce S/D 2 Site Reference Pozo de la Chola Ramos et al. 2016 Arroyo Talainín 2, Quebrada López 2018, Saur Palmieri et al. 2018 Norte 7 3 Alero Deodoro Roca, Parque Natural Ongamira 1 and 5 Robledo 2021 1 Pozo de la Chola Ramos et al. 2016 1 Pozo de la Chola Ramos et al. 2016 3 Alero Deodoro Roca, Parque Natural Ongamira 1, 3 and 5 Robledo 2021 Quebrada 7 Norte López 2018, Saur Palmieri et al. 2018 1 8 Agua de los Caballos, La Olla, Llan 17, Cueva de la Luna, Alero Montiel, El Carrizalito, Hernández 2002, Musaubach y Berón 2016, Llano y Puesto Jaque II, AMA-3, Andreoni 2012, Llano y Barberena 2013 Cueva Huenul 1 1 Alero El Mirador, Epullan Grande, Alero Deodoro Roca, Parque Natural Ongamira 1 and 5 Brea et al. 2014, Crivelli et al. 1996, Robledo 2021 sp. rugulosa ANNORU emarginata ROLLEMA quebracho-blanco ASPIQUE 5 1 Pozo de la Chola Ramos et al. 2015-2016 APOCINACEAE Aspidosperma sp. APOCYNACEAE Araujia brachystephanaARABRA APOCYNACEAE Vallesia glabra VAGLA ARACACEAE Acrocomia aculeata AACU ARACACEAE Syagrus romanzoffiana SYARO ARACEAE Synandrospadixvermitoxicum SYNAVER ARACEAE Thaumatophyllum bipinnatifidum THAUBI ARECACEAE Butia paraguayensis BUPAR ARECACEAE Butia yatay BUTYAY ARECACEAE Copernisia alba COPAL 2 Parque Natural Ongamira 1, Pozos Blancos Robledo 2021 10 Banda Meridional del Lago, Cañada Larga, Contantinopla, Copina, Cuesta Blanca, Ecoterra, Guayascate, Loma Bola, Loteo 5 Santa Rosa, Potrero de Garay Zárate et al. 2020, Tavarone 2019, López 2020, Llano y Andreoni 2012 1 El Bosquecito 3 Llano and Andreoni 2012, Musaubach and Berón 2016 Agua de Pérez Andreoni 2014 Cueva Epullán Grande Crivelli Montero et al. 1996 El Abra, Pozo de la Chola Auge et al. 2021, Brea et al. 2014, Ramos et al. 2016 CACTACEAE Cereus aethiops CETIOPS CACTACEAE CACTACEAE CACTACEAE CACTACEAE Cereus Cereus Opuntia Opuntia sp. forbesii ficus-indica quimilo CEFORB OPUFI OPUQUI CACTACEAE CACTACEAE Opuntia Stetsonia sp. coryne STECORY ehrenbergiana CEBERG 1 1 2 Geoffroea decorticans GEODE FABACEAE FABACEAE Geoffroea Gleditsia sp. amorphoides GLAMOR 1 1 1 2 Alero Deodoro Roca, Parque Robledo 2021 Natural Ongamira 1 and 5 3 iew CANNABACEAE Celtis sp. CAPPARACEAE Annisocapparis speciosa ASPE CAPPARACEAE Capparicordis tweediana CATWEE CAPPARACEAE Capparis atamisquea CAPPATA CAPPARACEAE Cynophalla retusa CAPPUSA CARICACEAE Vasconcellea quercifolia VASQUER CELASTRACEA Maytenus boaria MAYARIA CELASTRACEA Maytenus spinosa MAYSPI EUPHORBIACEAEJatropha macrocarpa JAMACRO EUPHORBIACEAESapium haematospermum SAHAEMA EUPHORBIACEAESebastiania commersonianaSECOMM FABACEAE Vachellia aroma AAROM FABACEAE Vachelia astrigens AATRAM FABACEAE Senegalia bonariensis ABONA FABACEAE Senegalia praecox APRAE FABACEAE Senegalia sp. FABACEAE Senegalia visco AVIS FABACEAE Amburana cearensis AMCEAR FABACEAE Anadenanthera colubrina ACOLU FABACEAE Bauhinia forficata BAUFOR FABACEAE Caesalpìnia gilliesii CAEGI FABACEAE Caesalpìnia paraguariensis CAEPAR FABACEAE Chloroleucon chacoense CHLOCHA FABACEAE Chloroleucon foliolosum CHLOFO FABACEAE Chloroleucon tenuiflorum CHLOTE FABACEAE Enterolobium contortisiliquumENCON FABACEAE Erythrina crista-galli ERYGA FABACEAE 1 ev CANNABACEAE Celtis rR TRICAM TRISCHI TESSIN HAHEP HANIM JAMIM TABENO TESTA CEICO CORTRI BROBA BROSE PSEUSA ee campestris schizophylla integrifolia heptaphyllus impetiginosus mimosifolia nodosa stans chodatii trichotoma balansae serra sagenarius rP ARECACEAE Trithrinax ARECACEAE Trithrinax ASTERACEA Tessaria BIGNONIACEAE Handroanthus BIGNONIACEAE Handroanthus BIGNONIACEAE Jacaranda BIGNONIACEAE Tabebuia BIGNONIACEAE Tecoma BOMBACACEA Ceiba BORAGINACEAECordia BROMELIACEAEBromelia BROMELIACEAEBromelia BROMELIACEAEPseudananas Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE 1 1 1 1 1 1 13 1 1 1 1 3 1 1 1 3 25 El Alto 3, Arroyo El Gaucho I López 2018, Salvi 2007 Alero Deodoro Roca Pozo de la Chola Pozo de la Chola Pozo de la Chola Ramos et al. 2015-2016 Ramos et al. 2015-2016 Ramos et al. 2015-2016 Pozo de la Chola Los Tres Cerros 1 Los Tres Cerros 1 Ramos et al. 2015-2016 Brea et al. 2013 Brea et al 2013 Agua de los Caballos, Agua de Pérez, Banda Meridional del Lago, Boyo Paso 2, Cañada Larga, Cardonal, Casas Viejas, Cerro Colorado, Constantinopla, Copina, Cuesta Blanca, Ecoterra, El Bosquecito 3, El Dorado, El Durazno, El Gringo, El Porvenir, El Vado, Gruta del Indio, Guasmara, La Alborada, La Angelita, La Bolsa 1, La Granja, La Olla, Loma Bola, Los Colorados, Los Viscos, Loteo 5 Santa Rosa, Mortero Quebrado, Nunsacat, Pomona, Ponontrehue, Potrero de Garay, Pozo de la Chola, Puesto Viejo 2, Punta de las Peñas 3, Quebrada Norte 7, San Alberto, San Esteban, Tesoro 1, Yáminas 1, Llano and Andreoni 2012, Andreoni 2014, Musaubach and Berón 2016, Ramos et al. 20152016, Saur Palmieri 2017, Heider and López 2018, López 2018, Mange 2019, Franco and Camps 2020, Hernández 2002, López 2020, Tavarone 