Applicable Analysis
Vol. 88, No. 9, September 2009, 1265–1282
Homogenization of a pseudoparabolic system
Malgorzata Peszyńska, Ralph Showalter* and Son-Young Yi
Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
Communicated by R. Gilbert
(Received 3 December 2008; final version received 4 August 2009)
Downloaded At: 01:53 6 January 2010
Pseudoparabolic equations in periodic media are homogenized to obtain
upscaled limits by asymptotic expansions and two-scale convergence. The
limit is characterized and convergence is established in various linear cases
for both the classical binary medium model and the highly heterogeneous
case. The limit of vanishing time-delay parameter in either medium is
included. The double-porosity limit of Richards’ equation with dynamic
capillary pressure is obtained.
Keywords: homogenization; pseudoparabolic equations; fractured porous
media; dynamic capillary pressure
AMS Subject Classifications: Primary 35B27; 35K70; Secondary 74Q10;
76S05
1. Introduction
Pseudoparabolic equations arise in a range of applications from radiation with timedelay [1], degenerate double-diffusion and heat-conduction models [2,3] and
resolution of ill-posed problems [4] through recently developed applications in
level set methods [5] and models of lightning propagation [6]. They were first
analysed in [7–9]; see [10] for an extensive review and bibliography. Here we are
interested in a degenerate pseudoparabolic equation arising from modelling dynamic
capillary pressure in unsaturated flow; specifically, we study the case of flow in
heterogeneous media in which the coefficients are periodic on a fine scale.
The classical Richards equation for flow through a partially saturated porous
medium with porosity (x) and permeability K(x) takes the form
ðxÞ
@uðt, xÞ
kw ðuðt, xÞÞ
þ r KðxÞ
rðPc ðuðt, xÞÞ GDðxÞÞ ¼ 0,
@t
w
ð1Þ
where u denotes saturation, and gravitational effects depend on depth D(x) and
(constant) density . Here kw(u), Pc(u) denote relative permeability and capillary
pressure relationships, respectively. This standard model follows from Darcy’s law
extended to multiphase flow and conservation of mass [11,12] with the assumption
*Corresponding author. Email: show@math.oregonstate.edu
ISSN 0003–6811 print/ISSN 1563–504X online
ß 2009 Taylor & Francis
DOI: 10.1080/00036810903277077
http://www.informaworld.com
1266
M. Peszyńska et al.
that atmospheric pressure of air is constant. The model has been analysed in [13–15]
and elsewhere.
The experimental determination of the pressure–saturation relationship
p ¼ Pc(u) is based on the assumption that this is an instantaneous process,
although in reality it requires substantial time to approach an equilibrium before
measurements can be taken. This led to the introduction of dynamic capillary
pressure [16] in which Pc(u) is replaced by Pc,dyn ðuÞ Pc ðuÞ @u
@t with 40. Other
dynamic models had been introduced earlier [17,18]; see [19–22] for supporting
experimental evidence. A similar model was derived in [23] by homogenization from
standard two-phase models with special interface conditions.
The dynamic capillary pressure model of [16] leads to the nonlinear
pseudoparabolic equation
@uðt, xÞ
kw ðuðt, xÞÞ
þ r KðxÞ
rðPc ðuðt, xÞÞ GDðxÞÞ
@t
w
kw ðuðt, xÞÞ
@uðt, xÞ
¼ 0:
r KðxÞ
rðxÞ
w
@t
Downloaded At: 01:53 6 January 2010
ðxÞ
ð2Þ
When written in terms of pressure u ° Pc(u) (see Section 4) and linearized about a
known solution u0, with ðxÞ KðxÞ kwðuw0 Þ, replaced by @u
@p ju0 and by , Equation (2)
takes the form
@uðt, xÞ
@uðt, xÞ
r ðxÞr uðt, xÞ þ ðxÞðxÞ
¼ r ðxÞGDðxÞ:
ð3Þ
ðxÞ
@t
@t
If the convective term is dropped, i.e. set D(x) ¼ 0, we obtain
@uðt, xÞ
@uðt, xÞ
r ðxÞr uðt, xÞ þ ðxÞðxÞ
ðxÞ
¼ 0:
@t
@t
ð4Þ
In realistic porous media there is substantial variation of (x) and K(x), as well as
the nonlinear relationships kw(), Pc(), () in (2). Consequently the coefficients in
linearized models (3) and (4) vary similarly. In this article we derive homogenized
models for (2) and (4), and in particular for the special case of binary media in which
(x), K(x), (x) and consequently (x) oscillate between two respective constant
values. See [24,25] for further discussion of heterogeneous dynamic capillary pressure
models, references and numerical results.
The multiscale analysis is aided by the structure of the pseudoparabolic system
@uðt, xÞ
1
þ
uðt, xÞ vðt, xÞ ¼ 0,
@t
ðxÞ
1
vðt, xÞ uðt, xÞ ¼ 0,
r ðxÞrvðt, xÞ þ
ðxÞ
ð5aÞ
ðxÞ
x2 :
ð5bÞ
This system is equivalent to a single equation: if we eliminate v we obtain the
pseudoparabolic equation (4) for the variable u(t, x); v satisfies a similar equation. It is
supplemented with corresponding boundary and initial conditions. Here we take
homogeneous Dirichlet boundary conditions
vðt, sÞ ¼ 0,
a.e. s 2 @ ,
ð5cÞ
Applicable Analysis
1267
and the initial condition
ðxÞuð0, xÞ ¼ ðxÞu ðxÞ,
a.e. x 2 :
ð5dÞ
The well-posedness of the system (5) follows from very general assumptions on the
coefficients and initial function. The following suffices for our purposes here.
THEOREM 1.1 Assume that functions (), (), () 2 L1( ) are given, each with a
strictly positive lower bound, and let u() 2 L2( ). Then there is a unique pair
u() 2 H1((0, T ); L2( )) and vðÞ 2 L2 ðð0, T Þ; H10 ð ÞÞ such that u(0, ) ¼ u() and
Z
@uðt, xÞ
1
’ðxÞ þ
uðt, xÞ vðt, xÞ ’ðxÞ ðxÞ
ðxÞ
@t
ðxÞ
þ ðxÞrvðt, xÞ r ðxÞ dx ¼ 0
Downloaded At: 01:53 6 January 2010
for all ’() 2 L2( ) and
ð6Þ
ðÞ 2 H10 ð Þ.
Corresponding results hold under much more general conditions of
non-negativity of the coefficients. See [10,26–29]. The initial value u need be
chosen only with ()1/2u() 2 L2( ). Also, the a priori estimates show explicitly that
u v ! 0 as ! 0.
