Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Form Approved OMB No. 0704-0188 REPORT DOCUMENTATION PAGE Publrc r^orting h^sn for this collection of information is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources gathering and maintaining the data needed, and completing and reviewing this ooilecllon of Information. Send comments regarding this burden estimate or any other aspect of mis collection of information Including suggestions for reducing this btSden to Department of Defense, Washington Headquarters Services, Directorate for Infonnatlon Operations and Reports (0704-0188), 121S Jefferson Davis Highway Suite 1204 Arilngton VA 222024302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of Infomiatlon If It does not display a currentiv valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. i u spiay B uuiiBimy 1. REPORT DATE (DD-MM-YYYY) 16-07-2003 4. TITLE AND SUBTITLE 2. REPORT TYPE 3. DATES COVERED (From - To) Technical Paper Sa, CONTRACT NUMBER Preparation and Characterization of the Argentates: [AG{P(CF3)2y, [Ag{jiP(CF3)2M(CO)5y (M = Cr, W) and [Ag{(n-P(C5F5)2)W(CO)5}2]": X-ray Crystal Structure of [K(18.crown-6][Ag{(n.{(CF3)2)Cr(CO)s}2] 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER DARP Berthold Hoge, Christoph Thosen, Tobias Herrmann (all Univ zu Koln); Ashwani Vij (AFRL/PRSP) 5e. TASK NUMBER A205 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory (AFMC) AFRL/PRSP 10 East Saturn Blvd. Edwards AFB CA 93525-7680 AFRL-PR-ED-TP-2003-192 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048 11, SPONSOR/MONITOR'S NUMBER(S) AFRL.PR.ED.TP.2003.192 12. DISTRIBUTION / AVWLABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES For presentation in the Joxirnal of Inorganic Chemistry. 14, ABSTRACT 20030812 220 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES c. THIS PAGE Unclassified 19a. NMHE OF RESPONSIBLE PERSON Leilani Richardson 19b. TELEPHONE NUMBER (include area 53 code) (661) 275-5015 Standard Form 298 (Rev, 8-98) Prescribed by ANSI Std. 239.18 Synopsis Preparation and Characterization of the Argentates: [Ag{P(CF3)2}2]", [Ag{(M-P(CF3)2)M(CO)5}2]- (M = Cr, W) and [Ag{(/i-P(C6F5)2)W(CO)5}2]": X-ray Crystal Structure of[K(18-crown-6)][Ag{(^-P(CF3)2)CrCCO)5}2] Berfliold Hoge,'* Christoph Thosen,^ Tobias Herrmann,* and Ashwani Vij'' " Institutfur Anorganische Chemie, Universitatm Koln, D-50939 Koln, Germany and Air Force Research Laboratory (AFRUPRS), Space and Missile Propulsion Division, Edwards Air Force Base, California 93524. The novel bis{bis(trifluoroinethyl)phosphanido}argentate, [Ag{P(CF3)2}2]"= is obtained via the reaction of HP(CF3)2 with [Ag(CN)2]" and isolated as its [K(18-crown-6)] salt NMR spectroscopic evidence for the [Ag{PCCF3)P(CF3)2}2]' ion is also obtained in this study. Treatment of the phosphane complexes [M(CO)5PH(CF3)2] (M = Cr, W) with [K(18-crown-6)][Ag(CN)2] yields trinuclear argentates, [Ag{(/i-P(CF3)2)M(CO)s}2]" (M = Cr or W). In [K(18crown-6)][Ag{(^-P(CF3)2)Cr(CO)5}2], the C2 synometric anioB, [Ag{(itt-P(CF3)2)Cr(CO)5}2]', shows a nearly linear arrangement of the P-Ag-P unit. This is the first example of a'structurally characterized perfluorinated phosphanidometal complex. Approved for public release; distribution unlimited. Preparation and Characterization of the Argentates: [Ag{P(CF3)2}2]", [Ag{(^P(CF3)2)M(CO)5}2]" (M = Cr, W) and [AgiC^-PCCgFsyWCCOsU': X-ray Crystal Structure of [K(18-crown-6)][Ag{(^-P(CF3)2)Cr(CO)5}2] Author for correspondence: Dr. B. Hoge Institut ftir Anorganische Chemie Universitat zu Koln Greinstr. 6 D-50939 Koln, Germany FAX: 049-221-470-5196 E-Mail: b.hoge@UBi-koeln.de 19 Pages + 3 Tables + 5 Figures (Total manuscript = 27 pages) -2- Preparation and Characterization of the Argentates: [Ag{P(CF3)2}2]', [AgHfiP(CF3)2)M(CO)5}2]" (M = Cr, W) and lAgUn-nCePsyzWiCOysizYi X-ray Crystal Structure of [K(18-crown.6)][Ag{(^-P(CF3)2)Cr(CO)s}2] Berthold Hoge,* Christoph Thosen,^ Tobias Herrimnn,^ and Ashwani Vij^ °^ Institutfur Anorganische Chemie, Universitat zu Koln, D-50939 Koln, Germany ^ Air Force Research Laboratory (AFRL/PRS), Space and Missile Propulsion Division, Edwards Air Force Base, California 93524. email ashwani.vij@edwards.af.mil Abstract The novel bis{bis(trifluoromethyl)phosphaiiido}argeiitate, [Ag{P(CF3)2}2]", is obtained via the reaction of HP(CF3)2 with [AgCCN)2]" and isolated as its [K(18-crowTi-6)] salt. If the cyclic phosphane CPCF3)4 is reacted with a sHght excess of [K(18-crown-6)][Ag{P(CF3)2}2] a selective insertion of one PCF3 unit into each silver phosphorus bond is observed, giving NMR spectroscopic evidence for the [Ag{P(CF3)P(CF3)2}2]" ion. On treatment of the phosphane complexes [M(CO)5PH(CF3)2] (M = Cr, W) with [K(18crown-6)][Ag(CN)2] the formation of the comparable trinuclear argentates, [Ag{(^P(CF3)2)M(CO)5}2]" is achieved. The chromium compound [K(18-crown-6)][Ag{(/iP(CF3)2)Cr(CO)5}2] crystallizes in a non-centrosymmetric space group Fdd2 (no. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm^ Z= 8. The Cz symmetric anion, [Ag{(^-P(CF3)2)Cr(CO)5}2]", shows a nearly linear arrangement of the PAg-P unit and represents the first example of a structurally characterized perfluorinated phosphanido-metal complex. Although, the bis(pentafluorophenyl)phosphanido compound [Ag{P(C6F5)2}2]" could not be obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag{(^-P(C6F5)2)W(CO)5}2] was successful. -3- Introduction In our field of research, nucleopMlic bis(perfluoroorganyl)phosphaiiide sources are esseatial for the synthesis of chiral, bidentate strong Jt-acidic bis(perfluoroorganyl)phosphane ligands. The bis(trifluoromethyl)phosphanide ion exhibits negative hyperconjugation which results in a C-F activation and therefore, favors a decomposition of this compound in solution. To obtain selectively nucleopMlic P(CT3)2 group transfer reagents, it is essential to reduce the negative hyperconjugation by addition of a weak Lewis acid. Terminal bisCperfluoroorganyl)phosphanido transition metal complexes are potential nucleophihc P(CF3)2 group transfer reagents.