2020, Zárate et al. 2020 Alero Deodoro Roca, Parque Natural Ongamira 1 and 5 Robledo 2021 Pozo de la Chola Ramos et al. 2015-2016 http://mc.manuscriptcentral.com/holocene HOLOCENE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE Inga edulis Inga marginata Inga saltensis Inga uraguensis Mimosa detinens Minozyganthus carinatus Myroxylon peruiferum Parapiptadenia excelsa Parkinsonia aculeata IEDU IMAR ISAL IURA MIMODE MIMOCAR MYROXYPE PARAPEX PARATA FABACEAE Parkinsonia praecox PARECOX FABACEAE FABACEAE FABACEAE FABACEAE Parkinsonia Peltophorum Strombocarpa Neltuma sp. dubium abbreviata affinis PELDU PROABBRE PROAFFI FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE Neltuma Neltuma Neltuma Neltuma Neltuma alpataco caldenia chilensis flexuosa kuntzei nigra pugionata ruscifolia PROALBA PROALPA PROCAL PROCHI PROFLEX PROKUN PRONI PROPU PRORU 2 12 3 2 5 11 2 Agua de los Caballos, Ponnotrehue, Pozo de la Chola Hernández 2002, Musaubach and Berón 2016, Ramos et al. 2015-2016 4 González and Perez 1968, Sempé 1975, Tarragó 1980, Pochettino 1985, Fernández Distel 1986, Carrizo et al. 1999, Oliszewski 2004, Giovantti et al. 2008, Rodríguez and Aguirre 2019 1 1 Angostura 1, Punta del Barro, El Manzano, Laguna del Diamante 4, Arroyo Malo 3 Roig 1993, Giovanetti et al. 2008, Llano and Andreoni 2012, Capparelli and Prates 2010, Adreoni 2014, Musaubach and Berón 2016, Andreoni and Durán 2021 1 Carrizal de Azampay, El Molino, El Shincal, Fuerte Quemado, Huachichocana, Loma de Azampay, Puente del Diablo Pochettino 1985, Capparelli and Raffino 1997, Capparelli et al. 2003, Giovannetti et al. 2008, Capparelli and Lema 2011, Fuertes et al. 2022 1 Agua de la Tinaja, Carrizal de Azampay, Cueva del Toro, El Molino, El Shincal, Gruta del Indio, Huachichocana, Las Heras, Puente del Diablo, Punta del Barro Semper and Lagiglia 1962-68, Bárcena et al. 1985, Roig 1993, Capparelli and Raffino 1997, Lagiglia 2001, Capparelli et al. 2003, Giovannetti et al. 2008, Capparelli and Lema 2011, Fuertes et al. 2022 Alamito, Alero Sin Cabeza, Campo del Pucará, Casas Viejas-El Mollar, Huechichocana, Leon Huasi I, Los Tres Cerros 1, Pozo de la Chola, Punta de la Peña 3, Punta de la Peña 9, Saujil Sempé 1977, Tarragó 1980, Fernández Distel 1986 and 1989, Carrizo et al. 1999, Oliszewski 2004, Giovanetti et al. 2008, Ramos et al. 2015-2016, Bonomo et al. 2019, Rodríguez and Aguirre 2019 1 3 Ramos et al. 2015-2016 Inca Cueva, Huachichocana, Casas Viejas-El Mollar, Campo del Pucará, Costa de Reyes, Pampa Grande, La Ciénaga, Azampay, Punta de la Peña 4, Punta de la Peña 3, Punta de la Peña 9, Alero Sin Cabeza, El Aprendiz 2 10 Pozo de la Chola Alero Deodoro Roca, Parque Natural Ongamira 1, 3 and 5 Robledo 2021 4 1 Agua de la Mula, Agua de los Caballos, Agua de Pérez, Alero 4, Alero Deodoro Roca, Alero Montiel, Alero Sin Cabeza, Amboy, Angostura 1, Aquihuecó, Arroyo El Gaucho I, Ayampitín, Banda Meridional del Lago, Boyo Paso 2, C. Punilla 39, Campo del Pucará, Cañada Larga, Cerco de la Cueva Pintada, Cerro Llullaillaco, Chenque 1, Constantinopla, Copina, Cuesta Blanca, Cueva de la Luna, Cueva Epullán Grande, Cueva Huenul 1, Dos Lunas 3, EB-3, Ecoterra, El Bosquecito 3, El Carrizalito, El Dorado, El Manzano, El Molino, El Shincal, El Vado, Fuerte Quemado, Guasmara, Guayascate, Huachichocana, Inca Cueva, Intihuatana de Fuerte Quemado, La Alborada, La Estrella, La Olla, La Paya, La Poma, Las Tinajas, Loma Bola, Los Leones 5, Los Morrillos, Los Tres Cerros 1, Los Viscos, Loteo 5 Santa Rosa, Michacheo, Mishma Nº 7, Negro Muerto 3, Nido de Águila, Palo Alto, Pampa Grande, Parque Natural Ongamira 1 and 5, del Barro El Manzano, Punta Ponontrehue, Potrero de Campo del Pucará, Fuerte Garay, Pozo de la Chola, Quemado Pozos Blancos, Pucará de Tilcara, Pozo dePuente la Choladel Diablo, Punta Colorada, Punta de la Pena 3, Punta de la Peña 9, Quebrada Norte 7, Real del Padre, Real del Padre, Rincón Chico 1, Rincón del Atuel 1, San Esteban, Saujil, Tapera Moreira 1 y 5, Yaco Alero Roca, Arroyo PampaDeodoro 1 Malo 3, El Indígeno, Gruta El Mallín, Parque Natural Ongamira 1 iew ev rR ee Neltuma Neltuma Neltuma alba 1 rP FABACEAE FABACEAE FABACEAE Neltuma 1 Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 54 of 59 FABACEAE Neltuma FABACEAE Strombocarpa strombulifera PROSTRO sp. 1 FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE Strombocarpa Neltuma Pterogyne Ramorinoa Senegalia Senna Senna Senna torquata vinalillo nitens girolae gilliesii aphylla bicapsularis corymbosa PROTOR PROVIN PTERONITE RAMOGI SENEGI SEAPHY SEBI SECORY 2 FABACEAE FABACEAE FABACEAE FABACEAE Senna Senna Sesbania Tipuana sp. spectabilis virgata tipu SESPE SESVIR TIPUTI FABACEAE Vachelia caven VACHECA FABACEAE Vachelia MELIACEAE Cedrela MYRTACEAE Eugenia MYRTACEAE Myrcianthes NYCTAGINACEAEBougainvillea NYCTAGINACEAEBougainvillea sp. balansae uniflora cisplatensis sp. stipitata