EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
arXiv:1607.06314v2 [hep-ex] 28 Jan 2017
CERN-EP-2016-166
LHCb-PAPER-2016-017
January 31, 2017
Measurement of the Bs0 → J/ψ η
lifetime
The LHCb collaboration†
This paper is dedicated to the memory of our friend and colleague Ailsa Sparkes.
Abstract
Using a data set corresponding to an integrated luminosity of 3 fb−1 , collected by
the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV, the
effective lifetime in the Bs0 → J/ψ η decay mode, τeff , is measured to be
τeff = 1.479 ± 0.034 (stat) ± 0.011 (syst) ps.
Assuming CP conservation, τeff corresponds to the lifetime of the light Bs0 mass
eigenstate. This is the first measurement of the effective lifetime in this decay mode.
Accepted by Phys. Lett. B.
c CERN on behalf of the LHCb collaboration, licence CC-BY-4.0.
†
Authors are listed at the end of this paper.
ii
1
Introduction
0
Studies of Bs0 − B s mixing provide important tests of the Standard Model (SM) of particle
physics. In the SM, mixing occurs via box diagrams. Extensions to the SM may introduce
additional CP -violating phases that alter the value of the Bs0 − B 0s mixing weak phase, φs ,
from that of the SM [1]. The Bs0 system exhibits a sizeable difference in the decay widths
ΓL and ΓH , where L and H refer to the light and heavy Bs0 mass eigenstates, respectively.
The effective lifetime, τeff , of a Bs0 meson decay mode is measured by approximating
the decay time distribution, determined in the Bs0 rest system, by a single exponential
function. For final states that can be accessed by both Bs0 and B 0s mesons the effective
lifetime depends on their CP components and is also sensitive to φs [2, 3].
In this analysis τeff is determined for the CP -even Bs0 → J/ψ η decay mode. As φs is
measured to be small [4, 5] the mass eigenstates are also CP eigenstates to better than
per mille level and τeff measured in Bs0 → J/ψ η decays is equal, to good approximation,
to the lifetime of the light Bs0 mass eigenstate, τL ∝ Γ−1
L . In the SM τL is predicted to
be 1.43 ± 0.03 ps [6]. Measurements of τL have previously been reported by LHCb in the
Bs0 → Ds+ Ds− and Bs0 → K + K − decay modes [7, 8]. The latter is dominated by penguin
diagrams, which could arise within and beyond the SM and gives rise to direct CP violation.
This then leads to a different τeff , when compared to measurements in the Bs0 → Ds+ Ds−
and Bs0 → J/ψ η decays which are mediated by tree diagrams. Improved precision on the
effective lifetimes τL and τH will enable more stringent tests of the consistency between
direct measurements of the decay width difference ∆Γs = ΓL −ΓH measured in Bs0 → J/ψ φ
decays and those inferred using effective lifetimes.
The measurement of the effective Bs0 → J/ψ η lifetime presented in this Letter uses
3 fb−1 of data collected in pp collisions at centre-of-mass energies of 7 TeV and 8 TeV
during 2011 and 2012 using the LHCb detector. The J/ψ meson is reconstructed via the
dimuon decay mode and the η meson via the diphoton decay mode. The presence of only
two charged particles in the final state minimizes systematic uncertainties related to the
tracking system.
2
Detector and simulation
The LHCb detector [9,10] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector (TT) located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The
tracking system provides a measurement of momentum, p, of charged particles with
a relative uncertainty that varies from 0.5 % at low momentum to 1.0 % at 200 GeV/c.
Large samples of J/ψ → µ+ µ− and B + → J/ψ K + decays, collected concurrently with the
data set used here, were used to calibrate the momentum scale of the spectrometer to a
precision of 0.03 % [11]. The minimum distance of a track to a primary vertex (PV), the
impact parameter (IP), is measured with a resolution of (15 + 29/pT ) µm, where pT is the
component of the momentum transverse to the beam, in GeV/c.
Different types of charged hadrons are distinguished using information from two
1
ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a
calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. The calorimeter response is calibrated
using samples of π 0 → γγ decays. For this analysis a further calibration was made using
the decay η → γγ, which results in a precision of 0.07 % on the neutral energy scale.
Muons are identified by a system composed of alternating layers of iron and multiwire
proportional chambers.
The online event selection is performed by a trigger [12], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, where a full event reconstruction is made. Candidate events are required to pass
the hardware trigger, which selects muon and dimuon candidates with high pT based upon
muon system information. The subsequent software trigger is composed of two stages. The
first performs a partial event reconstruction and requires events to have two well-identified
oppositely charged muons with an invariant mass larger than 2.7 GeV/c2 . The second
stage performs a full event reconstruction. Events are retained for further processing if
they contain a displaced J/ψ → µ+ µ− candidate. The decay vertex is required to be
well separated from each reconstructed PV of the proton-proton interaction by requiring
the distance between the PV and the J/ψ decay vertex divided by its uncertainty to be
greater than three. This introduces a non-uniform efficiency for b-hadron candidates that
have a decay time less than 0.1 ps.
Simulated pp collisions are generated using Pythia [13] with a specific LHCb configuration [14]. Decays of hadronic particles are described by EvtGen [15], in which
final-state radiation is generated using Photos [16]. The interaction of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit [17]
as described in Ref. [18].
3
Selection
A two-step procedure, is used to optimize the selection of Bs0 → J/ψ η decay candidates.
These studies use simulated data samples together with the high mass sideband of the data
(5650 < m(J/ψ η) < 5850 MeV/c2 ), which is not used in the subsequent determination of τeff .
In a first step, loose selection criteria are applied that reduce background significantly whilst
retaining high signal efficiency. Subsequently, a multivariate selection (MVA) is used to
reduce further the combinatorial background. This is optimized using pseudoexperiments
to obtain the best precision on the measured Bs0 lifetime.
The selection starts from a pair of oppositely charged particles, identified as muons,
that form a common decay vertex. Combinatorial background is suppressed by requiring
that χ2IP of the muon candidates1 to all reconstructed PVs to be larger than four. To ensure
a high reconstruction efficiency the muon candidates are required to have a pseudorapidity
between 2.0 and 4.5. The invariant mass of the dimuon candidate must be within 50 MeV/c2
of the known J/ψ mass [19]. In addition, the trigger requirement that the J/ψ decay
length divided by its uncertainty is greater than three is reapplied.
Photons are selected from neutral clusters reconstructed in the electromagnetic calorimeter [10] that have a transverse energy in excess of 300 MeV and a confidence level to be
1
The quantity χ2IP is defined as the difference between the χ2 of the PV reconstructed with and
without the considered particle.