^''^' ^ To the best of our knowledge, no binary bis(phosphanido)argentate of the general formula [Ag(PR2)2]" (R = noncycHc univalent group) is known so far. Only the trinuclear counterparts E-Ag{(/i-PR2)M(CO)5}2]" (R = Ph, CeHii and M = Cr, Mo, W) have been characterized by ^'P NMR spectroscopy and some of them by elemental analysis.* A novel gold complex, [Ag{(p.PJPh2)Au(C6F5)5}2]"has also been structorally characterized (Manco, M. G.; Fernandez,-E. X: fones. P. G.; Laguna, A.; Lopez-de-Luzuriaga. J. M.: Oimos, M. E. AngeM'.' Cliem. Intl. Ed. piil,"l99i^57."3642.) Experimental Section Materials and Apparatus. Chemicals were obtained from commercial sources and used without further purification. Literature methods were used for the synthesis of HPCCeFs)!, [W(CO)5PH(C6F5)2], [W(CO)5PH(CF3)2]^ and [Cr(CO)5PH(CF3)2].^ Solvents were purified by standard methods.^ Standard high-vacuum techniques were employed throughout all preparative procedxires; nonvolatile compounds were handled in a dry N2 atmosphere by using Schlenk techniques. -4- Infrared spectra were recorded on a Nicolet-SPC-FT-IR spectrometer as KBr pellets. Raman spectra were measured on a Bruker FRA-106/s spectrometer with a Nd:YAG laser operating at X = 1064 nm. nhe NMR spectra were recorded on Bruker Model AMX 300 (^¥, 121.50 MHz; ^% 282.35 MHz; " C 75:47 MHz) and Bruker AC200 spectrometers fv, 81.01 MHz; ^¥ 188.31 MHz; ^H, 200.13 MHz). Fluorine decoupled phosphorus spectra were measured on a Bruker DRX 500 spectrometer (^^P, 202.40 MHz) with positive shifts being downfield from the external standards (85% orthophosphoric acid (^'P), CCI3F ("F) and TMS (^H)). Higher order NMR spectra were calculated with the program gNMR.^ Single crystal x-ray diffraction studies were performed at 170(2) K using a STOEIPDS I diffractometer using graphite monochromated MoKa (X = 71.073 pm). Details of the structural parameters are listed in Table 1 and selective bond lengths, bond angles and torsion angles are listed in Table 2. A complete summary of structure solution and refinement is described in the c|f file deposited with this journal. The structure was solved in space" group FM2 using Patterson Method and refined with SHELXTL V6.10 ( SiM-XTXTIJl for pin^owsrSrufor AXS'lnc7M^^^^ The positions of silver and potassium atoms were located on special position (2 fold axis) and the chromium atom was found to occupy a general position. Further structare expansion revealed the remaining atoms of the [Ag{(P(CF3)2)Cr(CO)5}]' anion. Since the silver atom sits on a special position, the complete anion could be generated using the symmetry operation (3/2 - x, V2 - y, z). From a disordered array of electron density around the potassium atom in the shape of "half-fan", six oxygen positions were identified, which constituted the two-component half-crown ether structure. Two terminal carbon atoms of this half-crown configuration, later named C12 and C18, were subsequently located and were found to occupy special positions. The two-component disordered 18-crown-6 was then generated using the symmetry operation (3/2 - x, 3/2 - y, +z). -5- One of these components were retained and used for further refinement after moving C12 and Cl8 off the special position and refining the symmetry generated equivalents with an occupancy factor of 0.5 using the PART -1 command in SHELXL. During this refinement, the C-C and C-0 distances of the 18-crown-6 moiety were restrained to be equal with maximum allowable deviation of 1 pm. Similarly, thermal parameters of the disordered atoms were also restrained using SJMU and DELU commands. Finally, all non-hydrogen atoms were refined anisotopically and hydrogen atoms were added to the carbon atoms at calculated positions. Since the structure belongs to a non-centrosymmetric space group Fddl, the absolute configuration was determined by refining the Flack's parameter to 0.04(2), which confirms the corrected "handedness" of the molecular structure. Preparation of [K(18.crown-6)][Ag{P(CF3)2}2]. A 1.75 (10.28 mmol) amount of HP(CF3)2 was condensed on a solution of 1.89 g (4.08 mmol) of [K(18-crown-6)][Ag(CN)2] in^lO mL of acetone at -196 °C. After stirring the mixture at -78 °C for 1 hour, the temperature was allowed to rise to room temperature and the solution was evaporated to dryness. The residue was extracted several times with hexane, yielding 2.45 g (3.27 mmol, 80%) of [K(18-crown-6)][Ag{P(CF3)2}2] as a colorless solid. Elemental anal. (calc. for Ci6H24A^i2K06P2): C 25.50 (25.65); H 3.42 (3.23). Infrared spectrum (cm"\ KBr pellet): 3854 vw, 3445 w, 2891 s, 2829 m, 2748 vw, 1720 w, 1475 m, 1456 m, 1435 w, 1354 s, 1286 m, 1251 s, 1163 vs, 1109 vs, 962 s, 839 m, 734 vw, 559 w, 530 w, 459 m. Raman (cm"^): 2956 (2), 2917 (5), 2889 (100), 2848 (27), 2811 (13), 2150 (20), 2136 (6), 1476 (44), 1274 (37), 1246 (11), 1183 (7), 1146 (17), 1068 (10), 873 (30), 832 (18), 736 (64), 549 (15), 534 (2), 465 (22), 294 (13), 275 (36), 240 (5), 140 (4), 105 (29). Negative ESI mass spectrum (acetone; lO'^M) {m/z (%) [assignment]}: 999 (38) [Ag3{P(CF3)2}4]", 723 (100) [Ag2{P(CF3)2}2]', 573 (18) [Ag2{P(CF3)2}2F]-, 445 (35) [Ag{P(CF3)2}2]". NMR data (THF; 298 K): 5(^¥) 2.8 ppm; 5("F) -39.4 ppm; 5("C) 138.0 ppm; '/(CF) 317 Hz; ^J(PF) 57.9 Hz; ^J(PC) 49 Hz; ^J(CF) 9 Hz; V(jFF) 8 Hz. The NMR data of [K(18-crowii-6)]* are unaffected by the counterion (<^"C) 71 ppm, ^^H) 3 ppm). Preparation of [K(18-crown-6)][Ag{(^.P(CF3)2)W(CO)5}2]. 