OLACACEAE Ximenia PASSIFLORACEAE Passiflora PASSIFLORACEAE Passiflora POLIGONACEAERuprechtia POLIGONACEAERuprechtia americana caerulea sp. apetala laxiflora POLIGONACEAERuprechtia POLIGONACEAERuprechtia sp. triflora 25 1 3 1 6 1 BOUSTIPI RUPRETA RUPRELA RUPRETRI 47 1 CEBAL EUNI MYRCIS XIAM PACAE 8 1 1 3 1 1 Finca Torino, Laguna del Diamante 4, Los Tres Cerros 1 González and Perez 1968, Sempé 1975 and 1977, Tarragó 1980, Pochettino 1985, Sempé 1986, Hernández Distel 1986, Roig 1993, Crivelli Montero et al. 1996, Capparelli and Raffino 1997, Arriaga et al. 1998, Kriscautzky and Morales 1999, Hernández 2002, Oliszewski 2004, Gil 2005, Salvi 2007, Giovanetti et al. 2008, Rodríguez and Aguirre 2019, Lema et al. 2012, Llano and Andreoni 2012, Llano et al. 2012, Brea et al 2013, Llano and Barberena 2013, Andreoni 2014, Ambrústolo and Ciampagna 2014, Ciampagna 2014a and b, Capparelli and Prates 2015, Llano 2015, Musaubach and Berón 2016, Ramos et al. 2015-2016, Heider and López 2018, Bonomo et al 2019, Prates et al. 2019, Lopez 2018 and 2020, Tavarone 2020, Zárate et al. 2020, Robledo 2021, Fuertes et al. 2022 Roig 1993, Giovanetti et al. 2008, Llano and Andreoni 2012, Musaubach and Berón 2016 Giovannetti et al. 2008, Oliszewski 2004, Pochettino 1985 Ramos et al. 2015-2016 Andreoni 2014, Robledo 2021 Brea et al. 2013 (Acacia caven), Ramos et al. 20152016, Andreoni and Durán 2021 (Acacia caven) 4 Alero Deodoro Roca, Parque Natural Ongamira 1, 4 and 5 Robledo 2021 1 Alero Deodoro Roca Robledo 2021 Gruta del Indio, Ponontrehue Los Tres Cerros 1 EB-3 Hernández 2002, Musaubach y Berón 2016 Brea et al. 2013 Llano 2015 1 1 3 2 Alero Deodoro Roca, Parque Robledo 2021 Natural Ongamira 1 and 5 http://mc.manuscriptcentral.com/holocene Page 55 of 59 RANUNCULACEAE Clematis campestris CLESTRIS RHAMNACEAE Condalia buxifolia CONBUX RHAMNACEAE Condalia RHAMNACEAE Ochetophila RHAMNACEAE Scutia sp. trinervis buxifolia OCHETRI SCUBU RHAMNACEAE Ziziphus mistol ZIMI RHAMNACEAE Ziziphus ROSACEA Kageneckia sp. lanceolata KAGELAN ROSACEA RUTACEAE Polylepis Zanthoxylum australis coco POAUSTRA ZANCO RUTACEAE Zanthoxylum sp. 3 SALICACEAE Salix humboldtiana SAHUM 3 Alero Deodoro Roca, Parque Natural Ongamira 1, Pozos Blancos Robledo 2021 El Abra, Pozo de la Chola, Arroyo El Gaucho I Brea et al. 2014, Ramos et al. 2016, Salvi 2007 SALICACEAE SANTALACEA SANTALACEA Salix Acanthosyris Jodina sp. falcata rhombifolia 4 Alero Deodoro Roca, Parque Natural Ongamira 1 and 5, Robledo 2021 Pozos Blancos sp. edulis saponaria obtusifolium coccinea SIMAROUBACEAE Castella SOLANACEAE Solanum ULMACEAE Phyllostylon ZYGOPHYLLACEAE Bulnesia ZYGOPHYLLACEAE Bulnesia ZYGOPHYLLACEAE Bulnesia ZYGOPHYLLACEAE Porlieria sp. betaceum rhamnoides bonariensis retama sarmientoi microphylla ZYGOPHYLLACEAE Porlieria sp. 1 1 4 1 1 SOLABE PHYLLORA BULBONA BULRETA BULSAR PORMIC 1 1 ALEDU SASA SIDOBTU CASCOCC Angostura 1, Boyo Paso 2, Quebrada 7 Norte, Río Yuspe Capparelli y Prates 2010, López 2018, Saur Palmieri et al. 2018 Norte 11 y 14, Alero Deodoro Roca, Parque Natural Ongamira 1 Robledo 2021 2 1 Quebrada 7 Norte, Colforta 1 López 2018, Mange 2019 Alero Deodoro Roca, Parque Natural Ongamira 1, Quebrada 7 Norte Robledo 2021, Saur Palmieri et al. 2018 2 El Alto 3, Arroyo el Gaucho I Arroyo El Gaucho I 1 López 2018, Salvi 2007 Salvi 2007 Auge et al. 2021 2 1 Alero Deodoro Roca, Parque Natural Ongamira 1 Robledo 2021 Pozo de la Chola Ramos et al. 2016 4 Alero Deodoro Roca, Parque Natural Ongamira 1 and 5, Robledo 2021 Pozos Blancos 1 1 rP SANTALACEA Jodina SAPINDACEAE Allophylus SAPINDACEAE Sapindus SAPOTACEAE Sideroxylon SIMAROUBACEAE Castella AFALCA JOLIA 2 Fo Pozo de la Chola Ramos et al. 2015-2016 Agua de los Caballos Hernández 2002, Musaubach y Berón 2016 Alero Deodoro Roca, Parque Natural Ongamira 1 Robledo 2021 2 iew ev rR ee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene HOLOCENE References Archaeology Ambrústolo P, and Ciampagna ML. 2014. Study of Alero 4 rock shelter, North coast of Deseado Estuary (Patagonia, Argentina). Quaternary International, 373:17-25. Andreoni D. 2014. Plantas leñosas y estrategias humanas en el sur de Mendoza: una aproximación arqueobotánica. Tesis Doctoral, Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata, Buenos Aires, Argentina. Andreoni D, and Durán V. 2022. Estrategias de manejo de plantas leñosas en ambientes de altura: Área Natural Protegida Laguna del Diamante (Mendoza, Argentina). Latin American Antiquity, 33(4), 693-712. Arriaga MO, Renard S, and Aliscioni S. 1998. La recuperación de microespecímenes en la excavación arqueológica de Rincón Chico I. Identificación de restos botánicos. In: In Actas XI Congreso Nacional de Arqueología Argentina (17º Parte), Revista del Museo de Historia Natural de San Rafael, 29(1/4):7–18. Bárcena JR, Roig F, and Roig V. 1985. Aportes arqueo-fito-zoologicos para la prehistoria