Our objective is to homogenize the system (5) and thereby the corresponding
pseudoparabolic equation (4) when the coefficients depend (periodically) on a small
parameter ". The precise description of coefficients will follow below. Bensoussan
et al. [30] briefly investigated the homogenization of pseudoparabolic equations as an
example for which the limiting problem is of a different type, and perhaps non-local,
not even a partial differential equation. (See [30] Chapter II, Section 3.9, pp. 318,
338.) We shall see below that this occurs when certain variables are eliminated or
hidden. The limited regularity and estimates for solutions of the corresponding
pseudoparabolic equation (4) makes the homogenization more delicate. Only in
special cases there is a purely upscaled limit.
In Section 2, we obtain the formal asymptotic expansion of the solution for the
linear equation (4) in the classical case and find the dependence of the limit on and .
The analysis and homogenization of the linear system (5) by two-scale convergence is
developed in Section 3 for "-periodic binary coefficients and includes cases of ! 0
with parabolic or first-order kinetic systems as limits. Finally, Section 4 contains the
asymptotic expansion for a nonlinear highly heterogeneous case arising from
Richards’ equation with dynamic capillary pressure.
2. Asymptotic expansion
First we introduce periodic coefficients into the pseudoparabolic system (5) and use
formal asymptotic expansions to obtain the limiting problem as the period scale "40
tends to zero. Let Y denote the unit cube in RN, let there be given the Y-periodic
functions (y), (y), (y) and then define " ðxÞ ¼ ðx" Þ, " ðxÞ ¼ ðx" Þ, " ðxÞ ¼ ðx" Þ.
The three functions ", ", " are the respective "-periodic coefficients in (5), so the
1268
M. Peszyńska et al.
corresponding solution u", v" to (5) depends on ". We write these as formal
asymptotic expansions
u" ðt, xÞ ¼
1
X
p¼0
" p up ðt, x, yÞ,
v" ðt, xÞ ¼
1
X
" p vp ðt, x, yÞ,
p¼0
x
y¼ ,
"
ð7Þ
with each up(t, x, ), vp(t, x, ) being Y-periodic.
Substitute (7) into (5) and collect terms by powers " p for p 2. Note that the
gradient r ¼ rx þ 1" ry is used in calculations where y ¼ x/". The ordinary
differential equation (5a) gives (at p ¼ 0)
ð yÞ
@u0 ðt, x, yÞ
1
þ
ðu0 ðt, x, yÞ v0 ðt, x, yÞÞ ¼ 0:
@t
ð yÞ
The initial condition will always be assumed to be independent of the local
variable, y 2 Y.
The procedure for the elliptic equation (5b) is standard [30–32]. Equating to zero
the coefficient of "2 in the expansion of (5b) gives
Downloaded At: 01:53 6 January 2010
ry ð yÞry v0 ðt, x, yÞ ¼ 0,
y 2 Y:
With the Y-periodic boundary conditions on v0, we conclude that ryv0(t, x, y) ¼ 0,
and so v0 ¼ v0(t, x) is independent of y 2 Y. From the combined coefficients of "1 in
the expansion of (5b) we obtain
ry ð yÞðry v1 ðt, x, yÞ þ rx v0 ðt, xÞÞ rx ð yÞry v0 ðt, xÞ ¼ 0:
The last term is null, so the function v1(t, x, y) is the solution of an elliptic periodic
boundary-value problem on Y, and we can represent it in terms of Y-periodic
solutions !j (y) of the cell problem (see (17))
ry ð yÞ ry !j þ ej ¼ 0, j ¼ 1 . . . N:
P
@
This representation v1 ðt, x, yÞ ¼ N
j¼1 !j ð yÞ @xj v0 ðt, xÞ (up to a function of x) will be
used to compute the effective tensor below. Finally, collecting terms with "0 in the
expansion of (5b) gives
ry ð yÞðry v2 þ rx v1 Þ rx ð yÞðrx v0 ðt, xÞ þ ry v1 ðt, x, yÞÞ
1
ðv0 ðt, xÞ u0 ðt, x, yÞÞ ¼ 0:
þ
ð yÞ
Integrate this equation over Y. The first term vanishes due to Y-periodicity of each
vr, and the second becomes the effective elliptic contribution with the tensor . The
third term gets averaged to yield the second equation of the system
@u0 ðt, x, yÞ
1
þ
ðu0 ðt, x, yÞ v0 ðt, xÞÞ ¼ 0,
@t
ð yÞ
Z
1
ðv0 ðt, xÞ u0 ðt, x, yÞÞdy ¼ 0,
r rv0 ðt, xÞ þ
Y ð yÞ
ð yÞ
ð8aÞ
ð8bÞ
the first being copied
from above. The effective tensor is obtained in this
R
calculation as ij ¼ Y ð yÞðry !i ð yÞ þ ei Þ ðry !j ð yÞ þ ej Þdy.
1269
Applicable Analysis
Only if the product ()() is constant we get u0(t, x, y) ¼ u0(t, x) independent of
y 2 Y, and in that case we can eliminate v0 from the system to obtain the upscaled
pseudoparabolic equation
@u0 ðt, xÞ
@u0 ðt, xÞ
ð9Þ
r ru0 ðt, xÞ r r
¼ 0:
@t
@t
R
The homogenized porosity is the average
R 1 ¼ Y1(y)dy and the homogenized
time-delay is the harmonic average ¼ ð Y ð yÞ dyÞ . In the general situation, u0
depends also on the local variable y 2 Y, and then the limit system (8) is partially
upscaled, a combination of the local equation (8a) and the upscaled (8b). We will
make similar but much more interesting calculations below when () and () are
piecewise constant.
3. The pseudoparabolic system
Downloaded At: 01:53 6 January 2010
Next we extend the models to include binary media of classical or highly
heterogeneous type, and then we obtain the homogenized limit problems by
two-scale convergence.
3.1. The heterogeneous micro-models
We use a binary medium to emphasize the dependence of singularities on geometry.
Let the unit cube Y be given in open disjoint complementary parts, Y1 and Y2,
so Y1 \ Y2 ¼ ; and Y is the interior of Y1 [ Y2 . We denote by j (y) the characteristic
function of Yj for j ¼ 1, 2, extended Y-periodically to all of RN. Thus,
1(y) þ 2(y) ¼ 1 for a.e. y in RN. It is assumed that the sets {y 2 RN : j (y) ¼ 1} for
j ¼ 1, 2, have smooth boundary, but we do not require these sets to be connected. The
corresponding "-periodic characteristic functions are defined by
x
"j ðxÞ j
, x 2 RN , j ¼ 1, 2,
"
and these naturally partition the global domain into two sub-domains, "1 and "2
by "j fx 2 : "j ðxÞ ¼ 1g, j ¼ 1, 2: We use the characteristic functions as multipliers to denote the zero-extension of various functions. Let @Y1 \ @Y2 \ Y be the
part of the interface between Y1 and Y2 that is interior to the local cell Y. Then
"
@ "1 \ @ "2 \ represents the corresponding interface between "1 and "2 that
is interior to . We denote by j the boundary trace of functions on Yj to and by j"
the boundary trace of functions on "j to ". (See [29,33].)