2
a photon, Pγ , greater than 0.009. The latter requirement has an efficiency of 98 % for
the simulated signal sample whilst removing 23 % of the background in the high mass
sideband. To suppress combinatorial background, if either of the photons when combined
with any other photon candidate in the event has an invariant mass within 25 MeV/c2 of
the known π 0 meson mass [19] the candidate is rejected.
Candidate η → γγ decays are selected from diphoton combinations with an invariant
mass within 70 MeV/c2 of the known η mass [19] and with a transverse momentum larger
than 2 GeV/c. The decay angle between the photon momentum in the η rest frame and the
direction of Lorentz boost from the laboratory frame to the η rest frame, θη∗ , is required
to satisfy cos θη∗ < 0.8.
0
The J/ψ and η candidates are combined to form candidate B(s)
mesons. The average
number of PVs in each event is 1.8 (2.0) for the 2011 (2012) dataset. When multiple
0
PVs are reconstructed, the one with the minimum χ2IP to the B(s)
candidate is chosen.
A kinematic fit is performed to improve the invariant mass resolution [20]. In this fit
0
candidate is constrained to point to the PV and the
the momentum vector of the B(s)
intermediate resonance masses are constrained to their known values. The reduced χ2 of
0
this fit, χ2 /ndf, is required to be less than five. The measured B(s)
decay time must be
larger than 0.3 ps and less than 10 ps. If more than one PV is reconstructed in an event
the properties of the unassociated vertices are studied. Any candidate for which there is
a second PV with χ2IP < 50 is rejected. This requirement has an efficiency of 98% that
is almost flat as a function of the decay time and reduces background due to incorrect
0
association of the B(s)
candidate to a PV. Finally, as in Ref. [21], the position of the
PV along the beam-line is required to be within 10 cm of the nominal interaction point,
where the standard deviation of this variable is approximately 5 cm. This criterion leads
to a 10 % reduction in signal yield but defines a fiducial region where the reconstruction
efficiency is uniform.
The second step of the selection process is based on a neural network [22], which is
trained using the simulated signal sample and the high-mass sideband of the data for
background. Seven variables that show good agreement between data and simulation
0
and that do not significantly bias the B(s)
decay time distribution are used to train the
2
0
neural net: the χ /ndf of the kinematic fit; the pT of the B(s)
and η mesons; the minimum
pT of the two photons; cos θη∗ ; the minimum Pγ of the two photons and the total hit
multiplicity in the TT sub-detector.
The requirement on the MVA output was chosen to minimize the statistical uncertainty
on the fitted τeff using a sample of 100 pseudoexperiments. The chosen value removes 94 %
of background candidates whilst retaining 69 % of the signal candidates. After applying
these requirements 2 % of events contain multiple candidates from which only one, chosen
at random, is kept.
4
Fit model
The effective lifetime is determined by performing a two-dimensional maximum likelihood
0
fit to the unbinned distributions of the B(s)
candidate invariant mass and decay time
t=
m·l
,
p
3
where l is the candidate decay length, p the candidate momentum and m the reconstructed
invariant mass of the candidate. The fit is performed for candidates with 5050 <
m(J/ψ η) < 5650 MeV/c2 and 0.3 < t < 10 ps. The fit model has four components: the
Bs0 → J/ψ η signal, background from the B 0 → J/ψ η decay, background from partially
reconstructed Bs0 → J/ψ ηX decays, and combinatorial background.
In the fit, the decay-time distribution of each component is convolved with a Gaussian
resolution function whose width is fixed to the standard deviation of the decay-time resolution in simulated data. A decay-time acceptance function accounts for the dependence
of the signal efficiency on several effects. The procedure used to model the decay-time
acceptance is described in detail in Ref. [21]. The overall acceptance, Atot , is factorised into
the product of the selection (Asel ), trigger (Atrig ) and vertex (Aβ ) acceptance functions,
determined as described below. The effect of the selection requirements, dominated by
the cut on the displacement of the muons from the PV, is studied using simulation and
parameterised with the form
1 − c0 t
,
Asel =
1 + (c1 t)−c2
where t is the decay time, and c0 , c1 and c2 are parameters determined from the simulation
and summarized in Table 1. In the second level of the software trigger a cut is applied on
Table 1: Acceptance parameters due to the selection requirements (Asel ). The correlation
coefficients are ρc0 c1 = 0.51, ρc0 c2 = 0.62 and ρc1 c2 = 0.95.
Parameter
Value
c0
c1
c2
(6.5 ± 0.4) × 10−3 ps−1
(6.6 ± 0.3) ps−1
1.50 ± 0.04
the decay length significance of the J/ψ candidate, which biases the decay time distribution.
The trigger efficiency, Atrig , is measured separately for the 2011 and 2012 datasets using
events that are selected by a dedicated prescaled trigger in which this requirement is
removed. It increases approximately linearly from 98% at t = 0.3 ps to 100% 4 ps. The
resulting acceptance shape is parameterised in bins of decay time with linear interpolation
between the bins. Finally, the reconstruction efficiency of the vertex detector decreases
as the distance of closest approach of the decay products to the pp beam-line increases.
This effect is studied using B + → J/ψ K + decays where the kaon is reconstructed without
using vertex detector information [21] and parameterised with the form
Aβ = 1 − βt − γt2 ,
where the parameters β and γ are determined separately for the 2011 and 2012 data. The
obtained values are summarized in Table 2.
Figure 1 shows the overall acceptance curves obtained for the 2011 and 2012 datasets.
The shape of Atot is mainly determined by Asel , whose uncertainty is dominated by the
size of the simulation sample. The overall acceptance correction is relatively small. Fitting
the simulated data with and without the correction τeff changes by 13 fs.
4
Table 2: Values of the β and γ factor fitting the quadratic form. The first uncertainty is
statistical and the second from the propagation of the uncertainty on the efficiency versus the
distance of closest approach obtained with the B + → J/ψ K + calibration sample. The correlation
coefficienct between β and γ is 0.8.
Sample
2011 data
2012
β [%]
γ [%]
−0.01
0.39 ± 0.06+0.07
−0.004
0.115 ± 0.021+0.001
0.93 ± 0.080+0.001
−0.01
−0.006
0.051 ± 0.023+0.006
Acceptance
The invariant mass distribution for the Bs0 → J/ψ η signal is parameterised by a
Student’s t-distribution. The Bukin [23] and JohnsonSU [24] functions are considered for
systematic variations. In the fit to the data, the shape parameters of this distribution are
fixed to the simulation values. The decay time distribution for this component is modelled
with an exponential function convolved with the detector resolution and multiplied by the
detector acceptance, as discussed above.