del N.O. de la provincia de Mendoza: la excavación de Agua de la Tinaja I. Trabajos de Prehistoria, 42:311-363. Bonomo M, Di Prado VS, Silva CB, Scabuzzo C, Ramos van Raap MA, Castiñeira Latorre C, et al. 2019. Las poblaciones indígenas prehispánicas del río Paraná Inferior y Medio. Revista del Museo de La Plata, 4(2):585-620. Brea M, Franco MJ, Bonomo M, and Politis GG. 2013. Análisis antracológico preliminar del sitio arqueológico Los Tres Cerros 1 (Delta Superior del río Paraná). Sección Antropología, 13(87):345-360. Capparelli A, and Prates L. 2015. Explotación de frutos de algarrobo (Prosopis spp.) por grupos cazadores recolectores del Noreste de Patagonia. Chungará (Arica), 47(4):549-563. Capparelli A, and Lema V. 2011. Recognition of post-harvest processing of algarrobo (Prosopis spp.) as food from two sites of Northwestern Argentina: an ethnobotanical and experimental approach for desiccated macroremains. Archaeological and Anthropological Sciences, 3(1):71-92. Capparelli A, and Prates L. 2010. Identificación especifica de frutos de algarrobo (Prosopis spp., Fabaceae) y Mistol (Ziziphus mistol Griseb, Rhamnaceae) en un sitio arqueológico de Patagonia. Tradiciones y Transformaciones en Etnobotánica, 13-19. Capparelli A, Zagorodny N, and Baleta B. 2003. Wood remains from Andean Argentina: the use of Prosopis sp. L. in hut construction. Journal of Ethnobiology, 23(1):143-154. Capparelli A, and Raffino, R. 1997. La etnobotánica de El Shincal (Catamarca) y su importancia para la arqueología I: Recursos combustibles y madereros. Parodiana, 10(1-2):181-188. Carrizo J, Cano SF, and Nixdorff MS. 1999. Recursos vegetales comestibles en el Valle de Tafí durante el Período Formativo: análisis arqueobotánico del sitio Casas Viejas-El Mollar (STucTav2). In: Actas del XII Congreso Nacional de Arqueología Argentina, pp. 65-73. Ciampagna ML. 2014a. Estudio de la Interacción de los Grupos Cazadores Recolectores que Habitaron la Costa Norte de Santa Cruz y las Plantas Silvestres: Recolección y Gestión. Tesis Doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina. Ciampagna ML. 2014b. Estudio antracológico de los sitios Cormorán Quemado y Nido del Águila, Costa Norte de Santa Cruz, Argentina. In: IX Jornadas de Arqueología de Patagonia, Coyhaique. Crivelli Montero EA, Pardiñas UFJ, Fernández M, Bogazzi M, Chauvin A, Fernández VM, et al. 1996. La Cueva Epullán Grande (provincia del Neuquén, Argentina). Præhistoria, 2: 185-265. Fernández Distel A. 1989. Una nueva cueva con maíz acerámico en el N.O. argentino: León Huasi I, excavación. Comunicaciones Científicas, 1(1):4-17. Fernández Distel A. 1986. Las cuevas de Huachichocana, su posición dentro del precerámico con agricultura incipiente del Noroeste argentino. Beitrage zur Allgemeinen und Vergleichenden Archaologie, 8:353-430. Franco F, and Camps GA. 2020. La aplicación de modelos de distribución de especies para la realización de inferencias arqueológicas. Una ejemplificación a partir de Geoffroea decorticans en el área Sudcalchaquí (Noroeste, Argentina). Intersecciones en antropología, 21(2):131-144. Fuertes J, López ML, Wynveldt F, and Iucci ME. 2022. Prácticas de preparación y consumo de frutos de Prosopis spp. en un evento ritual. Un caso de estudio en el poblado arqueológico El Molino (depto. de Belén, Catamarca). InterSecciones en Antropología, 23(2):227-242. Gil A. 2005. Arqueología de La Payunia (Mendoza, Argentina). El poblamiento humano en los márgenes de la agricultura. Tesis Doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina. Giovannetti MA, Lema VS, Bartoli CG, and Capparelli A. 2008. Starch grain characterization of Prosopis chilensis (Mol.) Stuntz and P. flexuosa DC, and the analysis of their archaeological remains in Andean South America. Journal of Archaeological Science, 35(11), 2973-2985. González AR, and Perez JA. 1968. Una nota sobre etnobotánica del NO argentino. In: Actas y Memorias del XXXVII Congreso Internacional de Americanistas II, pp 209-228. Heider G, and López L. 2018. The South American agricultural frontier: the first direct evidence for maize consumption in San Luis, Argentina. Antiquity, 92(365):1260-1273. Hernández A. 2002. Paleobotánica en el sur de Mendoza. In: Entre montañas y desiertos: arqueología del sur de Mendoza, G. Gil and G. Neme (Eds.). Universidad Nacional del Centro, pp. 157-180. Kriskautzky N, and Morales F. 1999. La vivienda incaica en el sitio ¨Intihuatana de Yokavil¨, Fuerte Quemado, Catamarca. In: Actas del XII Congreso Nacional de Arqueología Argentina, C. Diez Marín (Ed.), Tomo I, pp. 233–238. Lagiglia H. 2001. Los orígenes de la agricultura en la Argentina. In: Historia Argentina Prehispánica, E. Berberián and A. Nielsen (eds.). Editorial Brujas, pp. 41-81. Llano C. 2015. On optimal use of a patchy environment: archaeobotany in the Argentinean Andes (Argentina). Journal of Archaeological