3.1.1. The classical case
Let the strictly positive lower-bounded functions j (, ), j (, ), j ð, Þ 2 L1 ð ; CðYj ÞÞ
be given, and define Y-periodic functions in L1 ð ; L2# ðY ÞÞ by
ðx, yÞ j ðx, yÞ,
ðx, yÞ j ðx, yÞ,
ðx, yÞ j ðx, yÞ,
y 2 Yj ,
j ¼ 1, 2,
x2 :
The subscript # denotes the subspace of Y-periodic functions in any function space.
Corresponding functions on "j are defined by
x
x
x
"j ðxÞ j x, , "j ðxÞ j x, , j" ðxÞ j x, , x 2 "j , j ¼ 1, 2,
"
"
"
1270
M. Peszyńska et al.
and the coefficients for the pseudoparabolic system (5) are given by
" ðxÞ "1 ðxÞ"1 ðxÞ þ "2 ðxÞ"2 ðxÞ,
ð10aÞ
" ðxÞ "1 ðxÞ"1 ðxÞ þ "2 ðxÞ"2 ðxÞ,
ð10bÞ
" ðxÞ "1 ðxÞ1" ðxÞ þ "2 ðxÞ2" ðxÞ:
ð10cÞ
These are "-periodic on the fine scale. Theorem 1.1 gives a unique solution of the
"-problem: u"() 2 H1((0, T ); L2( )) and v" ðÞ 2 L2 ðð0, T Þ; H10 ð ÞÞ satisfy
Z
@u" ðt, xÞ
1
’ðxÞ þ "
u" ðt, xÞ v" ðt, xÞ ’ðxÞ ðxÞ
" ðxÞ
@t
ðxÞ
þ " ðxÞrv" ðt, xÞ r ðxÞ dx ¼ 0
ð11Þ
Downloaded At: 01:53 6 January 2010
for all ’() 2 L2( ) and ðÞ 2 H10 ð Þ, together with the initial condition u"(0, ) ¼ u().
The initial value u is independent of ".
If the coefficients "j are continuous on "j , the strong form of (11) is the
transmission problem
" ðxÞ
@u" ðt, xÞ
1
þ "
u" ðt, xÞ v" ðt, xÞ ¼ 0,
@t
ðxÞ
x2 ,
1
r "1 ðxÞrv" ðt, xÞ þ "
v" ðt, xÞ u" ðt, xÞ ¼ 0,
1 ðxÞ
1
r "2 ðxÞrv" ðt, xÞ þ "
v" ðt, xÞ u" ðt, xÞ ¼ 0,
2 ðxÞ
1" v" ðt, sÞ ¼ 2" v" ðt, sÞ,
"1 ðsÞrv" ðt, sÞ ¼ "2 ðsÞrv" ðt, sÞ ,
where denotes the unit outward normal on @
boundary conditions
v" ðt, sÞ ¼ 0
"
1.
s2
"
ð12aÞ
x2
"
1,
ð12bÞ
x2
"
2,
ð12cÞ
ð12dÞ
,
ð12eÞ
We have homogeneous Dirichlet
a.e. s 2 @ ,
ð12fÞ
and the initial condition u"(0, x) ¼ u(x), a.e. x 2 . This is the exact micro-model.
If " is continuous on ", there are no interface conditions and (12) reduces to the
single system (5) over . Even then, the fine-scale dependence on the coefficients and
geometry make it numerically intractable for realistically small values of "40.
3.1.2. The highly heterogeneous case
In the highly heterogeneous case, the permeability is scaled by "2 in the second region
"
2 "
"
"
2 , so the flux is given by " 2 ðxÞrv in
2:
" ðxÞ "1 ðxÞ"1 ðxÞ þ "2 "2 ðxÞ"2 ðxÞ:
ð13Þ
1271
Applicable Analysis
Then the system (11) becomes
" ðxÞ
@u" ðt, xÞ
1
þ "
u" ðt, xÞ v" ðt, xÞ ¼ 0,
@t
ðxÞ
x2 ,
1
r "1 ðxÞrv" ðt, xÞ þ "
v" ðt, xÞ u" ðt, xÞ ¼ 0,
1 ðxÞ
x2
1
r "2 "2 ðxÞrv" ðt, xÞ þ "
v" ðt, xÞ u" ðt, xÞ ¼ 0,
2 ðxÞ
x2
ð14aÞ
"
1,
"
2,
1" v" ðt, sÞ ¼ 2" v" ðt, sÞ,
"1 ðsÞrv" ðt, sÞ ¼ "2 "2 ðsÞrv" ðt, sÞ ,
s2
"
ð14bÞ
ð14cÞ
ð14dÞ
:
ð14eÞ
The "-problem for the model developed by Arbogast et al. [34] is recovered by
letting " ! 0.
Downloaded At: 01:53 6 January 2010
3.2. Homogenization of the classical case
3.2.1. The two-scale limit
Let the coefficients in (5) be given by (10). Denote the gradient in the y-variable
2
by ry, and use the symbol ‘!’ to denote two-scale convergence [35].
LEMMA 3.1 For each "40, let u"(), v"() denote the unique solution to the
pseudoparabolic "-problem (11). These satisfy the estimates
ku" kL2 ðð0, T Þ
Þ
þ kv" kL2 ðð0, T Þ;H1 ð
0
ÞÞ
C,
so there exist
(i) a function U in L2 ðð0, T Þ ; L2# ðY ÞÞ,
(ii) a function v in L2 ðð0, T Þ; H10 ð ÞÞ,
(iii) a function V in L2 ðð0, T Þ ; H1# ðY Þ=RÞ,
and a subsequence, hereafter denoted by u", v", which two-scale converges as follows:
2
u" ! Uðt, x, yÞ,
2
ð15aÞ
v" ! vðt, xÞ,
ð15bÞ
rv" ! rvðt, xÞ þ ry Vðt, x, yÞ:
ð15cÞ
2
This suggests use of the corresponding test functions
~ ðxÞ ¼ ðxÞ þ " ðx, x="Þ,
; C1
# ðY Þ . Setting these in (11), we obtain
~
’ðxÞ
¼ ðx, x="Þ,
where 2 H10 ð Þ, , 2 C01
Z
@u" ðt, xÞ
1
ðx, x="Þ þ "
" ðxÞ
u" ðt, xÞ v" ðt, xÞ ðx, x="Þ ð ðxÞ þ " ðx, x="ÞÞ
@t
ðxÞ
"
"
þ ðxÞrv ðt, xÞ rð ðxÞ þ " ðx, x="ÞÞ dx ¼ 0:
1272
M. Peszyńska et al.
Take the limit as " ! 0 to obtain the two-scale limit system
Z Z
@Uðt, x, yÞ
1
ðx, yÞ þ
ðx, yÞ
Uðt, x, yÞ vðt, xÞ ðx, yÞ ðxÞ
@t
ðx,
yÞ
Y
þ ðx, yÞ rvðt, xÞ þ ry Vðt, x, yÞ r ðxÞ þ ry ðx, yÞ dy dx ¼ 0,
ð16Þ
for all , , as above, and U(0, x, y) ¼ u(x). From the uniqueness of the solution
of the initial-value problem for (16), it follows that the original sequence u", v"
two-scale converges as above.