1.06 g (2.14 mmol) of [W(CO)5PHCCF3)2] and 0.48 g (1.02 irnnol) of [K(18-crown-6)][Ag(CN)2] were dissolved in 5 mL of DMF and stirred for two hours at room temperature. After evaporation of the green solution, the residue was extracted with diethyl ether giving 0.99 g (0.71 mmol, 70%) of [K(18-crown-6)][Ag{(/i-P(CF3)2)W(CO)5}2] as a green powder. TG analysis: decomposition at 250 °C. Elemental analysis (calc. for C26H24AgFi2KOi6P2W2): C 22.63 (22.35); H 1.78 (1.73); N 0.15 (0.00). Infrared spectrum (cm"\ KBr pellet): 3435 m, 2914 w, 2072 m, 2017 w, 1981 m, 1946 vs, 1931 vs, 1903 vs, 1903 vs, 1630 w, 1475 vw, 1456 vw, 1353 w, 1286 vw, 1251 w, 1168 s, 1110 s, 1086 m, 963 w, 841 vw, 598 m, 578 m, 469 w, 459 w, 428 w. Raman (cm'\ as a result of fluorescence, some of the intensities are uncertain): 2951 (8), 2918 (12), 2893 (10), 2879 (10), 2847 (8), 2071 (60), 1979 (100), 1917 (50), 1475 (5), 974 (20) 958(20), 870, 798, 737, 449,428 (40), 405, 349, 331, 222, 94 (60). Negative ESI mass spectrum (acetone; lO'^M) {m/z (%) [assignment]}: 1094 (100) [Ag{F(CF3)2W(CO)5}2]". NMR data (CDCI3/DMF; 298 K): 8fF) 13.8 ppm; SC^ -48.5 ppm; ^/(^°5''°'AgP) 424.6/369.4 Hz; ^JC^F) 155.6 Hz; ^J(PP) 100.7 Hz; ^/(PF) 63.3 Hz; ^J(W) 2.5 Hz. Preparation of [K(18-crown.6)][Ag{(^.P(C6F5)2)W(CO)s}2]. A solution of 2.00 g (2.90 mmol) of |[W(CO)5PH(C6F5)2] in 5 mL of acetone was added dropwise to a solution of 0.55 g (1.18 nrniol) [K(18-crown-6)][Ag(CN)2] in 10 mL of acetone at -50 '^C. After allowing the temperature to rise to room temperature, the reaction mixture was evaporated to dryness. The product [K(18-crown-6)][Ag{(/i-P(C6F5)2)W(CO)5}2] (1.09 g, 0.61 mmol, 50%) was obtained as a yellow powder after recrystallization from diethyl ether/hexane. TG analysis: decomposition at 180 °C. Elemental analysis (calc. for C45H24AgF2oKOi6P2W2): C 31.71 (30.88); H 1.84 (1.35). Infrared spectmm (cm"', KBr pellet): 2918 m, 2880 w, 2930 vw, 2066 -7- s, 1977 s, 1937 vs, 1921 vs, 1887 s, 1638 w, 1624 vw, 1514 s, 1468 s, 1379 vw, 1352 w, 1284 w, 1250 w, nil s, 1080 s, 972 s, 837 w, 826 w, 760 vw, 750 vw, 725 vw, 634 w, 598 m, 577 m, 532 vw, 503 vw, 426 vw, 413 vw. Raman (cm-'): 2954 (8), 2920 (12), 2895 (11), 2848 (10) 2810 (7), 2067 (33), 1971 (100), 1944 (23), 1930 (25), 1903 (50), 1639 (22), 1514 (5), 1475 (9), 1381 (12), 1275 (8), 1246 (4), 1141 (5), 873 (4), 827 (15), 584 (19), 503 (10), 457 (30). 432 (28), 387 (10), 345 (8), 332 (6), 281 (4), 102 (60). Positive ESI mass spectrum (acetone/IHF; lO'^M) {m/z (%) [assignment]}: 303 (100) [K(18-crown-6)]+. Negative ESI mass spectrum (acetone/THF; 10"^M) {m/z (%) [assignment]}: 1486 (1) [AgP2(C6F5)4W2(CO)io]*, 1403 (18) [AgP2(C6F5)4W2(CO)7]*, 1374 (6) [AgP2(C6Fs)4W2(CO)6]+, 1346 (26) [AgP2(C6F5)4W2(CO)s]*, 1318 (8) [AgP2(C6F5)4W2(CO)4]% 1290 (100) [AgP2(C6F5)4W2(CO)3]*, 1262 (7) [AgP2(C6F5)4W2(CO)2]*, 1234 (36) [AgP2(C^5)4W2(CO)]+, 1206 (95) [AgP2(C6F5)4W2]^ 1088 (10) [AgP2(C6F5)4W(CO)2]+, 1022 (9) [AgP2.(C6F5)4W]* NMR data (CDCI3; 298 K): 6(^'P) -126.5 ppm; BC%) -128.0 ppm (m, 2F); 5(%m) -162.8 ppm (m, 2F); 5(*'Fp) -156.3 ppm (m, IF); ^/(i°^''°^AgP) 437.4/380.4 Hz; '/(^^%P) 167.7 Hz; ^/(PP) 142.4 Hz; ^/(PF) 9.0 Hz;*J(PF)8.4Hz. Preparation of [K(18-crown-6)][Ag{(^-P(CF3)2)Cr(CO)5}2]. A solution of [K(18-crown6)][Ag(CN)2] in acetone was treated with a slight excess of [Cr(CO)5PH(CF3)2] at -30 °C. After allowing the temperature to rise to room temperature, the reaction mixture was evaporated to dryness. The red oily product, [K(18-crown-6)][Ag{(^-P(CF3)2)Cr(CO)5}2], was extracted several times with hexane. Colorless single crystals were obtained after slow condensation of hexane onto a diethyl ether solution at -45 °C. Infrared spectrum (cm^, THF solution, 1700-2400 cm"^): 2064 m, 1946 vs, 1926 s. NMR data (CDCI3; 298 K): 5(^¥) 64.8 ppm; 5("F) -45.5 ppm; ^J('°''^°'AgP) 412/359 Hz; ^/(PP) 94 Hz; V(PF) 55 Hz; */(PF) 3 Hz. Results and Discussion Based on the successful synthesis of bis(periluoroorganyl)phosphaiiide salts^ and bis(perfluoroorganyl)phosphanido complexes,^''° by reacting bis(perfluoroorganyl)phosphanes, BDP(RF)2 (RF = CF3, CgFs) with cyanide compounds, we further investigated the reactions of HP(CF3)2, HPCCeFs)! and their comparable M(CO)s (M = Cr, W) complexes with dicyanoargentates. To obtain dicyanoargentate salts that are soluble in most organic solvents, we first reacted K[AgCCN)2] with 18-crown-6 in methanol. The product [K(18-crown-6)][Ag(CN)2] was isolated as a colorless solid in a quantitative yield after evaporating the solvent. K[Ag(CN)2] +18-crown*6 > [K(18-crown-6)][Ag(Ca^2] (1) On treatment of a [K(18-crown-6)][Ag(CN)2] acetone solution with a slight excess of HP(CF3)2J a complete conversion to [Ag{P(CF3)2}2]" is achieved. [Ag(CN)2]- +2HP(CF3)2 2HCN+ [Ag{P(CF3)2}2]" (2) cat = [K(18-crown-6)]+ Removal of all the volatile components at room temperature, and extracting the residue several times with hexane, gives IK(18-crown-6)][Ag{P(CF3)2}2] in a 80% yield. An analysis of the Raman spectrum indicates the presence of cyano compounds minor impurities, pfo our fciibwledge, the bis(bis(tiifluoromethyl)phosphaiudo)argentate is the first isolated'example of a binary.di(phosphanido)argentate salt containing a perfluorinated phosphanido group. 9- The use of the [Ag{P(CF3)2}2]' ion in nucleophilic displacement reactions leads to disappointing results. On treatment of [K(18-crown-6)][Ag{P(Cp3)2}2] solutions with ethyl iodide, the expected product C2H5P(CF3)2 could be obtained only in minor amounts (< 5%) even after stirring for several hours at room temperature in different solvents. Further extension of the reaction time or raising the reaction temperature above room temperature favored the formation of a number of unidentified side products. It was found that the reaction of cyclic phosphane (PCF3)4" is with a slight excess of [K(18-crown-6)][Ag{P(CF3)2}2] is selective and proceeds with the formation of the [Ag{P(CF3)P(CF3)2}2]' ion, as evidenced by NMR spectroscopic studies. F3C [Ag{P(CF3)2}2]" + %CPCF3)4 CF3 F3<>'''^p^Ag-' *'N^CP3 / \ CF3 F3C (3) cat = [K(18-crown-6)]* A comparable nucleophilic cleavage of the phosphorus-phosphorus bond of cyclic (PCF3)4 is observed in reactions with [K(18-crown-6)]P(CF3)2, allowing the NMR spectroscopic characterization of the novel tris(trifluoromethyl)diphosphanide ion, P(CF3)P(CF3)2". P(CF3)2- + M (PCr3)4 ipCF, -P—CF3 1 (4) CF3 cat = [K(18-crown-6)f Both diphosphanide compounds (cf. eq. (3) and (4)) are generated in THF at -30 °C in selective reactions. The neat [K(l 8-crown-6)] salts, which are expected to be stable at room -10- temperature, could not be isolated so far. The NMR spectroscopic data of both anions are summarized in Table 3 and compared to the data of the starting material, the [Ag{P(CF3)2}2]" and P(CF3)2' ions and die cyclic phosphane, (PCF3)4The ^'P NMR resonances of the phosphanide units of the P(CF3)P(CF3)2' ion (cf. Table 3) and [Ag{P(CF3)P(C3'3)2}2]' ions exhibit the expected shift to hi^er field with respect to (PCF3)4 of about 17 and 5 ppm, respectively. The P NMR resonances of the phosphane units (cf. Table 3) are shifted of about 110 and 97 ppm, respectively, to lower field in the same comparison. These characteristic shifts allow an unambiguous assignment. The '/(PP) coupling constants of 340 and 287 Hz for the P(CF3)P(CF3)2' and [Ag{P(CF3)P(CF3)2}2]' ions, respectively, exhibit both a strong increased magnitude with respect to the coupling of 101 Hz for (PCF3)4.