The second component in the fit accounts for the B 0 → J/ψ η decay. As the invariant
mass resolution is approximately 48 MeV/c2 this overlaps with the Bs0 signal mode. Its mass
distribution is modelled, analogously to the Bs0 component, with a Student’s t-distribution,
with resolution parameters fixed to values determined in the simulation. The mass
difference between the Bs0 and B 0 mesons, and the B 0 lifetime, are fixed to their known
central values: m(Bs0 )−m(B 0 ) = 87.29±0.26 MeV/c2 [25] and τ (B 0 ) = 1.519±0.005 ps [19]
and the uncertainty propagated to the systematic error. Similarly, the relative yield of the
B 0 and Bs0 components, fr , is fixed to (7.3 ± 0.8) % calculated from the average of the
branching fractions measurements made by the Belle [26,27] and LHCb collaborations [28],
and the measured fragmentation fractions [29–31].
Combinatorial background is modelled by a first order Chebyshev polynomial in mass
0.07
0.06
0.05
LHCb
0.04
0.03
0.02
0.01
0
2
4
6
8
10
t [ps]
Figure 1: Total acceptance function, Atot for 2011 data (black dashed line) and 2012 data (solid
red).
5
and the sum of two exponentials in decay time. In the fit to the data the lifetime of
the shorter lived component is fixed to the value found in the fit to the sideband. As a
systematic variation of the mass model, an exponential function is considered.
Background from partially reconstructed decays of b hadrons is studied using a
simulated bb sample. Using this sample an additional background component, due to
partially reconstructed Bs0 → J/ψ ηX decays, is identified. Background from this source
lies at invariant masses below 5100 MeV/c2 and has a lifetime of 1.33 ± 0.10 ps. This
component is modelled by a Novosibirsk function [32] in mass and an exponential in time.
All parameters for this component apart from the yield are fixed to the simulation values
in the fit to the data.
0
The fit has eight free parameters: the yield of the Bs0 → J/ψ η component (N Bs ), the
combinatorial background yield (N comb ), the partially reconstructed background yield
(N partial ), the Bs0 mass, the lifetime of the signal component (τeff ), the coefficient of
the combinatorial background component in mass (acomb ), the longer lived background
lifetime (τcomb ) and the fraction of the short-lived background (fcomb ). Independent fits
are performed for the 2011 and 2012 data and a weighted average of the two lifetime
values is made. The correctness of the fit procedure is validated using the full simulation
and pseudoexperiments. No significant bias is found and the uncertainties estimated by
the fit are found to be accurate.
5
Results
Figure 2 shows the fit projections in mass and decay time for the 2011 and 2012 data.
The corresponding fit results are summarized in Table 3. The fitted signal yields of the
two years scale according to the known integrated luminosity and b-hadron production
cross-section. There is some tension in the relative yield of the partially reconstructed
background between the two years. However, this parameter is almost uncorrelated with
τeff and this tension has no impact on the result. The average of the fitted values of τeff is
τeff = 1.479 ± 0.034 ps,
where the uncertainty is statistical.
The main source of systematic uncertainty is due to the modelling of the decay time
acceptance function (Section 4). Varying the parameters of the acceptance function within
their correlated uncertainties, a variation of the fitted lifetime of 10 fs is found, which is
assigned as a systematic uncertainty. Uncertainties on Asel due to the parameterisation of
this effect are evaluated to be negligible by replacing the functional form with a histogram.
The statistical and systematic uncertainties on Aβ are evaluated by repeating the fit and
varying the parameterisation within its uncertainties. The statistical uncertainty on Atrig
is propagated by generating an ensemble of histograms with each bin varied within its
statistical uncertainty. Systematic uncertainties on Atrig are estimated to be small by
varying the binning of the histogram and considering an alternative analytic form. In
simulation studies the efficiency of the MVA is found to be independent of the decay time
within uncertainties. Conservatively, allowing for a linear dependence, an uncertainty of
1.7 fs is assigned.
The influence of the decay time resolution is estimated by increasing its value from 51
to 70 fs. This variation covers the variation of the resolution with decay time and any
6
Candidates/ (0.202 ps)
LHCb
2011
5200
5400
103
10
1
10−1
5600
M(J/ ψ η) [MeV/ c 2]
2
0
Candidates/ (0.202 ps)
LHCb
2012
300
250
200
150
100
2
4
6
8
10
t [ps]
2
0
−2
103
LHCb
2012
102
10
1
50
Pull
0
5200
5400
10−1
5600
M(J/ ψ η) [MeV/ c 2]
Pull
Candidates/ (12 MeV/ c 2)
−2
350
LHCb
2011
2
10
Pull
180
160
140
120
100
80
60
40
20
0
Pull
Candidates/ (12 MeV/ c 2)
possible discrepancy in the resolution between data and simulation. The change in τeff
from this variation is negligible. The impact of the uncertainties in fr , the Bs0 − B 0 mass
splitting, and the B 0 lifetime are evaluated by repeating the fit procedure varying these
parameters within their quoted uncertainties.
Further uncertainties arise from the modelling of the time distributions of the background components. In the default fit the lifetime of the short-lived component is fixed
to the value found in a fit to the mass sideband. Removing this constraint changes the
result by 4 fs, which is assigned as a systematic uncertainty. The uncertainty due to the
fixed lifetime of the partially reconstructed component is found to be negligible.
Uncertainties arising from the modelling of the signal and background mass distributions are evaluated using the discrete profiling method described in Ref. [33] and found to
be negligible. Further small uncertainties arise due to the limited knowledge of the length
scale of the detector along the beam axis (z−scale), the charged particle momentum scale
and the neutral particle energy scale.
The stability of the result has been tested against a number of possible variations,
such as the fitted invariant mass range, the requirement on the IP of the muons, the MVA
requirement and analysing the sample according to the number of reconstructed PVs. No
significant change in the final result is found and hence no further systematic uncertainty
2
0
−2
2
4
6
8
10
t [ps]
2
0
−2
Figure 2: Mass and decay time distributions for the 2011 dataset (top row) and 2012 dataset
(bottom row). The fit model described in the text is superimposed (red line). The partially
reconstructed component is shown in solid yellow (dark grey), the combinatorial background
in solid green (light grey) and the B 0 component as open blue. The pull, i.e. the difference
between the observed and fitted value divided by the uncertainty, is shown below each of the
plots.