In order to eliminate the function V(t, x, y) from this system, we use the periodic
cell problem: for each k ¼ 1, 2, . . . , N, define !k by
!k 2 L2 ð ; H1# ðY ÞÞ :
Z
ðx, yÞ ry !k ðx, yÞ þ ek ry ðx, yÞdy ¼ 0 for all
2 L2 ð ; H1# ðY ÞÞ:
ð17Þ
Downloaded At: 01:53 6 January 2010
Y
R
y)dy ¼ 0 to fix the constant.) Then we have the
(Let us ask that Y !k(x,P
@vðt, xÞ
representation Vðt, x, yÞ ¼ N
Specify similar test functions
i¼1 @xi !i ðx, yÞ:
PN @ ðxÞ
ðx, yÞ ¼ j¼1 @xj !j ðx, yÞ above to obtain the following theorem.
THEOREM 3.2 The limits U, v in Lemma 3.1 are the solution of the partially
homogenized pseudoparabolic system
U 2 H1 ð0, T Þ; L2 ; L2# ðY Þ , v 2 L2 ð0, T Þ; H10 ð Þ :
Z Z
@Uðt, x, yÞ
1
ðx, yÞ þ
ðx, yÞ
Uðt, x, yÞ vðt, xÞ ðx, yÞ ðxÞ dy dx
@t
ðx, yÞ
Y
!
Z X
N
@vðxÞ @ ðxÞ
dx ¼ 0, for all 2 L2 ; L2# ðY Þ , 2 H10 ð Þ, ð18Þ
ij ðxÞ
þ
@x
@x
i
j
i,j¼1
and U(0, x, y) ¼ u(x), where the effective coefficients are given by
Z
ij ðxÞ ¼
ðx, yÞðry !i ðx, yÞ þ ei Þ ðry !j ðx, yÞ þ ej Þdy:
Y
3.2.2. Summary
The strong formulation of the system (18) is
ðx, yÞ
Z
@Uðt, x, yÞ
1
þ
Uðt, x, yÞ vðt, xÞ ¼ 0,
@t
ðx, yÞ
y 2 Y,
1
vðt, xÞ Uðt, x, yÞ dy r rvðt, xÞ ¼ 0:
Y ðx, yÞ
ð19aÞ
ð19bÞ
This extends (8) from "-periodic coefficients to those which depend also on the slow
variable, x 2 .
Consider the case of a binary medium in which each of j, j 2 L1( ) is
independent of y 2 Yj. Then the same is true of
U1 ðt, xÞ, y 2 Y1 ,
Uðt, x, yÞ
U2 ðt, xÞ, y 2 Y2 ,
1273
Applicable Analysis
and we have the homogenized binary system
jY1 j1 ðxÞ
jY2 j2 ðxÞ
@U1 ðt, xÞ jY1 j
þ
U1 ðt, xÞ vðt, xÞ ¼ 0,
@t
1 ðxÞ
ð20aÞ
@U2 ðt, xÞ jY2 j
þ
U2 ðt, xÞ vðt, xÞ ¼ 0,
@t
2 ðxÞ
ð20bÞ
jY2 j
jY1 j
vðt, xÞ U1 ðt, xÞ þ
vðt, xÞ U2 ðt, xÞ r rvðt, xÞ ¼ 0:
1 ðxÞ
2 ðxÞ
ð20cÞ
This is the binary medium analogue of (9).
3.3. Homogenization of the highly heterogeneous case
3.3.1. The two-scale limit
Here the permeability is given by (13), so we obtain weaker a priori estimates and
correspondingly weaker convergence results.
Downloaded At: 01:53 6 January 2010
LEMMA 3.3 For each "40, let u"(), v"() denote the unique solution to the
pseudoparabolic "-problem (11). These satisfy the estimates
ku" kL2 ðð0, T Þ
Þ
þ kv" kL2 ðð0, T Þ
Þ
þ kv" kL2 ðð0, T Þ;H1 ð
" ÞÞ
1
þ k"v" kL2 ðð0, T Þ;H1 ð
" ÞÞ
2
C,
so there exist
(i) a function U in L2 ðð0, T Þ ; L2# ðY ÞÞ,
(ii) a function v1 in L2 ðð0, T Þ; H10 ð ÞÞ,
(iii) a pair of functions Vj in L2 ðð0, T Þ ; H1# ðYj Þ=RÞ, j ¼ 1, 2,
and a subsequence, hereafter denoted by u", v", which two-scale converges as follows:
2
u" ðt, xÞ ! Uðt, x, yÞ,
2
ð21aÞ
"1 v" ! 1 ð yÞv1 ðt, xÞ,
ð21bÞ
"1 rv" ! 1 ð yÞ½rv1 ðt, xÞ þ ry V1 ðt, x, yÞ ,
ð21cÞ
2
2
ð21dÞ
2
ð21eÞ
"2 v" ! 2 ð yÞV2 ðt, x, yÞ,
""2 rv" ! 2 ð yÞry V2 ðt, x, yÞ:
The function V2 satisfies 2(V2(t, x, y) ¼ v1(x), y 2 . (See [36].) These suggest use
of the corresponding test functions
: x 2 "1 ,
1 ðxÞ þ " 1 ðx, x="Þ
’ðxÞ ¼ ðx, x="Þ,
ðxÞ ¼
: x 2 "2 ,
2 ðx, x="Þ þ " 1 ðx, x="Þ
1
1
1
1
1
and
with
where
1 2 H0 ð Þ, , 1 2 C0 ð ; C# ðY ÞÞ
2 2 C0 ð ; C# ðY2 ÞÞ
2 2(x, ) ¼ 1(x) on . Setting these in (11) yields
Z
@u" ðt, xÞ
" ðxÞ "
ðx, x="Þ þ "1
"
u ðt, xÞ v" ðt, xÞ ðx, x="Þ ð 1 ðxÞ þ " 1 ðx, x="ÞÞ
@t
1 ðxÞ
"2 ðxÞ "
þ "