^'^ Both values are in the expected range and • reduced by about 55 and 110 Hz, respectively, with respect to the 1,2diethylphenyldiphosphanide ion, P(C2Hs)P(C2H5)(C6H5)", which has been synthesized reacting LiPCCzHsXCgHs) and (PC2H5)4." On the first view, the unexpected low nucleophilicity of the [Ag{P(CF3)2}2]" ion in comparison to [Hg{P(CF3)2}2], which reacts smoothly to CH3CH2P(CF3)2 on treatment with ethyl iodide, may be surprising. As a result of the much stronger nucleophilicity of the bisCtrifluoromethyl)argentate, [Ag(CF3)2]', with respect to [Hg(CF3)2] we expected the comparable phosphanido argentate, [Ag{P(CF3)2}2]", to be an even stronger nucleophilic agent. The negative electrospray ionization (ESI) mass spectrum of a diluted acetone solution of [K(18-crown-6)][Ag{P(CF3)2}2] provides an explanation for the low nucleophilicity of the argentate ion. Besides the monometalhc ion, [Ag{P(C3'3)2}2]", with a relative intensity of 35% we detected a bimetallic and a trimetalHc fragment ion. The fragment ions [Ag2{P(CF3)2}3]" and [Ag3{P(CF3)2}4]' are detected with relative intensities of 100 and 38%, respectively and 11- exhibit the expected isotopic pattern for a bi- and trinuclear silver compound. The observation of these higher nucleated silver fragment ions is a strong hint for an association of the [Ag{P(CF3)2}2]" ion in solution. In the case of an association via bridging /i-phosphanido groups, the formal phosphorus lone electron pairs are no longer available for nucleophilic displacement reactions. The fast ligand exchange of the [Ag{PCCF3)2}2] ion in solution, with respect to the NMR time scale, additionally supports an association of the argentate ion, involving bridging fiphosphanido groups, by the formation of oligomeric moieties: FsC^ /CF3 (CF3)2P—A|^\g E.g. "'= ^' P(CF3)2 , (5) . Fenske and co-workers provided structural evidence for the formation of bridging 112phosphanido groups in the polymetallic mixed phosphanido phosphane silver complexes.^* While the room temperature NMR spectra of the [Ag{P(CF3)2}2]" ion exhibit sharp ^'p and ^^P NMR resonances, the low temperature NMR spectra (THF; -90 °C) exhibit very complex spin systems, which could not be analyzed so far. The room temperature "p and ^^P NMR spectra show line widths of less than 4 Hz but show no hints for fluorine or phosphorus silver nuclear couplings. To obtain NMR spectroscopic evidence for the formation of a silver phosphorus bond via the detection of the ^'P nuclear couplings with the two NMR active silver isotopes, Ag and '"^Ag, it was necessary to slow down the ligand exchange process. The coordination of each phosphanido ligand of an [Ag{P(CF3)2 li]" ion to a M(C0)5 moiety will prevent the involvement of the formal phosphorus lone pairs in any kind of -12- association of the [Ag{P(CF3)2}2]' moieties. As a consequence, this "blockade" of the phosphoras lone pairs should slow down the Hgand exchange process, allowing a detection of the phosphorus silver nuclear couplings. The reactions of [W(CO)sPH(CF3)2]^ or [Cr(CO)5PH(CF3)2]^ with [K(18-crown6)][Ag(CN)2] proceed under formation of the corresponding trinuclear argentates, [Ag{(^PCCF3)2)MCCO)5}2]" (M = W and Cr) in selective reactions at -50 °C in acetone. [Ag(CN)2]' + 2 [M(CO)5PH(CF3)2] ^ 2 HCN + [Ag{ (/t-P(CF3)2)M(CO)5 hY (6) M = Cr, W; cat = [K(18-crown-6)]* After the removal of all the volatiles in vacuo at room temperature and extracting the residue once with diethyl ether, the product [KC18-crown-6)][Ag{(^-P(CF3)2)W(CO)5}2] was obtained as a green powder. The trinuclear argentate ion, [Ag{(/i-P(CF3)2)W(CO)5}2]", exhibits no evidence for an association in solution. The ESI mass spectrum reveals only one firagment at m/z = 1094 assigned to the [Ag{C^-P(CF3)2)W(CO)5}2]" ion. Colorless crystals of the chromium compound, [K(18-crown-6)]* [Ag{(^P(C3'3)2)Cr(CO)5}2]" were obtained by slow condensation of hexane onto a saturated diethyl ether solution at -45 °C. This compound crystallizes in a non-centrosjonmetric space group Fdd2. The asymmetric unit shows the silver atom on a two-fold axis with only half of the anionic structure. The complete Ct symmetric structore of [Ag{(^-P(CF3)2)Cr(CO)s}2]" anion is generated using a symmetry operation (a = 3/2 - x, % - y, z) yielding Pl*-Agl-Pl bond angle of 169.17(6)°, Ag-P distance of 239.1(1) pm and P'-Ag-P-Cr torsion angle of 39.02(4)° (Fig. 1). A survey of the CCSD (Conquest 1.5, Cambridge Crystal Structure Database, jECDC, CamMdge, U.K.) reveals an isolated example for an analogous Ag(I) anion, [Ag{(/iP(C6H5)2)Au(C6F5)3}2]", whjch contains a linear P-Ag-P bond (180°) with Ag-P distance of -13- P distance of 238.6 pm. This distance is in the range of 238-241 pm found in other linear or ring P-Ag-P linked complexes. The Cr-P distance of and 238.9(1) pm is shorter than that found in [(CO.)5CrP(CF3)(C2H50CN(CH3)2] (246.9 pm) (probe'.' J.;le Van7D.;'AlTipiriJ4 Krebs, B.; DartmanWM^Gleifer, R. Heteroatom. Cheni. 1991.2, 385) . The potassium atom lies on a 2-fold axis and is encapsulated by a severely disordered 18crown-6 ring. The disordered component of the crown ether is generated by symmetry (3/2 X, 3/2 - y, z) (see experimental section) and the two conformations are rotated by -22.4° with respect to each other as shown in Fig. 2. An analysis of the mean plane formed by the oxygen atoms of the crown ether show a near-planar arrangement with deviation of 19.3(5) pm with the potassium atom almost coplanar at 2.6(3) pm with this mean plane. The maximum deviations from the mean plane described are shown by 08 and 09 atoms +22.5(5) and -24.8(5) pm, respectively. In addition to the hexacoordination from oxygen atoms of the 18-crown-6 ring, the potassium atom fiirther coordinates to one fluorine atom (F5) of the P(CF3)2 group (K-F = 3.052(5) pm) and one oxygen atom (03) of the Cr(CO)s (K-O = 3.287(3)pm), as well as their symmetry equivalents 03"^ and FS** {b = 3/2 - x, 3/2 - y, z). These distances are shorter than the sum of van der Waal radii of K and O (427 pm), and K and F (422 pm) and result in the formation of a seven-membered ring which increases the coordination number of potassium to ten. Only two K[18-crown-6] structures containing both K-O and K-F contacts could be found in CCSD. For these compounds, the K-O and K-F distances lie in the range 267.6288.0 pm and 289.5-333.1 pm, respectively (Kawashima, fJliimalNTfokitoh. NT; pkazajd, R. X Org. Chem. 1994, 59.491. Kawashima, T.