Science, 54:182-192. Llano C, and Barberena R. 2013. Explotación de especies vegetales en la Patagonia septentrional: el registro arqueobotánico de Cueva Huenul 1 (Provincia de Neuquén, Argentina). Darwiniana, nueva serie, 1(1):5-19. Llano C, and Andreoni D. 2012. Caracterización espacial y temporal en el uso de los recursos vegetales entre los grupos cazadores-recolectores del sur mendocino durante el Holoceno. Paleoecología humana en el sur de Mendoza: perspectivas arqueológicas, 57-84. López ML. 2020. Los recursos vegetales en Guayascate. Primeros resultados del análisis arqueobotánico. Comechingonia, 24(3):337-347. López ML. 2018. Archaeobotany in central Argentina: macro-and microscopic remains at several archaeological sites from early Late Holocene to early colonial times (3,000–250 bp). Vegetation history and archaeobotany, 27:219-228. Mange E. 2019. Investigaciones arqueológicas en la margen sur del valle medio-superior del río Negro (provincia de Río Negro). Tesis Doctoral, Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata, Buenos Aires, Argentina. Marconetto M. 2002. Analysis of burnt building structures of the Ambato Valley (Catamarca, Argentina). In: Charcoal Analysis. Methodological Approaches, Palaeoecological Results and Wood Uses. Proceedings of the Second International Meeting of Anthracology, S. Thiébault (ed.). BAR International Series 1063, pp. 267-271. Musaubach MG, and Berón MA. 2016. El uso de recursos vegetales entre los cazadores-recolectores de la Pampa Occidental Argentina. Latin American Antiquity, 27(3):397-413. Oliszewski N. 2004. Estado actual de las investigaciones arqueobotánicas en sociedades agroalfareras del área valliserrana del noroeste argentino (0-600 dC). Relaciones-Sociedad Argentina de Antropología, (29):211-228. Pochettino ML. 1985. Disemínulos utilizados por los aborígenes del noroeste de la República Argentina. Tesis Doctoral. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina. Prates L, Martinez G, and Belardi JB. 2019. Los ríos en la arqueología de Norpatagonia (Argentina). Revista del Museo de La Plata, 4(2):63-666. Ragonese A, and Martínez Crovetto R. 1947. Plantas indígenas de la Argentina con frutos o semillas comestibles. Revista de Investigación Agrícola, 1(3): 147-216. Ramos RS, Ortiz MG, and Alavar AJ. 2015-2016. Inferencias sobre el paleoambiente en el sitio Pozo de la Chola, region subandina de Jujuy (2000-1500 años ap), a partir del analisis de macrorestos vegetales. Agraria, IX(16):12-27. Robledo A. 2021. Wood resource exploitation by Late Holocene occupations in central Argentina: Fire making in rockshelters of the ongamira valley (Córdoba, Argentina). Quaternary International, 593:284-294. Rodríguez MF, and Aguirre MG. 2019. Algarrobos en la Puna. Novedades de Antropología, 87:13-18. Roig FA. 1993. Aportes a la etnobotánica del género Prosopis. In: Contribuciones Mendocinas a la Quinta Reunión Regional para América Latina y el Caribe de la Red de Forestación del CIID. IADIZA Ed., pp 99-121. Salvi, FV. 2007. El Registro Arqueobotánico en el Sitio “Arroyo El Gaucho I” durante el Holoceno Temprano (8000-6000 AP)(Pampa de Achala, Córdoba). Comechingonia Virtual, 1:1-11. Saur Palmieri V, Trillo C, and López ML. 2017. Paleoethnobotanical and Experimental Analysis of Geoffroea decorticans (Gill. ex Hook. & Arn.) and Sarcomphalus mistol (Griseb.) fruits in Cerro Colorado, Córdoba Province, Argentina. In: 58th Annual Meeting of the Society for Economic Botany, pp 130. Sempé MC. 1997. Arte y arqueología. In: Actas y Trabajos Científicos XI Congreso Peruano del Hombre y la cultura Andina, pp 129-159. Sempé, MC. 1986. Mishma n° 7-Sitio incaico del valle de Abaucan dto. Tinogasta-Catamarca. Revista del Museo de La Plata (Nueva Serie), 8:405–438. Sempé MC. 1977. Caracterización de la cultura Saujil. Obra del Centenario del Museo de La Plata, 2:211–235. Sempé MC. 1975. Algunas consideraciones sobre la arqueología del Valle de Abaucan. In: Actas y trabajos del Primer Congreso de Arqueología Argentina, A. Austral, M.D. Arena, A.R. González (Eds.), pp. 205–219. Semper JV, and Lagiglia HA. 1962-68. Excavaciones arqueológicas en el Rincón del Atuel (Gruta del Indio), Departamento de San Rafael (Mendoza). Revista Científica de Investigaciones del Museo de Historia Natural de San Rafael, 1(4):89-158. Tarragó MN. 1980. El proceso de agriculturización en el Noroeste Argentino, Zona Valliserrana. In: Actas V Congreso Nacional de Arqueología Argentina, pp. 181-217. Tavarone A, Colobig MDLM, and Fabra M. 2020. Estudio de dieta en poblaciones arqueológicas del centro de Argentina a través del análisis de microrrestos vegetales e isótopos stables. Intersecciones en antropología, 21(2):213-228. Zárate P, González C, Tavarone A, and Fabra M. 2020. Dos generaciones, un entierro: perspectivas osteobiográficas aplicadas al sitio Banda Meridional del