u ðt; xÞ v" ðt; xÞ ðx; x="Þ ð 2 ðx; x="Þ þ " 1 ðx; x="ÞÞ
2 ðxÞ
1274
M. Peszyńska et al.
þ "1 ðxÞ"1 ðxÞrv" ðt; xÞ rð
þ
"2 ðxÞ"2 ðxÞ"rv" ðt; xÞ
1 ðxÞ
"rð
þ"
1 ðx; x="ÞÞ
2 ðx; x="Þ
þ"
1 ðx; x="ÞÞ
dx ¼ 0:
Downloaded At: 01:53 6 January 2010
Take the limit as " ! 0 to obtain the two-scale limit system
Z Z
@Uðt, x, yÞ
1 ð yÞ
ðx, yÞ þ
Uðt, x, yÞ v1 ðt, xÞ ðx, yÞ
ðx, yÞ
@t
1 ðx, yÞ
Y
2 ð yÞ
þ
Uðt, x, yÞ V2 ðt, xÞ ðx, yÞ 2 ðx, yÞ
2 ðx, yÞ
þ 1 ð yÞ1 ðx, yÞ rv1 ðt, xÞ þ ry V1 ðt, x, yÞ r 1 ðxÞ þ ry 1 ðx, yÞ
þ 2 ð yÞ2 ðx, yÞry V2 ðt, x, yÞ ry 2 ðx, yÞ dy dx ¼ 0,
1 ðxÞ
ð22Þ
for all , 1, 1, 2 as above, and U(0, x, y) ¼ u(x). The uniqueness of the solution
to the corresponding initial-value problem shows that the original sequence
converges to it.
As before, we can represent each V1(t, x, ) by a cell problem: define !k(x, y) by
Z
2
1
1 ðx, yÞ ry !k ðx, yÞ þ ek ry 1 ðx, yÞdy ¼ 0
!k 2 L ð ; H# ðY1 ÞÞ :
Y1
Z
2
for all 1 2 L ð ; H1# ðY1 ÞÞ,
!k ðx, yÞdy ¼ 0:
ð23Þ
Y1
PN
@v1 ðt, xÞ
i¼1 @xi !i ðx, yÞ,
Then we have
1 ðt, x, yÞ ¼
PN V
@ 1 ðxÞ
ðx,
yÞ
¼
1
j¼1 @xj !j ðx, yÞ above to obtain
and we specify the test functions
THEOREM 3.4 The limits U, v1, V2 in Lemma 3.3 are the solution of the partially
homogenized pseudoparabolic system
U 2 H1 ð0, T Þ; L2 ; L2# ðY Þ , v1 2 L2 ð0, T Þ; H10 ð Þ ,
V2 2 L2 ð0, T Þ ; H1# ðY2 Þ with V2 j ¼ v1 :
Z Z
@Uðt, x, yÞ
1 ð yÞ
ðx, yÞ þ
ðx, yÞ
Uðt, x, yÞ v1 ðt, xÞ ðx, yÞ 1 ðxÞ
@t
1 ðx, yÞ
Y
2 ð yÞ
þ
Uðt, x, yÞ V2 ðt, x, yÞ ðx, yÞ 2 ðx, yÞ dy dx
2 ðx, yÞ
Z X
N
@v1 ðt, xÞ @ 1 ðxÞ
dx
þ
ij ðxÞ
@xi
@xj
i,j¼1
Z Z
2 ðx, yÞry V2 ðt, x, yÞ ry 2 ðx, yÞdy dx ¼ 0,
þ
Y2
2
for all 2 L2 ; L2# ðY Þ , 1 2 H10 ð Þ,
; H1# ðY2 Þ with 2 j ¼ 1 ,
2 2L
ð24Þ
and U(0, x, y) ¼ u(x), where the effective coefficients are given by
Z
ij ðxÞ ¼
1 ðx, yÞðry !i ðx, yÞ þ ei Þ ðry !j ðx, yÞ þ ej Þdy:
Y1
1275
Applicable Analysis
Next we separate the components of the system. First write the part over Y2
@Uðt, x, yÞ
1
þ
Uðt, x, yÞ V2 ðt, x, yÞ ¼ 0 and
@t
2 ðx, yÞ
V2 ðt, x, yÞ Uðt, x, yÞ ry 2 ðx, yÞry V2 ðt, x, yÞ ¼ 0, y 2 Y2 ,
2 ðx, yÞ
1
2 ðx, yÞ
V2 ðt, x, yÞ ¼ v1 ðt, xÞ, y 2 ,
and then substitute these back into (24) and use Stokes’ theorem on Y2 to get
Z Z
@Uðt, x, yÞ
1
ðx, yÞ þ
1 ðx, yÞ
Uðt, x, yÞ v1 ðt, xÞ ðx, yÞ 1 ðxÞ dy dx
@t
1 ðx, yÞ
Y1
Z Z
Z X
N
@v1 ðt, xÞ @ 1 ðxÞ
2 ðx, yÞry V2 ðt, x, yÞ dS 1 ðxÞdx ¼ 0:
ij ðxÞ
dx þ
þ
@xi
@xj
i,j¼1
Downloaded At: 01:53 6 January 2010
3.3.2. Summary
The strong form of the partially homogenized system (24) is
@Uðt, x, yÞ
1
þ
Uðt, x, yÞ v1 ðt, xÞ ¼ 0,
@t
1 ðx, yÞ
1
v1 ðt, xÞ Uðt, x, yÞ dy r rv1 ðt, xÞ
Y1 1 ðx, yÞ
Z
þ 2 ðx, yÞry V2 ðt, x, yÞ dS ¼ 0,
1 ðx, yÞ
Z
y 2 Y1 ,
ð25aÞ
and for each x 2 ,
@Uðt, x, yÞ
1
þ
Uðt, x, yÞ V2 ðt, x, yÞ ¼ 0,
@t
2 ðx, yÞ
V2 ðt, x, yÞ Uðt, x, yÞ ry 2 ðx, yÞry V2 ðt, x, yÞ ¼ 0, y 2 Y2 ,
2 ðx, yÞ
1
2 ðx, yÞ
V2 ðt, x, yÞ ¼ v1 ðt, xÞ,
y2 :
ð25bÞ
Note the coupling in the system: the function v1 from (25a) is input to (25b), and the
total flux from (25b) is the distributed source in (25a).