7
0 → J/ψ η candidates for the 2011 and 2012 datasets.
Table 3: Parameters of the fit to B(s)
Uncertainties are statistical only.
Fit parameter
0
N Bs
mBs0 [ MeV/c2 ]
Fitted value
2011
2012
960 ± 42
2061 ± 60
5365.6 ± 1.8
5369.6 ± 1.3
τeff [ps]
1.485 ± 0.060
1.476 ± 0.041
N comb
1898 ± 64
3643 ± 89
81 ± 26
345 ± 39
N partial
acomb
−0.37 ± 0.05
−0.31 ± 0.03
fcomb
0.52 ± 0.03
0.49 ± 0.02
τcomb [ps]
0.97 ± 0.06
0.82 ± 0.04
Table 4: Systematic uncertainties on the lifetime measurement. Uncertainties less than 0.1 fs are
indicated by a dash.
Source
Asel
Aβ (stat)
Aβ (syst)
Atrig (stat)
Atrig (syst)
MVA
Time resolution
fr
Bs0 − B 0 mass difference
B 0 lifetime
Releasing τback
Varying τpartial
Mass model
Momentum scale
z-scale
Total
Uncertainty [ fs]
10.0
2.0
0.1
0.6
0.6
1.7
–
1.2
–
0.2
4.0
–
–
–
0.3
11.1
is assigned.
All the uncertainties are summarized in Table 4. Adding them in quadrature leads to
a total systematic uncertainty of 11.1 fs which is dominated by the size of the simulation
sample used to determine the acceptance and to validate the analysis procedure.
8
6
Summary
Using data collected by LHCb, the effective lifetime in the Bs0 → J/ψ η decay mode is
measured to be
τeff = 1.479 ± 0.034 (stat) ± 0.011 (syst) ps.
In the limit of CP conservation, τeff is equal to the lifetime of the light Bs0 mass eigenstate
τL . The present measurement is consistent with, and has similar precision to, the effective
lifetime determined using the Bs0 → Ds+ Ds− decay mode [7], τeff (Ds+ Ds− ) = 1.379 ±
0.026 (stat)±0.017 (syst) ps and also with the value measured in the Bs0 → K + K − mode [8],
τeff (K + K − ) = 1.407 ± 0.016 (stat) ± 0.007 (syst) ps, where penguin diagrams are expected
to be more important. Averaging the tree level measurements gives τeff = 1.42 ± 0.02 ps
in good agreement with the expectations of the Standard Model [6], τL = 1.43 ± 0.03 ps
and the value quoted by HFAG [34] from measurements made in the Bs0 → J/ψ φ mode,
τL = 1.420 ± 0.006 ps. The values from these different measurements are compared in
Fig. 3.
Bs → D+s D-s
Bs → J/ ψ η (This result)
Avg. (CP-even) 1.42 ± 0.02
HFAG 2015 (Bs → J/ ψ φ )
Bs → K+ K
-
1.3
1.35
1.4
1.45
1.5
1.55
τL [ps]
Figure 3: Summary of measurements of τL . The yellow band corresponds to the 2015 HFAG
central value and uncertainty.
Acknowledgements
We express our gratitude to our colleagues in the CERN accelerator departments for the
excellent performance of the LHC. We thank the technical and administrative staff at the
LHCb institutes. We acknowledge support from CERN and from the national agencies:
CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France);
BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands);
9
MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo
(Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF
(USA). We acknowledge the computing resources that are provided by CERN, IN2P3
(France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain),
GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to
the communities behind the multiple open source software packages on which we depend.
Individual groups or members have received support from AvH Foundation (Germany),
EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général
de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and
Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The
Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust
(United Kingdom).
References
[1] LHCb collaboration, R. Aaij et al. , and A. Bharucha et al., Implications of LHCb measurements and future prospects, Eur. Phys. J. C73 (2013) 2373, arXiv:1208.3355.
[2] R. Fleischer and R. Knegjens, Effective lifetimes of Bs decays and their constraints
0
on the Bs0 -B s mixing parameters, Eur. Phys. J. C71 (2011) 1789, arXiv:1109.5115.
[3] R. Fleischer, R. Knegjens, and G. Ricciardi, Exploring CP violation and η-η ′ mixing
0
→ J/ψη (′) systems, Eur. Phys. J. C71 (2011) 1798, arXiv:1110.5490.
with the Bs,d
[4] LHCb collaboration, R. Aaij et al., Precision measurement of CP violation in Bs0 →
J/ψK + K − decays, Phys. Rev. Lett. 114 (2015) 041801, arXiv:1411.3104.
[5] LHCb collaboration, R. Aaij et al., Measurement of the CP -violating phase φs in
0
B s → J/ψπ + π − decays, Phys. Lett. B736 (2014) 186, arXiv:1405.4140.
[6] A. Lenz, Theoretical update of B-Mixing and lifetimes, in 2012 Electroweak Interactions and Unified Theories, Moriond, 2012. arXiv:1205.1444.
0
0
[7] LHCb collaboration, R. Aaij et al., Measurement of the B s → Ds− Ds+ and B s →
D− Ds+ effective lifetimes, Phys. Rev. Lett. 112 (2014) 111802, arXiv:1312.1217.
[8] LHCb collaboration, R. Aaij et al., Effective lifetime measurements in the Bs0 →
K + K − , B 0 → K + π − and Bs0 → π + K − decays, Phys. Lett. B736 (2014) 446,
arXiv:1406.7204.
[9] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3
(2008) S08005.
[10] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys.
A30 (2015) 1530022, arXiv:1412.6352.
−
[11] LHCb collaboration, R. Aaij et al., Measurements of the Λ0b , Ξ−
b , and Ωb baryon
masses, Phys. Rev. Lett. 110 (2013) 182001, arXiv:1302.1072.
10
[12] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022,
arXiv:1211.3055.
[13] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP
05 (2006) 026, arXiv:hep-ph/0603175; T. Sjöstrand, S. Mrenna, and P. Skands,
A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852,
arXiv:0710.3820.
[14] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb
simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
[15] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.
A462 (2001) 152.
[16] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections
in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
[17] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE
Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4:
A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
[18] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and
experience, J. Phys. Conf. Ser. 331 (2011) 032023.
[19] Particle Data Group, K. A. Olive et al., Review of particle physics, Chin. Phys. C38
(2014) 090001, and 2015 update.
[20] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth.
A552 (2005) 566, arXiv:physics/0503191.