Lago, Embalse de Río Tercero, Córdoba, Argentina. Revista del Museo de Antropología 13(3): 219-234 iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 56 of 59 http://mc.manuscriptcentral.com/holocene Page 57 of 59 Supplementary Material 3 - Table 2. Plant´s human use-Ethnography Fam Gen SP Cod ACHATOCARPACEAE Achatocarpus ANACARDIACEAELithraea ANACARDIACEAEMyracrodruon ANACARDIACEAEMyracrodruon ANACARDIACEAESchinopsis ANACARDIACEAESchinopsis ANACARDIACEAESchinopsis ANACARDIACEAESchinus ANACARDIACEAESchinus praecox molleoides balansae urundeuva balansae lorentzii marginata areira fasciculatus ACHANI LITHMO MYRABA MYRAURU SCHIBA SCHILO SCHIMA SCHINARA SCHIFA ANACARDIACEAESchinus ANACARDIACEAESchinus ANNONACEA Annona longifolius myrtifolia rugulosa SCHILO SCHIMY ANNORU ANNONACEA Rollinia emarginata ROLLEMA Food Construction Medicinal 1 ARACACEAE Acrocomia aculeata 2 1 ARACACEAE Syagrus romanzoffiana SYARO ARACEAE Synandrospadix vermitoxicum SYNAVER ARACEAE ARECACEAE ARECACEAE ARECACEAE ARECACEAE ARECACEAE ASTERACEA Thaumatophyllum bipinnatifidum Butia paraguayensis Butia yatay Copernisia alba Trithrinax campestris Trithrinax schizophylla Tessaria integrifolia 1 1 1 1 1 1 BROMELIACEAE Bromelia balansae BROBA 1 1 2 PSEUSA CETIOPS 1 Cereus forbesii CEFORB 3 1 CACTACEAE Opuntia ficus-indica OPUFI 3 2 CANNABACEAE Celtis ehrenbergiana CEBERG 1 4 1 1 1 1 Chaco (wichi), Formosa (Pilaga-Qom) Chac Chaco (variuos) 1 Chac-Esp, Chaco (tobawichi), Salta 2 Chac-Esp 1 1 1 ASPE CATWEE CAPPATA 3 CAPPARACEAE Cynophalla retusa CAPPUSA 1 CARICACEAE Vasconcellea CELASTRACEA Maytenus CELASTRACEA Maytenus EUPHORBIACEAEJatropha EUPHORBIACEAESapium EUPHORBIACEAESebastiania quercifolia VASQUER boaria MAYARIA spinosa MAYSPI macrocarpa JAMACRO haematospermum SAHAEMA commersonianaSECOMM Karlin et al. 2010, Brown 2019 Bayón and Arranbarri 1997, Karlin 2016 Agra et al. 2007; Hilgert, 2007 Noelli 1993, Pereira et al. 2016 Noelli 1993, Hilgert, 2007 Hilgert, 2007 Hilgert, 2007 Noelli 1993 Hilbert 2007 Arenas 2003, Brown 2019 Noelli 1993 Arenas 2004 Noelli 1993, Arenas 2003, Montani and Scarpa 2016 Noelli 1993, Arenas 2004 Saur Palmieri et al. 2018; Arenas 2003, Karlin 2016, Montani and Scarpa 2016, Brown 2019 Arenas 2003, Karlin et al Chaco (wichi), 2010, Montani and Scarpa Salinas 2016, Grandes Dalmasso et (monte), Salta, San Juan al. 2011 Chac, Chaco (toba-wichi), Salinas Grandes, Salta, Formosa (Pilaga-Qom) Saur Palmieri et al. 2018, Karlin et al 2010 1 1 Saur Palmieri et al. 2018; Arenas 2003, Chac, , Chaco Karlin et al. (toba-wichi), 2010, Montani and Scarpa Salinas grandes, Salta 2016 1 1 1 1 Parodi 1933, Cecotto et al. 2007, Pereira et al. 2016 Chac, Salinas Grandes 2 CAPPARACEAE Annisocapparis speciosa CAPPARACEAE Capparicordis tweediana CAPPARACEAE Capparis atamisquea Norte Bs As, Salinas Grandes Chac-Esp, Salta Salta Salta Chac-Esp Salta (Yunga) iew CACTACEAE STECORY 2 1 ev BROSE sagenarius aethiops coryne 1 1 rR serra BROMELIACEAE Pseudananas CACTACEAE Cereus Hilgert, 2007 Chac-Esp Crisci and (tobas-Mbya) Gancedo 1971 1 BROMELIACEAE Bromelia Salta (Yunga) Chaco (wichi), Arenas 2003, 8 ethnicities 2016 1 ee CEICO CORTRI Noelli 1993, Steibel 1997 Chac-Esp 1 rP chodatii trichotoma 1 Reference Saur Palmieri et al. 2018 Chac-Esp Chac-Esp Salinas Grandes, Formosa (Pilaga-Qom) 1 5 1 BOMBACACEA Ceiba BORAGINACEAECordia Area Northeast Brazil, Salta (Yunga) 1 HAHEP HANIM JAMIM TABENO TESTA Stetsonia S/D 1 1 heptaphyllus impetiginosus mimosifolia nodosa stans CACTACEAE 1 1 BIGNONIACEAE Handroanthus BIGNONIACEAE Handroanthus BIGNONIACEAE Jacaranda BIGNONIACEAE Tabebuia BIGNONIACEAE Tecoma OPUQUI Magic 2 2 1 quimilo Commerce 1 1 Opuntia Artifacts 1 brachystephanaARABRA glabra VAGLA CACTACEAE Firewood 1 APOCYNACEAE Araujia APOCYNACEAE Vallesia THAUBI BUPAR BUTYAY COPAL TRICAM TRISCHI TESSIN Insecticide Chac-Esp Chac-Esp APOCINACEAE Aspidosperma quebracho-blanco ASPIQUE AACU Poison 1 Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE 1 Chac-EspMonte Chaco (tobawichi), Salta, Formosa (Pilaga-Qom) Chac-Esp Noelli 1993, Saur Palmieri et al. 2018 Arenas 2003, Montani and Scarpa 2016, Brown 2019 1 Chac-Esp Steibel 1997 Montani and Scarpa 2016 Noelli 1993, Pereira et al. 2016 1 Chac-Esp Noelli 1993 Salta http://mc.manuscriptcentral.com/holocene HOLOCENE FABACEAE FABACEAE FABACEAE FABACEAE FABACEAE Vachellia Vachellia Senegalia Senegalia Senegalia aroma astrigens bonariensis praecox visco AAROM AATRAM ABONA APRAE AVIS FABACEAE Amburana cearensis AMCEAR FABACEAE Anadenanthera colubrina ACOLU FABACEAE FABACEAE FABACEAE FABACEAE Bauhinia Caesalpìnia Caesalpìnia Chloroleucon forficata gilliesii paraguariensis chacoense BAUFOR CAEGI CAEPAR CHLOCHA FABACEAE FABACEAE Chloroleucon Chloroleucon foliolosum tenuiflorum CHLOFO CHLOTE FABACEAE FABACEAE 3 1 3 2 1 Arenas 2003; Hilbert 2007, Karlin et al. Chaco (toba- 2010, Ladio wichi), Salinas and Lozada