Suppose now that 1 and 1 are independent of y 2 Y1, and therefore so also is
u(t, x) U(t, x, y), y 2 Y1. Then (25a) is homogenized:
@uðt, xÞ
1
þ
uðt, xÞ v1 ðt, xÞ ¼ 0,
@t
1 ðxÞ
1
1
r rv1 ðt, xÞ
v1 ðt, xÞ uðt, xÞ
1 ðxÞ
jY1 j
Z
1
þ
2 ðx, yÞry V2 ðt, x, yÞ dS ¼ 0,
jY1 j
1 ðxÞ
ð26aÞ
1276
M. Peszyńska et al.
and for each x 2 ,
@Uðt, x, yÞ
1
þ
Uðt, x, yÞ V2 ðt, x, yÞ ¼ 0,
@t
2 ðx, yÞ
V2 ðt, x, yÞ Uðt, x, yÞ ry 2 ðx, yÞry V2 ðt, x, yÞ ¼ 0, y 2 Y2 ,
2 ðx, yÞ
1
2 ðx, yÞ
V2 ðt, x, yÞ ¼ v1 ðt, xÞ, y 2 :
ð26bÞ
Note that (26a) is the upscaled fissured medium system, and (26b) is the local fissured
medium system at each x 2 .
Downloaded At: 01:53 6 January 2010
3.4. Vanishing time-delay
Suppose that 1" ¼ oð"Þ in the classical system (12). Then ku" v"kL2(Y1) ¼ o("1/2), so in
the limit we obtain U(t, x, y)jY1 ¼ v(t, x). Choose test functions (x, y) ¼
(x) þ " (x, y) in the weak form, with the equations added, and take the limit to
get the homogenized mixed parabolic–pseudoparabolic system (compare (20))
Z
@vðt, xÞ
1
r rvðt, xÞ þ
1 ðxÞ
vðt, xÞ Uðt, x, yÞ dy ¼ 0,
ð27aÞ
@t
Y2 2 ðx, yÞ
@Uðt, x, yÞ
1
þ
ð27bÞ
Uðt, x, yÞ vðt, xÞ ¼ 0, y 2 Y2 ,
@t
2 ðx, yÞ
R
with effective porosity 1 ðxÞ ¼ Y1 1 ðx, yÞdy. Then (27a) is a parabolic equation with
a memory term determined by (27b). See Peszyńska [37] for results and additional
references to memory functionals in parabolic equations; also see [31] for first-order
kinetic models.
Suppose that 1" ¼ oð"Þ in the highly heterogeneous system (14). Then
U(t, x, y)jY1 ¼ v1(t, x) and instead of the system (25a) we obtain the homogenized
parabolic equation
Z
@v1 ðt, xÞ
r rv1 ðt, xÞ þ 2 ðx, yÞry V2 ðx, yÞ dS ¼ 0:
1 ðxÞ
ð28aÞ
@t
2 ðx, yÞ
Suppose that 2" ¼ oð"Þ in (14). Then U(t, x, y)jY2 ¼ V2(t, x, y) and instead of the
system (25b) we obtain the local parabolic equations
2 ðx, yÞ
@V2 ðt, x, yÞ
ry 2 ðx, yÞry V2 ðt, x, yÞ ¼ 0,
@t
V2 ðx, yÞ ¼ v1 ðxÞ, y 2 :
y 2 Y2 ,
ð28bÞ
ð28cÞ
If both vanish in the limit, then we recover the Arbogast–Douglas–Hornung [34]
double-porosity model (28) of a fractured porous medium.
4. Partially saturated flow with dynamic capillary pressure
4.1. Microscopic equations
Let us consider the unsaturated flow in a highly heterogeneous medium with the
"-periodic structure of Section 3. Here Y2 is the matrix block and Y1 is the
1277
Applicable Analysis
surrounding fracture domain. Each of the subdomains "i is characterized by a rock
permeability tensor Ki, a porosity i, the relative permeability kiw ðui Þ and the capillary
pressure function Pic ðui Þ. Here ui denotes the saturation in "i . The fluid has constant
viscosity and density . It has been observed that the dynamic effects in capillary
pressure equilibrium are much more significant in media with low conductivity than
those with high conductivity, so we assume that the unsaturated flow can be locally
described by the original Richards equation (1) in the fracture domain "1 and by the
pseudoparabolic Richards equation (2) in the porous matrix "2 :
@u1
1
þ r K1 k1w ðu1 Þr P1c ðu1 Þ GDðxÞ ¼ 0, x 2 "1 ,
@t
2
1 2 2 2
@u2
2
2 2
2 @u
þ " r K kw ðu Þr Pc ðu Þ
GDðxÞ ¼ 0, x 2
@t
@t
1
ð29aÞ
"
2:
ð29bÞ
Downloaded At: 01:53 6 January 2010
Hereafter for simplicity we set depth D(x) ¼ x3. Introduce pi ¼ Pic ðui Þ,
ui ¼ i ð pi Þ, i ð pi Þ ¼ 1 Ki kiw ðui Þ, so i() is inverse to Pic ðÞ, and Equations (29a)
and (29b) can be rewritten as
1
2
@ 1 ð p1 Þ
r 1 ð p1 Þ rp1 þ Ge3 ¼ 0,
@t
ð30aÞ
@ 2 ð p2 Þ
@ 2 ð p2 Þ
"2 r 2 ð p2 Þ rp2 þ r
þ Ge3 ¼ 0,
@t
@t
ð30bÞ
and are subject to the interface conditions
p1 ¼ p2 þ
@ 2 ð p2 Þ
,
@t
x2
"
ð30cÞ
,
@ 2 ð p2 Þ
þ Ge3 ,
1 ð p1 Þ rp1 þ Ge3 ¼ "2 2 ð p2 Þ rp2 þ r
@t
where
"
out of
"
2,
p ðx, 0Þ ¼
pi ðxÞ,
x2
is the unit normal on
i
x2
"
,
ð30dÞ
and the initial conditions are
"
i,
ð30eÞ
i ¼ 1, 2:
4.2. Asymptotic expansions
We shall expand the solution in powers of " in the form
pi ðt, xÞ ¼ pi0 ðt, x, yÞ þ "pi1 ðt, x, yÞ þ "2 pi2 ðt, x, yÞ þ ,
i ¼ 1, 2,
ð31Þ
where pik are Y-periodic in y 2 Yi for k ¼ 0, 1, 2, . . . . Following methods of [38,39], we
develop various nonlinear quantities (p) in powers of " by
ð pi Þ ¼ ð pi0 Þ þ 0 ð pi0 Þð pi pi0 Þ þ
00
ð pi0 Þð pi pi0 Þ2 =2 þ
¼ ð pi0 Þ þ 0 ð pi0 Þð"pi1 þ "2 pi2 þ Þ þ
00
ð pi0 Þð"pi1 þ "2 pi2 þ Þ2 =2 þ
¼ ð pi0 Þ þ " 0 ð pi0 Þ pi1 þ "2 ð 0 ð pi0 Þ pi2 þ 00 ð pi0 Þð pi1 Þ2 =2Þ þ
¼ ð pi0 Þ þ " ^1i þ "2 ^2i þ , for appropriate ^1i , ^2i , . . . , i ¼ 1, 2:
1278
M. Peszyńska et al.
Now, we substitute (31) into the microscopic model and expand the gradient
according to the relation r ¼ rx þ 1" ry . Then, we collect terms by powers of ".