[21] LHCb collaboration, R. Aaij et al., Measurements of the B + , B 0 , Bs0 meson and Λ0b
baryon lifetimes, JHEP 04 (2014) 114, arXiv:1402.2554.
[22] A. Hoecker et al., TMVA: Toolkit for multivariate data analysis, PoS ACAT (2007)
040, arXiv:physics/0703039.
[23] BABAR collaboration, J. P. Lees et al., Branching fraction measurements of the
0
color-suppressed decays B → D(∗)0 π 0 , D(∗)0 η, D(∗)0 ω, and D(∗)0 η ′ and measure0
ment of the polarization in the decay B → D∗0 ω, Phys. Rev. D84 (2011) 112007,
arXiv:1107.5751, [Erratum: Phys. Rev.D87,039901(2013)].
[24] N. L. Johnson, Systems of frequency curves generated by methods of translation,
Biometrika 36 (1949), no. 1-2 149.
0
[25] LHCb collaboration, R. Aaij et al., Observation of the decay B s → ψ(2S)K + π − ,
Phys. Lett. B747 (2015) 484, arXiv:1503.07112.
[26] Belle collaboration, M. C. Chang et al., Observation of the decay B 0 → J/ψη, Phys.
Rev. Lett. 98 (2007) 131803, arXiv:hep-ex/0609047.
[27] Belle collaboration, M. C. Chang et al., Measurement of B 0 → J/ψη (′) and constraint
on the η − η ′ mixing angle, Phys. Rev. D85 (2012) 091102, arXiv:1203.3399.
11
[28] LHCb collaboration, R. Aaij et al., Study of η–η ′ mixing from measurement of
0
B(s)
→ J/ψη (′) decay rates, JHEP 01 (2015) 024, arXiv:1411.0943.
[29] LHCb collaboration, R. Aaij et al., Measurement of b hadron production fractions in
7 TeV pp collisions, Phys. Rev. D85 (2012) 032008, arXiv:1111.2357.
[30] LHCb collaboration, R. Aaij et al., Measurement of the fragmentation fraction
ratio fs /fd and its dependence on B meson kinematics, JHEP 04 (2013) 001,
arXiv:1301.5286.
[31] LHCb collaboration, Updated average fs /fd b-hadron production fraction ratio for
7 TeV pp collisions, LHCb-CONF-2013-011.
[32] Belle collaboration, H. Ikeda et al., A detailed test of the CsI(Tl) calorimeter for
BELLE with photon beams of energy between 20-MeV and 5.4-GeV, Nucl. Instrum.
Meth. A441 (2000) 401.
[33] P. D. Dauncey et al., Handling uncertainties in background shapes: the discrete
profiling method, JINST 10 (2015) P04015, arXiv:1408.6865.
[34] Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and
τ -lepton properties as of summer 2014, arXiv:1412.7515, updated results and plots
available at http://www.slac.stanford.edu/xorg/hfag/.
12
LHCb collaboration
R. Aaij39 , B. Adeva38 , M. Adinolfi47 , Z. Ajaltouni5 , S. Akar6 , J. Albrecht10 , F. Alessio39 ,
M. Alexander52 , S. Ali42 , G. Alkhazov31 , P. Alvarez Cartelle54 , A.A. Alves Jr58 , S. Amato2 ,
S. Amerio23 , Y. Amhis7 , L. An40 , L. Anderlini18 , G. Andreassi40 , M. Andreotti17,g ,
J.E. Andrews59 , R.B. Appleby55 , O. Aquines Gutierrez11 , F. Archilli1 , P. d’Argent12 ,
J. Arnau Romeu6 , A. Artamonov36 , M. Artuso60 , E. Aslanides6 , G. Auriemma26 , M. Baalouch5 ,
I. Babuschkin55 , S. Bachmann12 , J.J. Back49 , A. Badalov37 , C. Baesso61 , W. Baldini17 ,
R.J. Barlow55 , C. Barschel39 , S. Barsuk7 , W. Barter39 , V. Batozskaya29 , B. Batsukh60 ,
V. Battista40 , A. Bay40 , L. Beaucourt4 , J. Beddow52 , F. Bedeschi24 , I. Bediaga1 , L.J. Bel42 ,
V. Bellee40 , N. Belloli21,i , K. Belous36 , I. Belyaev32 , E. Ben-Haim8 , G. Bencivenni19 ,
S. Benson39 , J. Benton47 , A. Berezhnoy33 , R. Bernet41 , A. Bertolin23 , F. Betti15 ,
M.-O. Bettler39 , M. van Beuzekom42 , S. Bifani46 , P. Billoir8 , T. Bird55 , A. Birnkraut10 ,
A. Bitadze55 , A. Bizzeti18,u , T. Blake49 , F. Blanc40 , J. Blouw11 , S. Blusk60 , V. Bocci26 ,
T. Boettcher57 , A. Bondar35 , N. Bondar31,39 , W. Bonivento16 , A. Borgheresi21,i , S. Borghi55 ,
M. Borisyak67 , M. Borsato38 , F. Bossu7 , M. Boubdir9 , T.J.V. Bowcock53 , E. Bowen41 ,
C. Bozzi17,39 , S. Braun12 , M. Britsch12 , T. Britton60 , J. Brodzicka55 , E. Buchanan47 , C. Burr55 ,
A. Bursche2 , J. Buytaert39 , S. Cadeddu16 , R. Calabrese17,g , M. Calvi21,i , M. Calvo Gomez37,m ,
P. Campana19 , D. Campora Perez39 , L. Capriotti55 , A. Carbone15,e , G. Carboni25,j ,
R. Cardinale20,h , A. Cardini16 , P. Carniti21,i , L. Carson51 , K. Carvalho Akiba2 , G. Casse53 ,
L. Cassina21,i , L. Castillo Garcia40 , M. Cattaneo39 , Ch. Cauet10 , G. Cavallero20 , R. Cenci24,t ,
M. Charles8 , Ph. Charpentier39 , G. Chatzikonstantinidis46 , M. Chefdeville4 , S. Chen55 ,
S.-F. Cheung56 , V. Chobanova38 , M. Chrzaszcz41,27 , X. Cid Vidal38 , G. Ciezarek42 ,
P.E.L. Clarke51 , M. Clemencic39 , H.V. Cliff48 , J. Closier39 , V. Coco58 , J. Cogan6 , E. Cogneras5 ,
V. Cogoni16,39,f , L. Cojocariu30 , G. Collazuol23,o , P. Collins39 , A. Comerma-Montells12 ,
A. Contu39 , A. Cook47 , S. Coquereau8 , G. Corti39 , M. Corvo17,g , C.M. Costa Sobral49 ,
B. Couturier39 , G.A. Cowan51 , D.C. Craik51 , A. Crocombe49 , M. Cruz Torres61 , S. Cunliffe54 ,
R. Currie54 , C. D’Ambrosio39 , E. Dall’Occo42 , J. Dalseno47 , P.N.Y. David42 , A. Davis58 ,