Grandes, 2009, Montani Monte (N), and Scarpa Salta 2016 1 Northeast Brazil, Salta (Yunga) Chac-Esp, Northeast Brazil, Salta (Yunga) 2 1 1 2 1 1 Chac-Esp, Northeast Brazil 2 Enterolobium contortisiliquumENCON Erythrina crista-galli ERYGA 1 2 1 decorticans amorphoides edulis GEODE GLAMOR IEDU 8 FABACEAE FABACEAE FABACEAE FABACEAE Inga Inga Inga Mimosa marginata saltensis uraguensis detinens IMAR ISAL IURA MIMODE 1 Minozyganthus carinatus Myroxylon peruiferum Parapiptademia excelsa MIMOCAR MYROXYPE PARAPEX FABACEAE Parkinsonia PARATA 2 3 Chac-Esp, Northeast Brazil, Salta (Yunga) Chac-Esp 2 1 Saur Palmieri et al. 2018, Steibel 1997, Arenas 2003, Karlin et al. Chac-Esp, 2010, Ladio toba-wichi, and Lozada Salinas 2009, Montani Grandes, and Scarpa Monte (E.), 2016, Brown Salta, Formosa 2019, (Pilaga-Qom), Dalmasso et San Juan al. 2011 Chac-Esp Noelli 1993 1 Chac-Esp Noelli 1993, Pereira et al. 2016 1 Chac-Esp Noelli 1993 Salinas Grandes praecox dubium abbreviata affinis 1 1 1 PARECOX PELDU PROABBRE PROAFFI 1 2 1 1 Chac-Esp 2 Salinas Grandes, Monte (E.), Formosa (Pilaga-Qom), San Juan Chac-Esp Karlin 2016, Ladio and Lozada 2009, Brown 2019, Dalmasso et al. 2011 Noelli 1993 1 1 1 1 FABACEAE Neltuma alba PROALBA 4 FABACEAE Neltuma alpataco PROALPA 1 FABACEAE Neltuma caldenia PROCAL 1 2 FABACEAE Neltuma chilensis PROCHI 1 1 1 FABACEAE Neltuma flexuosa PROFLEX 3 1 4 1 FABACEAE Neltuma kuntzei PROKUN 1 1 1 1 FABACEAE FABACEAE Neltuma Neltuma nigra pugionata PRONI PROPU 3 FABACEAE Neltuma ruscifolia PRORU FABACEAE Neltuma sp. FABACEAE FABACEAE FABACEAE FABACEAE Strombocarpa Strombocarpa Neltuma Pterogyne strombulifera torquata vinalillo nitens PROSTRO PROTOR PROVIN PTERONITE FABACEAE FABACEAE Ramorinoa Senegalia girolae gilliesii RAMOGI SENEGI 2 1 1 1 1 1 1 1 1 2 Chac, tobawichi, Salta, Formosa (Pilaga-Qom) Monte (E.) Chac-Esp Monte (N-C) 1 1 Noelli 1993, Agra et al. 2007, Hilbert 2007 Noelli 1993 Karlin et al. 2010 Hilgert, 2007 Hilbert 2007 Noelli 1993, Pereira et al. 2016 1 iew Parkinsonia Peltophorum Strombocarpa Neltuma 2 1 ev FABACEAE FABACEAE FABACEAE FABACEAE aculeata 1 1 1 5 1 rR FABACEAE FABACEAE FABACEAE 2 ee Geoffroea Gleditsia Inga rP FABACEAE FABACEAE FABACEAE Agra et al. 2007, Hilbert 2007 Pereira et al. 2016; Agra et al. 2007, Hilbert 2007 Noelli 1993, Pereira et al. 2016, Agra et al. 2007 Agra et al. 2007 1 Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 58 of 59 2 1 1 http://mc.manuscriptcentral.com/holocene Chac-Esp, Monte (N-C), San Juan Chaco (tobawichi), Formosa (Pilaga-Qom) Chaco (tobawichi), Salta, Formosa (Pilaga-Qom) Chaco (tobawichi), Formosa (Pilaga-Qom) Salinas Grandes (Monte) Saur Palmieri et al. 2018, Arenas 2003, Montani and Scarpa 2016, Brown 2019 Ladio and Lozada 2009 Steibel 1997; Alfageme 1997 Ladio and Lozada 2009 Steibel 1997; Alfageme 1997, Ladio and Lozada 2009, Dalmasso et al. 2011 Arenas 2003, Brown 2019 Arenas 2003, Montani and Scarpa 2016, Brown 2019 Arenas 2003, Brown 2019 Esp, Monte (E.) Karlin et al. 2010 Steibel 1997, Ladio and Lozada 2009 Chac-Esp S. Juan (Monte) Noelli 1993 Luna et al. 2013 Page 59 of 59 2 2 2 1 San Juan Northeast Brazil, Salta (Yunga) Dalmasso et al. 2011 Agra et al. 2007, Hilbert 2007 1 Formosa (Pilaga-Qom) Brown 2019 1 Chac-Esp Noelli 1993 Senna Senna aphylla bicapsularis SEAPHY SEBI FABACEAE Senna corymbosa SECORY 1 FABACEAE FABACEAE FABACEAE Senna Sesbania Tipuana spectabilis virgata tipu SESPE SESVIR TIPUTI 2 FABACEAE Vachelia MELIACEAE Cedrela MYRTACEAE Eugenia MYRTACEAE Myrcianthes NYCTAGINACEAEBougainvillea caven balansae uniflora cisplatensis stipitata VACHECA CEBAL EUNI MYRCIS BOUSTIPI 1 OLACACEAE americana XIAM 1 Chac-EspMonte PASSIFLORACEAEPassiflora POLIGONACEAE Ruprechtia POLIGONACEAE Ruprechtia POLIGONACEAE Ruprechtia RANUNCULACEAE Clematis caerulea apetala laxiflora triflora campestris PACAE RUPRETA RUPRELA RUPRETRI CLESTRIS 2 Chac-Esp Saur Palmieri et al. 2018 Pereira et al. 2016, Saur Palmieri et al. 2018 Chac-Esp Noelli 1993 RHAMNACEAE Condalia RHAMNACEAE Ochetophila RHAMNACEAE Scutia buxifolia trinervis buxifolia CONBUX OCHETRI SCUBU 1 Chac Saur Palmieri et al. 2018 RHAMNACEAE ROSACEA ROSACEA RUTACEAE Ziziphus Kageneckia Polylepis Zanthoxylum mistol lanceolata australis coco ZIMI KAGELAN POAUSTRA ZANCO Chac Saur Palmieri et al. 2018 SALICACEAE Salix humboldtiana SAHUM Ximenia 2 Esp, Salinas Grandes, Monte (E.), San Juan Steibel 1997, Karlin et al. 2010, Ladio and Lozada 2009, Dalmasso et al. 2011 FABACEAE FABACEAE 1 1 Fo 1 SANTALACEA Acanthosyris falcata AFALCA 2 SANTALACEA Jodina rhombifolia JOLIA SAPINDACEAE Allophylus SAPINDACEAE Sapindus edulis saponaria ALEDU SASA 1 SAPOTACEAE Sideroxylon SIMAROUBACEAE Castella SOLANACEAE Solanum obtusifolium coccinea betaceum SIDOBTU CASCOCC SOLABE 1 ULMACEAE Phyllostylon ZYGOPHYLLACEAE Bulnesia ZYGOPHYLLACEAE Bulnesia rhamnoides bonariensis retama PHYLLORA BULBONA BULBONA 1 ZYGOPHYLLACEAE Bulnesia ZYGOPHYLLACEAE Porlieria sarmientoi microphylla BULSAR PORMIC 1 1 Chac-EspMonte 1 Chac-EspMonte 1 Chac-EspMonte Noelli 1993, Pereira et al. 2016 1 Hilgert, 2007, Salta (Yunga), Montani and Scarpa 2016 Salta Chaco (tobawichi), Salta 1 1 ev rR ee 1 Chac-EspMonte Noelli 1993 Arenas 2003, Montani and Scarpa 2016 Noelli 1993, Pereira et al. 2016 Noelli 1993, Pereira et al. 2016 rP 1 1 2 iew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 HOLOCENE http://mc.manuscriptcentral.com/holocene Montani and Salta, Formosa Scarpa 2016, (Pilaga-Qom) Brown 2019 HOLOCENE References Ethnography Agra, M. D. F., Freitas, P. F. D., & Barbosa-Filho, J. M. (2007). Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Revista Brasileira de Farmacognosia, 17, 114-140. Alfageme, H. A. (1997). El caldenar, bosque nativo de La Pampa: una visión de los viajeros de los Siglos XVIII y XIX. Arenas, P. (2003). Etnografía y alimentación entre los toba-nachilamole# ek y wichí-lhuku'tas del Chaco central (Argentina). Pastor Arenas, Buenos Aires. Arenas, P. (2004). Las bromeliáceas en la vida de los nativos del Gran Chaco. In Memorias del II Congreso Argentino de Orquidología y Conservación. I Jornadas Argentinas sobre Bromeliáceas (Vol. 23, p. 25). Arenas, P. (2016). Etnobotánica de Synandrospadix vermitoxicus (Araceae) en el Gran Chaco y en regiones aledañas. Boletín de la Sociedad Argentina de Botánica, 51(2), 379-399. Bayón, N. D., & Arambarri, A. M. (1999). Anatomía y etnobotánica de las especies medicinales de la Provincia Pampeana: Asclepiadaceae. Acta Farmacéutica Bonaerense, 18(1), 23-31. Brown, A.D. (Ed., 2019). Mundo Pilagá. Guía visual. Comunidades Pilagá y Fundación ProYungas, Argentina. http://ediciones.proyungas.org.ar/wp-content/uploads/2019/05/guia_Mundo-Pilaga-web.pdf Cecotto, J. A., Taiariol, D. R., & Cáceres, S. (2007). Colección de frutos no tradicionales de la EEA INTA Bella Vista. Reunión de Comunicaciones Científicas y Técnicas y de Extensión. 18. 2007 08 01-03, 1, 2 y 3 de Agosto de 2007. Corrientes. AR. Crisci, J. V., & Gancedo, O. A. (1971). Sistemática y etnobotánica del guembé.(Philodendron Bipinnatifidum) Una importante aracea sudamericana. Revista del Museo de La Plata, 11(65), 285-302. Dalmasso, A. D., Márquez, J., Abarca, A., Montecchiani, R., Rosales, M., & Zabaleta, E. (2011). Flórula del paraje de Pedernal y alrededores: departamento Sarmiento, San Juan. Inca Editorial, Mendoza Hilgert, N. I. (2007). Plantas silvestres, ámbito doméstico y subsistencia. Finca San Andrés. Un espacio de cambios ambientales y sociales en el Alto Bermejo, 187-228. Karlin, M. S. (2016). Ethnoecology, ecosemiosis and integral ecology in Salinas Grandes (Argentina). Etnobiología, 14(1), 23-38. Karlin, O., Goirán, S., & Karlin, M. (2010). Los usos de las plantas principales de las Salinas Grandes. URL: https://www. academia. edu/30461734/Los_usos_de_las_plantas_ principales_de_las_Salinas_Grandes, 15(06), 2021. Ladio, A. H., & Lozada, M. (2009). Human ecology, ethnobotany and traditional practices in rural populations inhabiting the Monte region: resilience and ecological knowledge. Journal of Arid Environments, 73(2), 222-227. Luna, L. C., Pigni, N. B., Torras-Claveria, L., Monferran, M. V., Maestri, D., Wunderlin, D. A., ... & Tapia, A. (2013). Ramorinoa girolae Speg (Fabaceae) seeds, an Argentinean traditional indigenous food: nutrient composition and antioxidant activity. Journal of food composition and analysis, 31(1), 120-128. Montani, M. C., & Scarpa, G. F. (2016). Recursos vegetales y prácticas alimentarias entre indígenas tapiete del noreste de la provincia de Salta, Argentina. Darwiniana, nueva serie, 4(1), 12-30. Noelli, F.S. (1993). Em busca de um modelo Etnoarqueológico da Aldeia e da Subsistência Guarani e sua Aplicação a uma Área de Domínio no Delta do Rio Jacuí-RS. Porto Ale gre, Pontifícia Universidade Católica.(Disser tação de Mestrado). Parodi, L. R. (1933). Relaciones de la agricultura prehispánica con la agricultura argentina actual. Anales de la ANAV, 1. Pereira, G., Noelli, F. S., Campos, J. B., Santos, M. P., & Zocche, J. J. (2016). Ecologia histórica guarani: as plantas utilizadas no bioma Mata Atlântica do litoral sul de Santa Catarina, Brasil (parte 1). Cadernos do LEPAARQ (UFPEL), 13(26), 197-246. Saur Palmieri, V., López, M. L., & Trillo, C. (2018). Aproximaciones etnobotánicas de las especies y prácticas de frutos nativos comestibles de la actualidad. Aportes para la interpretación del pasado prehispánico de Cerro Colorado (Córdoba, Argentina). Boletín de la Sociedad Argentina de Botánica, 53(1), 1-10. Steibel, P. E. (1997). Nombres y usos de las plantas aplicados por los indios Ranqueles de La Pampa (Argentina). Rev.Fac. Agronomía - U Lpam, 9 (2). iew ev rR ee rP Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 60 of 59 http://mc.manuscriptcentral.com/holocene