From (30a) we obtain three equations for the combined "2, "1 and "0 terms when
x 2 , y 2 Y1:
ry 1 ð p10 Þry p10 ¼ 0,
ð32aÞ
ry 1 ð p10 Þðrx p10 þ ry p11 þ Ge3 Þ þ ^ 11 ry p10 þ rx 1 ð p10 Þry p10 ¼ 0,
1
@ 1 ð p10 Þ
rx 1 ð p10 Þðrx p10 þ ry p11 þ Ge3 Þ þ ^ 11 ry p10 ry 1 ð p10 Þðrx p11 þ ry p12 Þ
@t
þ ^ 11 ðrx p10 þ ry p11 þ Ge3 Þ þ ^ 12 ry p10 ¼ 0:
ð32cÞ
First, equations for "0 from (30b) and (30c) for x 2
are
@ 2 ð p20 Þ
@ 2 ð p20 Þ
2 2
2
ry ð p0 Þry p0 þ
¼ 0,
@t
@t
2
Downloaded At: 01:53 6 January 2010
ð32bÞ
p20 þ
@ 2 ð p20 Þ
¼ p10 ,
@t
y 2 Y2 ,
ð33bÞ
y2 :
The "1, "0 and "1 equations of (30d) for x 2 , y 2
ð33aÞ
are
1 ð p10 Þry p10 ¼ 0,
ð34aÞ
1 ð p10 Þðrx p10 þ ry p11 þ Ge3 Þ þ ^ 11 ry p10 ¼ 0,
ð34bÞ
1 ð p10 Þðrx p11 þ ry p12 Þ þ ^ 11 ðrx p10 þ ry p11 þ Ge3 Þ þ ^ 12 ry p10
@ 2 ð p20 Þ
¼ 2 ð p20 Þry p20 þ
:
@t
ð34cÞ
Equations (32a) and (34a) form an elliptic system for p10 in terms of y. Since its
solution is independent of y, it follows that p10 ¼ p10 ðt, xÞ, so all terms with
ry p10 vanish.
Equations (32b) and (34b) form a linear elliptic system in y whose solution p11 can
be represented in terms of p10 . Define !j (y) for j ¼ 1, 2, 3 as the Y-periodic solution of
the cell problem (compare (23))
ry2 !j ¼ 0
for y 2 Y1 ,
ry !j ¼ ej ¼
j
ð35aÞ
for y 2 :
ð35bÞ
Then from Equation (32b) we obtain the representation
p11 ðx, y, tÞ ¼
3
X
j¼1
!j ð yÞ
1
@p0
ðx, tÞ þ G
@xj
3j
:
ð36Þ
1279
Applicable Analysis
Now, we locally average (32c) by integrating it over Y1 to remove the y-variable
and get
Z
@ 1 ð p10 Þ
jY1 j
rx 1 ð p10 Þðrx p10 þ ry p11 þ Ge3 Þdy
@t
Y1
Z
1 1
¼
ry ð p0 Þðrx p11 þ ry p12 Þ þ ^ 11 ðrx p10 þ ry p11 þ Ge3 Þ dy:
1
ð37Þ
Y1
Apply the divergence theorem to the second integral above, use (34c), make a second
application of the divergence theorem, and use (33a) to obtain
Z
ry 1 ð p10 Þðrx p11 þ ry p12 Þ þ ^ 11 ðrx p10 þ ry p11 þ Ge3 Þ dy
Y1
Z
¼
1 ð p10 Þðrx p11 þ ry p12 Þ þ ^ 11 ðrx p10 þ ry p11 þ Ge3 Þ dS
@Y1
@ 2 ð p20 Þ
¼
dS
þ
@t
@Y2
Z
@ 2 ð p20 Þ
¼
ry 2 ð p20 Þry p20 þ
dy
@t
Y2
Z
@ 2 ð p20 Þ
dy:
¼
2
@t
Y2
Downloaded At: 01:53 6 January 2010
Z
2
ð p20 Þry
p20
The first integral in (37) is evaluated using (36). Its integrand becomes (with implied
summation)
rx 1 ð p10 Þðrx p10 þ ry p11 þ Ge3 Þ
1
@
@p0 @!j @p10
1 1
¼
þ
þ G 3j þ G
ð p0 Þ
@xk
@xk @yk @xj
1
@
@!j
@p0
1 1
þ jk
ð p0 Þ
þ G 3j :
¼
@xk
@yk
@xj
3k
Define the effective fracture permeability tensor K ¼ fKjk g and the macroscopic
fracture porosity by
Kjk
1
¼K
Z
Y1
@!j
þ
@yk
jk
dy,
¼ jY1 j1 :
We also define
ð pÞ ¼
1 1 1
K kw ð ð pÞÞ:
Then, the equation for p10 is
@ 1 ð p10 Þ
rx ð p10 Þðrx p10 þ Ge3 Þ ¼
@t
Z
Y2
2
@ 2 ð p20 Þ
dy:
@t
1280
M. Peszyńska et al.
4.3. Summary
The complete system of flow equations for p10 ðx, tÞ, p20 ðx, y, tÞ is given by
Z
@ 1 ð p10 Þ
@ 2 ð p20 Þ
þ
dy rx ð p10 Þðrx p10 þ Ge3 Þ ¼ 0, x 2 ,
2
@t
@t
Y2
@ 2 ð p20 Þ
@ 2 ð p20 Þ
2
ry 2 ð p20 Þry p20 þ
¼ 0, y 2 Y2 ,
@t
@t
p20 þ
@ 2 ð p20 Þ
¼ p10 ,
@t
p10 ðx, 0Þ ¼ p1init ðxÞ,
ð38bÞ
ð38cÞ
y2 ,
p20 ðx, y, 0Þ ¼ p2init ðxÞ,
ð38aÞ
y 2 Y2 :
ð38dÞ
Downloaded At: 01:53 6 January 2010
This is the double-porosity model consisting of the upscaled equation (38a) together
with the distributed family of local boundary-value problems (38b), (38c) for x 2 .
It is a nonlinear analogue of the system (28a), (26b).
References
[1] E. Milne, The diffusion of imprisoned radiation through a gas, J. London Math. Soc. 1
(1926), pp. 40–51.