O. De Aguiar Francisco2 , K. De Bruyn6 , S. De Capua55 , M. De Cian12 , J.M. De Miranda1 ,
L. De Paula2 , M. De Serio14,d , P. De Simone19 , C.-T. Dean52 , D. Decamp4 , M. Deckenhoff10 ,
L. Del Buono8 , M. Demmer10 , D. Derkach67 , O. Deschamps5 , F. Dettori39 , B. Dey22 ,
A. Di Canto39 , H. Dijkstra39 , F. Dordei39 , M. Dorigo40 , A. Dosil Suárez38 , A. Dovbnya44 ,
K. Dreimanis53 , L. Dufour42 , G. Dujany55 , K. Dungs39 , P. Durante39 , R. Dzhelyadin36 ,
A. Dziurda39 , A. Dzyuba31 , N. Déléage4 , S. Easo50 , U. Egede54 , V. Egorychev32 , S. Eidelman35 ,
S. Eisenhardt51 , U. Eitschberger10 , R. Ekelhof10 , L. Eklund52 , Ch. Elsasser41 , S. Ely60 ,
S. Esen12 , H.M. Evans48 , T. Evans56 , A. Falabella15 , N. Farley46 , S. Farry53 , R. Fay53 ,
D. Fazzini21,i , D. Ferguson51 , V. Fernandez Albor38 , F. Ferrari15,39 , F. Ferreira Rodrigues1 ,
M. Ferro-Luzzi39 , S. Filippov34 , R.A. Fini14 , M. Fiore17,g , M. Fiorini17,g , M. Firlej28 ,
C. Fitzpatrick40 , T. Fiutowski28 , F. Fleuret7,b , K. Fohl39 , M. Fontana16 , F. Fontanelli20,h ,
D.C. Forshaw60 , R. Forty39 , V. Franco Lima53 , M. Frank39 , C. Frei39 , J. Fu22,q , E. Furfaro25,j ,
C. Färber39 , A. Gallas Torreira38 , D. Galli15,e , S. Gallorini23 , S. Gambetta51 , M. Gandelman2 ,
P. Gandini56 , Y. Gao3 , J. Garcı́a Pardiñas38 , J. Garra Tico48 , L. Garrido37 , P.J. Garsed48 ,
D. Gascon37 , C. Gaspar39 , L. Gavardi10 , G. Gazzoni5 , D. Gerick12 , E. Gersabeck12 ,
M. Gersabeck55 , T. Gershon49 , Ph. Ghez4 , S. Gianı̀40 , V. Gibson48 , E. Gillies51 , O.G. Girard40 ,
L. Giubega30 , K. Gizdov51 , V.V. Gligorov8 , D. Golubkov32 , A. Golutvin54,39 , A. Gomes1,a ,
I.V. Gorelov33 , C. Gotti21,i , M. Grabalosa Gándara5 , R. Graciani Diaz37 ,
L.A. Granado Cardoso39 , E. Graugés37 , E. Graverini41 , G. Graziani18 , A. Grecu30 , P. Griffith46 ,
L. Grillo21 , B.R. Gruberg Cazon56 , O. Grünberg65 , E. Gushchin34 , Yu. Guz36 , T. Gys39 ,
C. Göbel61 , T. Hadavizadeh56 , C. Hadjivasiliou5 , G. Haefeli40 , C. Haen39 , S.C. Haines48 ,
S. Hall54 , B. Hamilton59 , X. Han12 , S. Hansmann-Menzemer12 , N. Harnew56 , S.T. Harnew47 ,
13
J. Harrison55 , M. Hatch39 , J. He62 , T. Head40 , A. Heister9 , K. Hennessy53 , P. Henrard5 ,
L. Henry8 , J.A. Hernando Morata38 , E. van Herwijnen39 , M. Heß65 , A. Hicheur2 , D. Hill56 ,
C. Hombach55 , W. Hulsbergen42 , T. Humair54 , M. Hushchyn67 , N. Hussain56 , D. Hutchcroft53 ,
M. Idzik28 , P. Ilten57 , R. Jacobsson39 , A. Jaeger12 , J. Jalocha56 , E. Jans42 , A. Jawahery59 ,
M. John56 , D. Johnson39 , C.R. Jones48 , C. Joram39 , B. Jost39 , N. Jurik60 , S. Kandybei44 ,
W. Kanso6 , M. Karacson39 , J.M. Kariuki47 , S. Karodia52 , M. Kecke12 , M. Kelsey60 ,
I.R. Kenyon46 , M. Kenzie39 , T. Ketel43 , E. Khairullin67 , B. Khanji21,39,i , C. Khurewathanakul40 ,
T. Kirn9 , S. Klaver55 , K. Klimaszewski29 , S. Koliiev45 , M. Kolpin12 , I. Komarov40 ,
R.F. Koopman43 , P. Koppenburg42 , A. Kozachuk33 , M. Kozeiha5 , L. Kravchuk34 , K. Kreplin12 ,
M. Kreps49 , P. Krokovny35 , F. Kruse10 , W. Krzemien29 , W. Kucewicz27,l , M. Kucharczyk27 ,
V. Kudryavtsev35 , A.K. Kuonen40 , K. Kurek29 , T. Kvaratskheliya32,39 , D. Lacarrere39 ,
G. Lafferty55,39 , A. Lai16 , D. Lambert51 , G. Lanfranchi19 , C. Langenbruch9 , B. Langhans39 ,
T. Latham49 , C. Lazzeroni46 , R. Le Gac6 , J. van Leerdam42 , J.-P. Lees4 , A. Leflat33,39 ,
J. Lefrançois7 , R. Lefèvre5 , F. Lemaitre39 , E. Lemos Cid38 , O. Leroy6 , T. Lesiak27 ,
B. Leverington12 , Y. Li7 , T. Likhomanenko67,66 , R. Lindner39 , C. Linn39 , F. Lionetto41 ,
B. Liu16 , X. Liu3 , D. Loh49 , I. Longstaff52 , J.H. Lopes2 , D. Lucchesi23,o , M. Lucio Martinez38 ,
H. Luo51 , A. Lupato23 , E. Luppi17,g , O. Lupton56 , A. Lusiani24 , X. Lyu62 , F. Machefert7 ,
F. Maciuc30 , O. Maev31 , K. Maguire55 , S. Malde56 , A. Malinin66 , T. Maltsev35 , G. Manca7 ,
G. Mancinelli6 , P. Manning60 , J. Maratas5,v , J.F. Marchand4 , U. Marconi15 , C. Marin Benito37 ,
P. Marino24,t , J. Marks12 , G. Martellotti26 , M. Martin6 , M. Martinelli40 , D. Martinez Santos38 ,
F. Martinez Vidal68 , D. Martins Tostes2 , L.M. Massacrier7 , A. Massafferri1 , R. Matev39 ,
A. Mathad49 , Z. Mathe39 , C. Matteuzzi21 , A. Mauri41 , B. Maurin40 , A. Mazurov46 ,
M. McCann54 , J. McCarthy46 , A. McNab55 , R. McNulty13 , B. Meadows58 , F. Meier10 ,
M. Meissner12 , D. Melnychuk29 , M. Merk42 , A. Merli22,q , E. Michielin23 , D.A. Milanes64 ,
M.-N. Minard4 , D.S. Mitzel12 , J. Molina Rodriguez61 , I.A. Monroy64 , S. Monteil5 ,
M. Morandin23 , P. Morawski28 , A. Mordà6 , M.J. Morello24,t , J. Moron28 , A.B. Morris51 ,
R. Mountain60 , F. Muheim51 , M. Mulder42 , M. Mussini15 , D. Müller55 , J. Müller10 , K. Müller41 ,
V. Müller10 , P. Naik47 , T. Nakada40 , R. Nandakumar50 , A. Nandi56 , I. Nasteva2 ,