-Nishiwaki^ Y.TOkazaM, R. 1 Organomet. Chem..l995,499, 143.) Further, in these oxagermetanide anion containing 18crown-6 complexes, the potassium atom lies 15 (Kawashima, T.; Iwama, N.; ToWtoh, N.; 14- Okazaki, R. /. Org. Chem. 1994, 59, 491) and 121 ^wmhimsL, T.; Nishi¥aki, YT; Okiiaiki^ R._/. Organomei Chem. 1995^499,143.) pm above the crown ring. The crystal packing diagram, shown in Fig^ 3, shows the formation of two Ag-05 contacts at 321.9(5) pm, which is comparable to the sum of van der Waal radii for Ag and O (324 pm). The 0-Ag-O bond is almost linear at 169.4° and is twisted by 81.9° with respect to Pl^-AglPl bond. These Ag-0 and K-O/F result in the formation of a zig-zag polymeric chain along the a- and b-sxis, respectively (Fig. 3). As a result of slowing down the ligand exchange process, the silver phosphorus coupling constants ^/(^°^'^°'AgP) could be determined in the ^'P NMR spectrum to 425 and 369 Hz, respectively, and He within the expected range.^^ As a result of the ^/(PF) and long range ^/(PF) coupling with values of 55 Hz and of 2 Hz, the fluorine and the phosphorus NMR spectra show the magnetic nonequivalence of the two P(CF3)2 units. This allows the determination of the ^/(PP) coupling via the calculation of the center signal as an [AgXla (AeA'eXX') spin system. On the knowledge that V(PF) couplings - in contrast to the always negative^/(PF) couplings -are alwayspositive,^^ tl» longrange^/(PF) couplings can be assigned with a positive sign with respect to the interpretation of the experimental spectra as [A6X]2 spin systems. In general, for spin systems based on a [AX]2 system, only the relative signs of the AX and AX' couplings are determinable." The magnitude of the ^/(PP) couplings of 94 and 101 Hz for the C2 symmetric chromium and tungsten compound, respectively, can be compared only with the V(PP) couplings of the nonsymmetric compounds [Ag(/i-PR2)M(CO)5(/i-PR'2)M'(CO)5]" (R, R' = Ph, Cyhex and M, M' = Cr, Mo, W) with values of 130-150 Hz. These nonsymmetric compounds were obtained as a mixture via a synproportionation of the corresponding symmetric compounds.^ The determined V(PP) coupling of 101 Hz for the tongsten derivative, [Ag{(^P(CF3)2)W(CO)5 }2]", matches exactly with the value obtained via the calculation of the -15- tungsten satellites of the fluorine decoupled phosphorus spectram. The isotopomer of the WP-Ag-P-W unit with one NMR active ^^% isotope, gives rise to a magnetic nonequivalence of the two phosphoras atoms. The theoretical chemical difference of the two phosphoras atoms, caused by the isotopic shift, can be neglected in this case. The calculation of the two resulting [AJaMX (AA'MX) spin systems with A = P; M = ^®^W and X = '"'Ag and '°^Ag allows the determination of the V(PP) and the ^/(WP) coupling constants. As a result of the J(WP) coupling with a value close to zero it is not possible to determine the relative signs of the /(PP) and the /(WP) coupling constants via the iteration of the obtained experimental ^'P{"F} NMR spectrum. The highest vibrational CO valence mode of the series [W(CO)5PH(CF3)2],^ [Ag{ C^P(CF3)2)W(CO)5}2] and [W{P(CF3)2}(CO)5]- "describes the expected shift to lower frequencies with about 2093, 2072 and 2065 cm"\ respectively. These findings can be explained by the increasing electron density at the phosphorus atoms which causes a reduced 7t-back-bonding effect for the W-P bonds while the ii-back-bonding effect for the W-C bonds increases in the opposite manner. The highest CO valence mode of a comparable mercury complex [Hg{(/xP(CF3)2)W(CO)5}2]-2 DMF,^ located at 2081 cm"' might be interpreted in terms of a stronger Lewis-acidity of the mercury center in comparison to the silver center in [Ag{(^P(CF3)2)W(CO)5}2]-. Unfortunately, the reaction of [K(18-crown-6)][Ag(CN)2] with BDP(C6F5)2 did not yield a uniform product so far, while the reaction with [WCCO)5PH(C6F5)2] allows the isolation of the comparable trinuclear product, [K(18-crown-6)][Ag{(^-PCC6F5)2)W(CO)s}2] in a 50% yield after recrystallization from a diethyl ether hexane mixture as a bright yellow powder. -16- [AgCCN)2]- + 2 [WCCO)5PH(C6F5)2] -* 2 HCN + [Ag{ (/i-P(C6F5)2)WCCO)5 \S U) cat = [K(18-crown-6)]+ The experimental first order ^¥ NMR spectrum of the trinuclear ion is shown in Fig. 4, showing a ^/(PF) and a ^J(PF) coupling of 9.0 and 8.4 Hz respectively. The coupling constants are determined via an iteration of the experimental spectrum (bottom trace of Figure 2). As a result of the chemically as well as the magnetically equivalence of the two P(C6F5)2 units, the /(PP) coupling constant can not be determined from the fluorine decoupled phosphorus spectrum. In the case of the fluorine decoupled phosphorus spectrum, the tungsten satellites could be resolved (upper trace of Fig. 5). As already discussed for the OFs • derivative,the isotopomer of the W-P-Ag-P-W unit with one NMR active^^^W isotope, gives rise to a magnetic nonequivalence of the two phosphorus atoms. The tungsten satellites are therefore a combination of two [AJaMX spin systems (A = P, X = ^^^W, M = ^°^Ag and '^Ag) one for each NMR active silver isotope. The calculation and iteration of the two spin systems alows the determination of the ^/(PP) coupling constant to 142.4 Hz. Only four lines for the isotopomer of the W-P-Ag-P-W unit with two NMR active '*'W isotopes could be assigned in the experimental fluorine decoupled ^'P NMR spectrum via the calculation of two sets of an [AX]2M spin system. Two of them are marked with an arrow in the enlargement of Fig. 5. The highest infrared CO valence mode of the trinuclear anion, [Ag{ {p.P(C6F5)2)M(CO)5}2]", located at 2066 cm"' is shifted by 12 