[2] G.I. Barenblatt, I.P. Zheltov, and I.N. Kochina, Basic concepts in the theory of seepage of
homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech. 24 (1960),
pp. 1286–1303.
[3] L.I. Rubenstein, On the problem of the process of propagation of heat in heterogeneous
media, Izv. Akad. Nauk SSSR, Ser. Geogr. 1 (1948), pp. 12–45.
[4] R.E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl. 47
(1974), pp. 563–572.
[5] M. Burger, G. Gilboa, S. Osher, and J. Xu, Nonlinear inverse scale space methods,
Commun. Math. Sci. 4 (2006), pp. 179–212.
[6] B.C. Aslan, W.W. Hager, and S. Moskow, A generalized eigenproblem for the Laplacian
which arises in lightning, J. Math. Anal. Appl. 341 (2008), pp. 1028–1041.
[7] R.E. Showalter and T.W. Ting, Pseudoparabolic partial differential equations, SIAM
J. Math. Anal. 1 (1970), pp. 1–26.
[8] R.E. Showalter, Partial differential equations of Sobolev-Galpern type, Pacific J. Math. 31
(1969), pp. 787–793.
[9] T.W. Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc.
Japan 21 (1969), pp. 440–453.
[10] R.W. Carroll and R.E. Showalter, Singular and degenerate Cauchy problems, in
Mathematics in Science and Engineering, Vol. 127, Academic Press (Harcourt Brace
Jovanovich Publishers), New York, 1976.
[11] R. Collins, Flow of Fluids Through Porous Materials, Petroleum Publishing Company,
Tulsa, 1976 (Originally published by Van Nostrand Reinhold, 1961).
[12] J.S. Selker, C.K. Keller, and J.T. McCord, Vadose Zone Processes, CRC Press LLC, Boca
Raton, FL, 1999.
[13] H.W. Alt and E. DiBenedetto, Nonsteady flow of water and oil through inhomogeneous
porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12(4) (1985), pp. 335–392.
[14] H. Alt, S. Luckhaus, and A. Visintin, On nonstationary flow through porous media, Ann.
Mat. Pura Appl. 136 (1984), pp. 303–316.
Downloaded At: 01:53 6 January 2010
Applicable Analysis
1281
[15] T. Arbogast, The existence of weak solutions to single porosity and simple dualporosity models of two-phase incompressible flow, Nonlinear Anal. 19 (1992),
pp. 1009–1031.
[16] S. Hassanizadeh and W.G. Gray, Thermodynamic basis of capillary pressure on porous
media, Water Resour. Res. 29 (1993), pp. 3389–3405.
[17] G. Barenblatt and A.A. Gil’man, A mathematical model of non-equilibrium counter-current
capillary imbibition, J. Eng. Phys. 52 (1987), pp. 456–461.
[18] G.I. Barenblatt, D.B. Silin, and T.W. Patzek, The mathematical model of non-equilibrium
effects in water-oil displacement, SPEJ 8 (2003), pp. 409–416.
[19] S. Hassanizadeh, M. Celia, and H. Dahle, Dynamic effects in the capillary pressuresaturation relationship and their impacts on unsaturated flow, Vadose Zone J. 1 (2002),
pp. 38–57.
[20] D. Wildenschild and K. Jensen, Laboratory investigations of effective flow behavior in
unsaturated heterogeneous sands, Water Res. Res. 35 (1999), pp. 17–27.
[21] D. Wildenschild, J. Hopmans, A. Kent, and M. Rivers, Quantitative analysis of flow
processes in a sand using synchrotron-based X-ray microtomography, Vadose Zone J.
4 (2005), pp. 112–126.
[22] D. Wildenschild, J.W. Hopmanns, and J. Simunek, Flow rate dependence of soil hydraulic
characteristics, Soil Sci. Soc. Am. J. 65 (2001), pp. 35–48.
[23] A. Bourgeat and M. Panfilov, Effective two-phase flow through highly heterogeneous
porous media: Capillary nonequilibrium effects, Comput. Geosci. 2 (1998),
pp. 191–215.
[24] M. Peszyńska and S.Y. Yi, Numerical methods for unsaturated flow with dynamic capillary
pressure in heterogeneous porous media, Int. J. Numer. Anal. Model. 5 (2008),
pp. 126–149.
[25] S.M. Hassanizadeh, M. Celia, and H. Dahle, Dynamic effect in the capillary pressuresaturation relationship and its impacts on unsaturated flow, Vadose Zone J. 1 (2002),
pp. 38–57.
[26] M. Böhm and R.E. Showalter, Diffusion in fissured media, SIAM J. Math. Anal. 16
(1985), pp. 500–509.
[27] R.E. Showalter, Degenerate evolution equations and applications, Indiana Univ. Math. J.
23 (1973/74), pp. 655–677.
[28] R.E. Showalter, Hilbert space methods for partial differential equations, in Monographs
and Studies in Mathematics, Vol. 1, Pitman, London, 1977.
[29] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential
equations, in Mathematical Surveys and Monographs, Vol. 49, American Mathematical
Society, Providence, RI, 1997.
[30] A. Bensoussan, J.L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic
structures, in Studies in Mathematics and its Applications, Vol. 5, North-Holland
Publishing Co., Amsterdam, 1978.
[31] U. Hornung (ed.), Homogenization and porous media in Interdisciplinary Applied
Mathematics, Vol. 6, Springer-Verlag, New York, 1997.
[32] V.V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of Differential Operators and
Integral Functionals, Springer-Verlag, Berlin, 1994.
[33] R.A. Adams, Sobolev spaces, in Pure and Applied Mathematics, Vol. 65, Academic Press,
New York–London, 1975.
[34] T. Arbogast, J. Douglas Jr, and U. Hornung, Derivation of the double porosity model of
single phase flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), pp. 823–836.
[35] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992),
pp. 1482–1518.
[36] G.W. Clark and R.E. Showalter, Two-scale convergence of a model for flow in a partially
fissured medium, Electron. J. Differ. Equ. 1999(2) (1999), pp. 1–20.
1282
M. Peszyńska et al.
Downloaded At: 01:53 6 January 2010
[37] M. Peszyńska, On a model of nonisothermal flow through fissured media, Differ. Integral
Equ. 8 (1995), pp. 1497–1516.
[38] J. Douglas Jr and T. Arbogast, Dual porosity models for flow in naturally fractured
reservoirs, in Dynamics of Fluids in Hierarchical Porous Media, Academic Press, London,
1990, pp. 177–220, Chapter VII.
[39] C.J. van Duijn, H. Eichel, R. Helmig, and I.S. Pop, Effective equations for two-phase flow
in porous media: The effect of trapping on the microscale, Transp. Porous Media 69 (2007),
pp. 411–428.