M. Needham51 , N. Neri22 , S. Neubert12 , N. Neufeld39 , M. Neuner12 , A.D. Nguyen40 ,
C. Nguyen-Mau40,n , S. Nieswand9 , R. Niet10 , N. Nikitin33 , T. Nikodem12 , A. Novoselov36 ,
D.P. O’Hanlon49 , A. Oblakowska-Mucha28 , V. Obraztsov36 , S. Ogilvy19 , R. Oldeman48 ,
C.J.G. Onderwater69 , J.M. Otalora Goicochea2 , A. Otto39 , P. Owen41 , A. Oyanguren68 ,
P.R. Pais40 , A. Palano14,d , F. Palombo22,q , M. Palutan19 , J. Panman39 , A. Papanestis50 ,
M. Pappagallo14,d , L.L. Pappalardo17,g , C. Pappenheimer58 , W. Parker59 , C. Parkes55 ,
G. Passaleva18 , A. Pastore14,d , G.D. Patel53 , M. Patel54 , C. Patrignani15,e , A. Pearce55,50 ,
A. Pellegrino42 , G. Penso26,k , M. Pepe Altarelli39 , S. Perazzini39 , P. Perret5 , L. Pescatore46 ,
K. Petridis47 , A. Petrolini20,h , A. Petrov66 , M. Petruzzo22,q , E. Picatoste Olloqui37 ,
B. Pietrzyk4 , M. Pikies27 , D. Pinci26 , A. Pistone20 , A. Piucci12 , S. Playfer51 , M. Plo Casasus38 ,
T. Poikela39 , F. Polci8 , A. Poluektov49,35 , I. Polyakov60 , E. Polycarpo2 , G.J. Pomery47 ,
A. Popov36 , D. Popov11,39 , B. Popovici30 , C. Potterat2 , E. Price47 , J.D. Price53 ,
J. Prisciandaro38 , A. Pritchard53 , C. Prouve47 , V. Pugatch45 , A. Puig Navarro40 , G. Punzi24,p ,
W. Qian56 , R. Quagliani7,47 , B. Rachwal27 , J.H. Rademacker47 , M. Rama24 ,
M. Ramos Pernas38 , M.S. Rangel2 , I. Raniuk44 , G. Raven43 , F. Redi54 , S. Reichert10 ,
A.C. dos Reis1 , C. Remon Alepuz68 , V. Renaudin7 , S. Ricciardi50 , S. Richards47 , M. Rihl39 ,
K. Rinnert53,39 , V. Rives Molina37 , P. Robbe7,39 , A.B. Rodrigues1 , E. Rodrigues58 ,
J.A. Rodriguez Lopez64 , P. Rodriguez Perez55 , A. Rogozhnikov67 , S. Roiser39 ,
V. Romanovskiy36 , A. Romero Vidal38 , J.W. Ronayne13 , M. Rotondo23 , M.S. Rudolph60 ,
T. Ruf39 , P. Ruiz Valls68 , J.J. Saborido Silva38 , E. Sadykhov32 , N. Sagidova31 , B. Saitta16,f ,
V. Salustino Guimaraes2 , C. Sanchez Mayordomo68 , B. Sanmartin Sedes38 , R. Santacesaria26 ,
C. Santamarina Rios38 , M. Santimaria19 , E. Santovetti25,j , A. Sarti19,k , C. Satriano26,s ,
14
A. Satta25 , D.M. Saunders47 , D. Savrina32,33 , S. Schael9 , M. Schellenberg10 , M. Schiller39 ,
H. Schindler39 , M. Schlupp10 , M. Schmelling11 , T. Schmelzer10 , B. Schmidt39 , O. Schneider40 ,
A. Schopper39 , K. Schubert10 , M. Schubiger40 , M.-H. Schune7 , R. Schwemmer39 , B. Sciascia19 ,
A. Sciubba26,k , A. Semennikov32 , A. Sergi46 , N. Serra41 , J. Serrano6 , L. Sestini23 , P. Seyfert21 ,
M. Shapkin36 , I. Shapoval17,44,g , Y. Shcheglov31 , T. Shears53 , L. Shekhtman35 , V. Shevchenko66 ,
A. Shires10 , B.G. Siddi17 , R. Silva Coutinho41 , L. Silva de Oliveira2 , G. Simi23,o , S. Simone14,d ,
M. Sirendi48 , N. Skidmore47 , T. Skwarnicki60 , E. Smith54 , I.T. Smith51 , J. Smith48 , M. Smith55 ,
H. Snoek42 , M.D. Sokoloff58 , F.J.P. Soler52 , D. Souza47 , B. Souza De Paula2 , B. Spaan10 ,
P. Spradlin52 , S. Sridharan39 , F. Stagni39 , M. Stahl12 , S. Stahl39 , P. Stefko40 , S. Stefkova54 ,
O. Steinkamp41 , O. Stenyakin36 , S. Stevenson56 , S. Stoica30 , S. Stone60 , B. Storaci41 ,
S. Stracka24,t , M. Straticiuc30 , U. Straumann41 , L. Sun58 , W. Sutcliffe54 , K. Swientek28 ,
V. Syropoulos43 , M. Szczekowski29 , T. Szumlak28 , S. T’Jampens4 , A. Tayduganov6 ,
T. Tekampe10 , G. Tellarini17,g , F. Teubert39 , C. Thomas56 , E. Thomas39 , J. van Tilburg42 ,
V. Tisserand4 , M. Tobin40 , S. Tolk48 , L. Tomassetti17,g , D. Tonelli39 , S. Topp-Joergensen56 ,
F. Toriello60 , E. Tournefier4 , S. Tourneur40 , K. Trabelsi40 , M. Traill52 , M.T. Tran40 ,
M. Tresch41 , A. Trisovic39 , A. Tsaregorodtsev6 , P. Tsopelas42 , A. Tully48 , N. Tuning42 ,
A. Ukleja29 , A. Ustyuzhanin67,66 , U. Uwer12 , C. Vacca16,39,f , V. Vagnoni15,39 , S. Valat39 ,
G. Valenti15 , A. Vallier7 , R. Vazquez Gomez19 , P. Vazquez Regueiro38 , S. Vecchi17 ,
M. van Veghel42 , J.J. Velthuis47 , M. Veltri18,r , G. Veneziano40 , A. Venkateswaran60 , M. Vernet5 ,
M. Vesterinen12 , B. Viaud7 , D. Vieira1 , M. Vieites Diaz38 , X. Vilasis-Cardona37,m , V. Volkov33 ,
A. Vollhardt41 , B. Voneki39 , D. Voong47 , A. Vorobyev31 , V. Vorobyev35 , C. Voß65 ,
J.A. de Vries42 , C. Vázquez Sierra38 , R. Waldi65 , C. Wallace49 , R. Wallace13 , J. Walsh24 ,
J. Wang60 , D.R. Ward48 , H.M. Wark53 , N.K. Watson46 , D. Websdale54 , A. Weiden41 ,
M. Whitehead39 , J. Wicht49 , G. Wilkinson56,39 , M. Wilkinson60 , M. Williams39 ,
M.P. Williams46 , M. Williams57 , T. Williams46 , F.F. Wilson50 , J. Wimberley59 , J. Wishahi10 ,
W. Wislicki29 , M. Witek27 , G. Wormser7 , S.A. Wotton48 , K. Wraight52 , S. Wright48 ,
K. Wyllie39 , Y. Xie63 , Z. Xing60 , Z. Xu40 , Z. Yang3 , H. Yin63 , J. Yu63 , X. Yuan35 ,
O. Yushchenko36 , M. Zangoli15 , K.A. Zarebski46 , M. Zavertyaev11,c , L. Zhang3 , Y. Zhang7 ,
Y. Zhang62 , A. Zhelezov12 , Y. Zheng62 , A. Zhokhov32 , V. Zhukov9 , S. Zucchelli15 .