cm"' to higher frequencies and by 18 cm'' to lower frequencies in comparison to [W{P(C6F5)2}(CO)5]" and [W(CO)5PH(C6F5)2], respectively and describes therefore the weaker and stronger, respectively, n-acidity of the comparable phosphorus moieties. The highest CO valence mode of [Ag{(/i- -17- PCC6F5)2)M(CO)5}2]', is shifted only 6 cm"' to lower frequencies with respect to the comparable CF3 derivative, [Ag{ (^-P(aF3)2)MCCO)5 la]'. Acknowledgements We are grateful to Prof. Dr. D. Naumann for his generous support and the Fonds der Chemischen Industrie for financial support. We thank Dr. I. Pantenburg for his assistance in doing the X-ray single crystal structure analysis. Dr. W. Tyrra and Dr. K. Glinka are acknowledged for helpM discussions. We would also like to thank Dr. Fook Tham, University of California, Riverside, for discussions about modelling disordered crystal systems. Supporting Information Available: Crystallographic file in CIF format for [K(18-crown6)][Ag{0i-P(CF3)2)Cr(CO)5}2]. This material is available free of charge via the Internet at http://pubs.acs.or^. -18- References (1) Grobe, J.; Haubold, R.; Z. Anorg. Allg. Chem., 1986,534, 121. (2) Hoge, B.; Thdsen, C; Pantenburg, I. Inorg. Chem. 2001,40, 3084-3088. (3) Hoge, B.; Hernnann, T.; Thosen, C; Pantenburg, I. Inorg. Chem. 2003 in press (4) Odendorf, D.; Peringer, P. Z. Naturforsch. 1986,41b, 79-81. (5) Hoge, B.; Hermarai, T.; Thosen, C; Pantenburg, I. Inorg. Chem. 2003,42, 3623-3632. (6) Grobe, J.; Le Van, D.; Meyering, W. Z. Anorg. Chem 1990,586, 149-158. (7) Perrin, D. D.; Armarego, W. L. F.; Perrin,D. R. Punfication of Laboratory Chemicals; Pergamon Press: Oxford, England, 1980. (8) Budzelaar, P. H. M.; gNMR Version 4.1. Cherwell Scientific, Oxford, UK, 1998. (9) Hoge, B.; Thosen, C. Inorg. Chem., 2001,40, 3113-3116. (10) Grobe, J.; Demuth, R. Angew: Chem., 1972,84, 1153. (11) Mahler, W.; Burg, A. B. /. Am. Chem. Soc. 1958,80, 6161-6167. (12) Albrand, J. P.; Cogne, A.; Robert, J. B. /. Am. Chem. Soc. 1978,100, 2600-2604. (13) Huck, E.; Issleib, K. Z Anorg. Allg. Chem. 1965,339, 274-280. (14) Eisenmann, J.; Fenske, D.; Simon, F. Z. Anorg. Allg. Chem. 1995, 621, 1681-1688; Eichhofer, A.; Eisenmann, J.; Fenske, D.; Simon, F. Z Anorg. Allg. Chem. 1993, 619, 1360-1368.. (15) Odendorf, D.; Peringer, P. /. Organomet. Chem. 1987,326, 375-380; Odendorf, D.; Peringer, P. /. Organomet. Chem. 1986,299, 127-130. (16) Berger, S.; Braun, S.; Kalinowski, H.-0. NMR-Spektroskopie von Nichtmetallen, Georg Thieme Verlag Stuttgart, New York, 1993, pp. 147. (17) Giinther, H NMR-Spektroskopie, Georg Thieme Verlag Stuttgart, New York, 1992, 3. ed., p. 175. (18) Hoge, B.; Thosen, C; Herrmann, T.; Pantenburg, I. Inorg. Chem. 2003,42, 3633-3641. -19- Table 1. Crystal Data and Structure Refinement Parameters for [K(18-crown-6)][Ag{^PCCF3)2Cr(CO)5}2] empirical formula formula mass r[K] space group a [pm] fe[pm] c[pm] F[irai^] Z Pcalc [g Cm"^] fj. [mm^l R indexes [I>2al} R indexes (all data) goodness of fit (Sobs) Hack's parameter C26H24AgCr2Fi2KOi6P2 1133.36 170(2) Fdd2 (no. 43) 2970.2(6) 1584.5(3) 1787.0(4) 8.41(3) 8 1.79 1.26 Rl= 0.0280, wM = 0.0516 Rl = 0.0359, wR2 = 0.0530 1.014 -0.04(2) Rl = (Z{Fo-Fc)IFo), wRl = ^(wiFo-FcffwFo^) Table 2: Selected Bond Distances and Bond Angles- for [K(18-crown-6)] [Ag{ iiP(CF3)2Cr(CO)5}2] Bond lengths (pm) Ag(l)-F(l) Ag(l)-P(l)» 239.07(10) Cr(l)-C(6) 189.2(5) 239.07(10) Cr(l)-C(3) 189.3(5) Cr(l)-C(7) 183.6(5) 190.7(6) Cr(l)-C(5) 188.4(5) Cr(l)-C(4) Cr(l)-P(l) 238.90(13) Bond Angles C) P(l)-Ag(l)-P(l)^ 169.17(6) C(2)-P(l)-C(l) 95.1(2) Cr(l)-P(l)-Ag(l) C(7)-Cr(l)-P(l) C(2)-P(l)-Cr(l) 111.50(16) C(5)-Cr(l)-P(l) 89.95(14) C(l)-P(l)-Cr(l) 114.95(15) C(6)-Cr(l)-P(l) 92.06(15) C(2)-P(l)-Ag(l) 107,31(15) C(3)-Cr(l)-P(l) 87.36(13) C(l)-P(l)-Ag(l) 105.35(15) C(4)-Cr(l)-P(l) 92.36(14) 3/2 - X, % - y, z 20 119.68(4) 177.68(17) Table 3. NMR Spectroscopic Data for Phosphanide Derivatives and (PCF3)/ phosphanide unit BfF) 5(^^F) ^/(PF) -1.9 -31.4 47.2 2.8 -39.4 57.9 P(CF3)2"'' [Ag{P(CF3)2}2]'' CPCF3)4'' -92.0 P(CF3)P(CF3)2-^ ^26.6 39.2 -79.5 -32.1 44.7 [Ag{P(CF3)P(CF3)2}2]-^ P(C2H5)P(C2H5)(C6H5)-* -112.8 " Chemical shifts in ppm; coupling constants in EEz. Reference 9. ^ See Experimental Section. "^ Reference 12. " Not resolved. ^IHF; 243 K. * Reference 13. ^-) 21- phosphane unit ^/(PF) 5^^) se^p) - _ _ -74.8 35.5 21.9 -17.2 -51 -51.4 -53.0 e - 62.0 65.9 . ^J(PP) _ - 100.6 339.7 286.7 396 Figure Legend Figure 1. Simplified central projection of the Ca symmetric [Ag{ (/i-P(CF3)2)Cr(CO)5 }2]" ion in the compound [K(18-crown-6)][Ag{C/i-P(CF3)2)CrCCO)5}2] showing the atom numbering scheme of the asymmetric unit and theraial ellipsoids (40%). Selected bond lengths (pm) and angles (deg): AgCl)-P(l) 239.1(1), P(l)-Cr(l) 238.9(1), P(l)-C(l) 187.5(4), P(l)-C(2) 187.5(5), P(l)-Ag(l)-P(r) 169.17(6), C(l)-P(l)-C(2) 95.1(2), Cr(l)-P(l)-Ag(l) 119.68(4). Figure 2. Figure shown an ORTEP plot for the two components of the disordered 18crown-6 ring. The thermal ellipsoids are at 30% probability level. Figure 3. Crystal packing diagram of [K(l 8-crown-6)] [Ag{ (/i-P(CF3)2)Cr(CO)5 }2] viewed along the c-axis with the 18-crown-6 ring omitted for figure clarity. The vertical K.. .O^ and the horizontal Ag.. .0 zig-zag polymeric chains run along the b- and a- axis, respectively. Figure 4. Experimental (top) and calculated (bottom) ^'P NMH spectrum (81.01 MHz) of [Ag{(^-P(C6F5)2)W(CO)5}2]-. Figure 5. Experimental (top) and calculated (bottom) ^'P{^¥} NMR spectrum (202.4 MHz) of [Ag{(/i-P(C6F5)2)W(CO)5}2]" (compare text). 22- Figure 1 -23- Figure 2 -24- Figure 3 Packing along the c-axis showing the vertical K... O/F and the horizontal Ag... O chains -25- Figure 4 -1——I—<——1- -123.0 -124.0 -125.0 -126.0 -26- -127.0 -128.0 -129.0 -130.0 (ppm) Figure 5 -124.6 .12SM -aSA -125.8 -12«.2 -27- -126.6 .127.0 -127.4 -127.8 <Pim) enCIFer: ash.cif data_crown _publ_contact_author_name 'Dr. Berthold Hoge' _publ_contact_author_acJdress • Jnstitutf \"ur Anorganlsche Chemie Universit\"atzuK\"oln Grelnstr. 6 D-50939 Ki"oln, Germany _pubI_contact_author_emaII ': b.hoge@uni-koeIn.de' _pubLcontact_author_fax 049-221-470-5196 _audlt_creation_method SHELXL-97 _chemical_name_systemaljc ? _chemical_name_common ' 18-Crown-6-potassium bis{pentacarbonyl-\p,-bis(trifluoromethyI)phosphanido}argentate(l) _chemicaLnnelting_point ? _chemicaLformuIa_moiety 'C26 H24 Ag Cr2 F12 K016P2' _chemicaLformula_sum 'C26 H24 Ag Cr2 F12 K 016 P2' _chemical_formula_weight 1133.36 !oop_ _atom_type_symbol _atom_type_descrip1ion _atomJype_scat_disperslon_real _atom_type_scat_dispersionJmag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' • F F 0.0171 0.0103 "International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Mon Jul 14 09:31:53 2003 Pagel enClFer: ash.cif P P 0.1023 0.0942 "International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' K K 0.2009 0.2494 "International Tables Vol C Tables 4.2.6.8 and 6.1.1.4" Cr Cr 0.3209 0.6236 'International Tables Vol C Tables 4,2.6.8 and 6.1.1.4" Ag Ag -0.8971 1.1015 "International Tables Vol C Tables 4.2.6.8 and 6.1.1.4" _symnietiy_celLsettlng orthorhombic _symnietiy_space_flroup_name_H-M Fdd2 _symmebyJnt_Tables_number 43 loop_ _symmetry_equiv_pos_as_xyz 'x, y, t • -X, -y, t "x+1/4, -y+1/4,2+1/4" "-X+1/4, y+1/4, z+1/4" "X, y+1/2, z+1/2" "-X, -y+1/2, z+1/2" • x+1/4,-y+3/4. z+3/4' '-X+1/4, y+3/4, z+3/4" 'x+1/2, y, z+1/2' '-X+1/2, -y, z+1/2' 'x+3/4, -y+1/4, z+3/4' '-X+3/4, y+1/4, z+3/4" 'x+1/2, y+1/2, z' '-X+1/2, -y+1/2, z' 'x+3/4, -y+3/4, z+1/4' • -X+3/4,y+3/4, z+1/4' _ce!l_length_a 29.702(6) _celljength_b 15.845(3) _celljength_c 17.870(4) _ce|l_angle_alpha 90.00 Mon Jul 14 09:31:58 2003 Page 2 enCIFer: ash.cif _cell_angle_beta 90.00 _cell_angle_gamma _celI_volume 90.00 8410(3) _ceII_foiTnula_units_Z 8 _cell_measurement_temperature 170(2) _cell_m6asurement_reflns_used ? _cell_measurementjheta_min ? _cell_m6asurementjhete_max _exptl_crystal_descrlption _exptl_crystaLcolour ? Columns Colorless _exptl_crystal_size_max 0.25 _exptl_ctystal_size_mld 0.20 _exptLcryslal_slze_min 0.05 _exptl_ciystaLdenslty_meas ? _exptl_crystal_densl1y_diffrn 1.790 _exptl_crystal_densiV_method _exptl_crystaLF_OOD 'not measured' 4480 _expfl_absoipt_coefficient_mu 1.260 _exptLabsorpt_corrBction_type "numerical" _exptLabsDrpt_coiTection_T_min 0.4306 _exptl_absorpt_K)iTectlon_T_max 0.2552 _exptl_absorptj)rocess_details ? _exptl_speclal_details _diffm_amblent_temperature 170(2) _diffrn_radiation_wavelength 0.71073z diffm source 'fine-focus sealed tube' MonJul 14 09:31:58 2003 Page 3 enCIFer: ash.cif _diffm_radlat!on_type. MoK \a _diffm_radiation_probe x-ray _diffm_radiatlon_monochromator graphite _diffm_nieasurement_de\nce_type ? _diffm_measurement_method ? _dHfrn_detector_area_resoLmean? _diffm_standanls_nuniber ? _diffm_standards_inter^al_count ? _diffm_stendardsjnterval_time ? _diffm_stendards_decay_% <1% _diffm_reflns_number 16303 _diffm_reflns_av_R_equivalents 0.0559 _diffm_reflns_av_sigrr>al/netl 0.0422 diffm reflns limit h min -33 diffm_reflnsjimit_h_max 33 diffln_rBflnsJimlt_k_min -18 dilTi f i_reflns_Iimit_k_max 18 diflTn_refInsJimit_Lmin -20 diffm_rBflnsJimitJ_max 20 diffrn_reflns_theta_rTjin 2.66 24.13 diffm_reflnsj:heta_max .reflns_number_toteI 3310 .reflns_number_gt 2866 _reflns_tfireshoId_expresslon >2sigma(l) _computing_data_collection ? _compLiting_cell_rBflnement ? _computing_data_reduction ? _coniputing_stnJcture_solution 'SHELXS-97 (Slieldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _cbmputfng_molecular_graphics 'SHELXTL V6.10' _computing_publication_materia! ? Mon Jul 14 09:31:58 2003 Page 4 enCIFer: ash.cif _reflne_special_detalls 3 Reflnement of F*^* against ALL reflections. The weighted R-fector wR and goodness of fit S are based on F *^, conventional R-factors R are based on F, with F set to zero for negative F ''^''. Tiie threshold expression of F'*2* > 2sigma(F''2-^)ls used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-fectois based on F'*^'' are statistically about towice as lai^e as ttiose based on F, and Rfactots based on ALL data will be even larger. _reflne_ls_structure_factor_coef Fsqd _refinejs_matrix_type full _reflnejs_weighting_scheme calc _refinejs_weightlng_detalls 'calc w=1/[\o''2s(Fo^2*)+(0.0237P)«*+0.0000P] where P=(Fo'2*+2Fc*2^)/3' _atoni_sltes_solution_primary direct _atoni_sites_solution_sec»ndary difmap _atom_sltes_solution_hydrogens geom _reflne_ls_hydrogen_treattnent mixed _refine_ls_extinction_method _refineJs_extincJion_coef none ? _reflnejs_abs_structure_detalls'Flack H D (1983), Acta Cryst. A39, 876-881' _reflneJs_abs_stnJcture_Fladc -0.04(2) _refine_ls_number_reflns 3310 jefinejs_number_parameters _refinejs_number_restrainte 353 103 _refineJs_R_fector_all 0.0359 _refineJs_R_factor_gt 0.0280 _refineJs_wR_factor_ref 0.0530 _refineJs_wR_factor_gt 0.0516 Mon Jul 14 09:31:58 2003 Page 5 enClFer: ash.cif _refineJs_floodness_of_fit_ref 1.014 _refineJs_restrained_S_all 0.999 _reflneJs_shHVsu_max 0.001 _reflnejs_shlft/su_mean 0.000 loop_ _atom_slteJabel _atom_s!te_type_symbol _atom_slte_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_UJso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multipllcily _atoni_slte_calc_flag _atom_sIte_reflnement_flags _^atoni_site_disorder_assembly _atom_site_disorder_group Agl Ag 0.7500 0.2500 0.81911(2) 0.03332(12) Uani 1 2 d S .. Cri Cr 0.67165(2) 0.42727(4) 0.92781(4) 0.03394(17) Uani lid. K1 K 0.7500 0.7500 0.84286(6) 0.0452(4) Uani 1 2 d S .. PI P 0.72438(3) 0.39232(6) 0.83174(6) 0.0258(2) Uani lid... F1 F 0.70156(10) 0.50921(18) 0.72701(15) 0.0629(8) Uani lid. F2 F 0.73728(11) 0,4043(2) 0.68172(14) 0.0760(9) Uani lid... F3 F 0.66885(11) 0.3885(2) 0.71580(15) 0.0682(9) Uani lid... F4 F 0.80336(10) 0.4554(2) 0.77720(19) 0.0690(9) Uani lid... F5 F 0.76565(8) 0.54429(16) 0.84344(19) 0.0679(9) Uani lid.. F6 F 0.80000(10) 0.4409(2) 0.89641(18) 0.0708(10) Uani lid.. 01 O 0.67650(13) 0.2433(2) 0.97699(17) 0.0594(9) Uani lid... 02 O 0.59005(12) 0.3801(2) 0.8319(3) 0.0750(11) Uani lid... 03 O 0.67056(12) 0.6099(2) 0.8741(2) 0.0572(9) Uani lid... IWonJul 14 09:31:58 2003 Page 6 enCIFer: ash.cif 04 O 0.74559(16) 0.4704(3) 1.0389(2) 0.0793(13) Uani lid... 05 O 0.60611(15) 0.4630(2) 1.0525(2) 0.0841(14) Uani lid... C1 C 0.70754(16) 0.4258(3) 0.7351(2) 0.0387(11) Uani lid... C2 C 0.77552(15) 0.4615(3) 0.8360(3) 0.0452(11) Uani lid... C3 C 0.67456(16) 0.3129(3) 0.9581(2) 0.0388(11) Uani lid... C4 C 0.62153(18) 0.3992(3) 0.8660(3) 0.0473(12) Uani