1
Centro Brasileiro de Pesquisas Fı́sicas (CBPF), Rio de Janeiro, Brazil
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3
Center for High Energy Physics, Tsinghua University, Beijing, China
4
LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
5
Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7
LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8
LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9
I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
10
Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11
Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13
School of Physics, University College Dublin, Dublin, Ireland
14
Sezione INFN di Bari, Bari, Italy
15
Sezione INFN di Bologna, Bologna, Italy
16
Sezione INFN di Cagliari, Cagliari, Italy
17
Sezione INFN di Ferrara, Ferrara, Italy
18
Sezione INFN di Firenze, Firenze, Italy
19
Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20
Sezione INFN di Genova, Genova, Italy
21
Sezione INFN di Milano Bicocca, Milano, Italy
22
Sezione INFN di Milano, Milano, Italy
23
Sezione INFN di Padova, Padova, Italy
2
15
24
Sezione INFN di Pisa, Pisa, Italy
Sezione INFN di Roma Tor Vergata, Roma, Italy
26
Sezione INFN di Roma La Sapienza, Roma, Italy
27
Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28
AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,
Kraków, Poland
29
National Center for Nuclear Research (NCBJ), Warsaw, Poland
30
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31
Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32
Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33
Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34
Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35
Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
36
Institute for High Energy Physics (IHEP), Protvino, Russia
37
ICCUB, Universitat de Barcelona, Barcelona, Spain
38
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
39
European Organization for Nuclear Research (CERN), Geneva, Switzerland
40
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
41
Physik-Institut, Universität Zürich, Zürich, Switzerland
42
Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
43
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The
Netherlands
44
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
45
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
46
University of Birmingham, Birmingham, United Kingdom
47
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
48
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
49
Department of Physics, University of Warwick, Coventry, United Kingdom
50
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
51
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
52
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
54
Imperial College London, London, United Kingdom
55
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
56
Department of Physics, University of Oxford, Oxford, United Kingdom
57
Massachusetts Institute of Technology, Cambridge, MA, United States
58
University of Cincinnati, Cincinnati, OH, United States
59
University of Maryland, College Park, MD, United States
60
Syracuse University, Syracuse, NY, United States
61
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
62
University of Chinese Academy of Sciences, Beijing, China, associated to 3
63
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3
64
Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to 8
65
Institut für Physik, Universität Rostock, Rostock, Germany, associated to 12
66
National Research Centre Kurchatov Institute, Moscow, Russia, associated to 32
67
Yandex School of Data Analysis, Moscow, Russia, associated to 32
68
Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 37
69
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 42
25
a
Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
c
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d
Università di Bari, Bari, Italy
e
Università di Bologna, Bologna, Italy
f
Università di Cagliari, Cagliari, Italy
g
Università di Ferrara, Ferrara, Italy
h
Università di Genova, Genova, Italy
b
16
i
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
k
Università di Roma La Sapienza, Roma, Italy
l
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Kraków, Poland
m
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n
Hanoi University of Science, Hanoi, Viet Nam
o
Università di Padova, Padova, Italy
p
Università di Pisa, Pisa, Italy
q
Università degli Studi di Milano, Milano, Italy
r
Università di Urbino, Urbino, Italy
s
Università della Basilicata, Potenza, Italy
t
Scuola Normale Superiore, Pisa, Italy
u
Università di Modena e Reggio Emilia, Modena, Italy
v
Iligan Institute of Technology (IIT), Iligan, Philippines
j
17