lid... C5 C 0.67095(16) 0.5400(3) 0.8944(2) 0.0413(11) Uani lid... C6 C 0.71823(19) 0.4538(3) 0.9961(3) 0.0499(13) Uani lid... C7 C 0.63164(18) 0.4500(3) 1.0035(3) 0.0561(14) Uani lid... 06 O 0.8080(3) 0.7159(5) 0.9588(4) 0.0435(18) Uani 0.50 1 d PD A-1 07 O 0.8322(2) 0.6736(4) 0.8124(4) 0.0396(14) Uani 0.50 1 d PD A-1 08 O 0.7789(3) 0.7377(5) 0.6962(5) 0.0560(19) Uani 0.50 1 d PD A-1 09 O 0.6878(3) 0.7756(5) 0.7276(4) 0.0532(19) Uani 0.50 1 d PD A -1 010 O 0.6654(3) 0.8277(5) 0.8722(4) 0.049(2) Uani 0.50 1 d PD A-1 Oil O 0.7194(3) 0.7651(5) 0.9886(6) 0.0470(18) Uani 0.50 1 d PD A-1 C8 C 0.8436(6) 0.6582(12) 0.9454(10) 0.058(6) Uani 0.50 1 d PDU A -1 H8A H 0.8322 0.6008 0.9445 0.070 Uiso 0.50 1 calc PR A -1 H8B H 0.8661 0.6624 0.9845 0.070 Uiso 0.50 1 calc PR A -1 09 C 0.8636(5) 0.6801(8) 0.8719(6) 0.054(3) Uani 0.50 1 d PDU A -1 H9A H 0.8751 0.7374 0.8740 0.065 Uiso 0.50 1 calc PR A-1 HOB H 0.8888 0.6428 0.8620 0.065 Uiso 0.50 1 calc PR A -1 CIO C 0.8504(7) 0.6865(16) 0.7398(7) 0.054(6) Uani 0.50 1 d PDU A-1 H10A H 0.8737 0.6451 0.7299 0.065 Uiso 0.50 1 calc PR A -1 HI OB H 0.8637 0.7423 0.7365 0.065 Uiso 0.50 1 calc PR A -1 Oil C 0,8137(4) 0.6780(9) 0.6844(8) 0.065(4) Uani 0.50 1 d PDU A-1 H11A H 0.8259 0.6855 0.6345 0.078 Uiso 0.50 1 calc PR A -1 H11B H 0.8012 0.6215 0.6874 0.078 Uiso 0.50 1 calc PR A -1 012 0 0.7436(6) 0.737(2) 0.6426(5) 0.102(8) Uani 0.50 1 d PDU A -1 H12A H 0.7301 0,6813 0.6412 0.123 Uiso 0.50 1 calc PR A -1 H12B H 0.7560 0.7487 0.5934 0.123 Uiso 0,50 1 calc PR A -1 013 C 0.7082(6) 0.8002(13) 0.6596(5) 0.081(5) Uani 0,50 1 d PDU A -1 H13A H 0.7214 0.8559 0.6645 0.097 Uiso 0.50 1 calc PR A -1 Mon Jul 14 09:31:58 2003 Page 7 enClFer: ash.erf H13B H 0.6860 0.8016 0,6198 0.097 Uiso 0.50 1 calc PR A -T C14 C 0.6516(6) 0.8306(16) 0.7440(10) 0.068(8) Uani 0.50 1 d PDU A-1 H14A H 0.6286 0.8248 0.7057 0.082 Uiso 0.50 1 calc PR A -1 . H14B H 0.6623 0.8884 0.7432 0.082 Uiso 0.50 1 calc PR A -1 C15 C 0.6314(3) 0.8123(7) 0.8183(7) 0.055(3) Uani 0.50 1 d PDU A-1 H15A H 0.6056 0.8486 0,8272 0.067 Uiso 0.50 1 calc PR A-1 H15B H 0.6215 0.7540 0.8208 0.067 Uiso 0.50 1 calc PR A -1 C16 C 0.6500(5) 0.8154(13) 0.9465(8) 0,058(6) Uani 0.50 1 d PDU A-1 H16A H 0.6383 0.7585 0,9515 0.070 Uiso 0,50 1 calc PR A-1 H16B H 0.6257 0.8545 0.9568 0.070 Uiso 0.50 1 calc PR A -1 C17 C 0.6866(3) 0.8284(6) 1,0019(7) 0.051(3) Uani 0.50 1 d PDU A-1 H17A H 0.6998 0.8840 0,9959 0,061 Uiso 0.50 1 calc PR A -1 H17B H 0.6750 0.8236 1.0524 0,061 Uiso 0.50 1 calc PR A-1 C18 C 0.7523(9) 0,7670(10) 1.0447(4) 0.054(5) Uani 0.50 1 d PDU A-1 H18A H 0,7385 0,7578 1.0932 0.064 Uiso 0.50 1 calc PR A -1 H18B H 0.7671 0.8216 1.0453 0,064 Uiso 0.50.1 calc PR A-1 C19 C 0.7857(4) 0.6996(8) 1.0292(7) 0.053(3) Uani 0.50 1 d PDU A-1 H19AH 0.8077 0.6976 1.0692 0,063 Uiso 0.50 1 calc PR A -1 H19B H 0.7706 0.6453 1.0271 0.063 Uiso 0.50 1 calc PR A-1 loop_ _atom_slte_anisojabel _atom_site_anlso_U_11 _atom_site_anlso_U_22 _atom_site_aniso_U_33 _atom_slte_anIso_U_23 _atom_site_aniso_U_13 _atom_slte_anlso_U_12 Agl 0,0348(2) 0.0239(2) 0.0413(2) 0.000 0.000 0.0070(2) Cri 0.0426(4) 0.0257(3) 0.0336(3) -0.0067(3) 0,0068(3) -0.0027(3) K1 0.0349(7) 0.0776(10) 0.0230(7) 0.000 0.000 0.0074(8) PI 0.0258(5) 0.0222(5) 0.0293(5) -0,0001(4) -0.0064(5) 0,0030(4) MonJul 14 09:31:58 2003 Page 8 enCIFer: ash.cif F1 0.087(2) 0.0502(18) 0.0511(15) 0.0189(13) -0.0126(15) 0.0126(16) F2 0.106(3) 0.090(2) 0.0322(14) -0.0044(15) 0.0173(17) 0.0119(19) F3 0.073(2) 0.082(2) 0.0495(16) 0.0091(15) -0.0385(16) -0.0095(18) F4 0.0509(19) 0.0607(19) 0.096(2) 0.0036(16) 0.0313(17) -0.0125(15) F5 0.0453(16) 0.0303(14) 0.128(3) -0.0102(16) 0.0013(17) -0.0128(11) F6 0.0388(17) 0.086(3) 0.087(2) -0.0036(19) -0.0297(17) -0.0117(17) 01 0.102(3) 0.033(2) 0.0441(18) 0.0082(15)-0.0057(19)-0.0126(19) 02 0.041(2) 0.065(2) 0.119(3) -0.009(3) -0.019(3) 0.0024(17) 03 0.066(2) 0.033(2) 0.073(2) -0.0043(17) 0.012(2) 0.0095(17) 04 0.116(4) 0.078(3) 0.0442(19) 0.0017(18) -0.029(2) -0.034(2) 05 0.105(3) 0.057(2) 0.091(3) -0.021(2) 0.056(3) -0.012(2) 01 0.049(3) 0.031(3) 0.036(2) 0.004(2) -0.001(2) 0.003(2) 02 0.035(2) 0.038(3) 0.062(3) -0.005(2) 0.000(3) -0.0012(19) 03 0,048(3) 0.044(3) 0.025(2) -0.010(2) 0.005(2) -0.010(2) ' ' C4 0.044(3) 0.031(3) 0.066(3) -0.008(2) 0.012(3) 0.004(2) 05 0.043(3) 0.038(3) 0.043(3) -0.008(2) 0.009(2) -0.001(2) 06 0.072(4) 0.042(3) 0.035(3) -0.003(2) 0.000(3) -0.016(3) 07 0.074(4) 0.036(3) 0.059(3) -0.012(2) 0.026(3) -0.009(2) 06 0.057(6) 0.035(4) 0.038(4) 0.007(4) -0.017(4) -0.014(4) 07 0.037(5) 0.046(3) 0.036(4) -0.001(3) 0.007(3) -0.004(3) 08 0.066(5) 0.072(5) 0.030(4) 0.006(4) 0.007(4) 0.008(4) 09 0.053(6) 0.063(5) 0.043(4) 0.005(4) -0.019(4) 0.009(4) 010 0.030(5) 0.059(5) 0.059(6) -0.005(4) 0.002(4) -0.020(4) Oil 0.046(5) 0.060(5) 0.034(4) -0.008(4) 0.010(4) -0.009(4) 08 0.072(14) 0.048(9) 0.054(9) 0.011(6) -0.026(7) 0.010(8) 09 0.050(9) 0.038(6) 0.074(9) 0.001(6) -0.008(8) -0.009(6) 010 0.060(14) 0.054(9) 0.049(9) 0.001(7) 0.043(7) -0.008(8) Oil 0.085(11) 0.072(9) 0.039(8) 0.003(8) 0.020(7) 0.005(8) 012 0.108(14) 0.18(2) 0.022(5) 0.001(11) -0.025(11) 0.045(12) 013 0.097(13) 0.130(14) 0.017(6) 0.011(8) -0.021(7) 0.017(9) 014 0.029(11) 0.086(16) 0.090(13) -0.002(10) -0.027(9) 0.009(9) 015 0.019(6) 0.053(6) 0.094(9) -0.006(7) -0.024(6) 0.009(4) Mon Jul 14 09:31:58 2003 Page 9 enCIFer: ash.cif C16 0.019(7) 0.083(14) 0.072(11) -0.028(8) 0.013(6) 0.003(8) C17 0.055(7) 0.053(7) 0.043(7) -0-.007(7) 0.015(6) -0.018(6) C18 0.071(8) 0.069(15) 0.021(3) -0.001(5) -0.005(7) -0.009(10) C19 0.075(10) 0,050(7) 0.032(6) 0.010(6) -0.023(7) -0.013(6) _geom_spec!al_details 1 All esds (except the esd In the dihedral angle between two l,s. planes) are estimated using tiie ftjll covariance matrix. The cell esds are teken into account individually in the estimation of esds in distances, angles and toreion angles; conBlations between esds In cell parametere are only used v^rfien they are defined by crystel symmetiy. ^ approximate (isotropic) treataent of cell esds is used for estimating esds Involving l.s. planes. ioop_ _geom_bond_atom_siteJabel_1 _geom_bond_atom_slteJabel_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Agl PI 2.3907(10).? Agl PI 2.3907(10) 14_655 ? Cr1C7 1.836(5).? Cr1C5 1.884(5).? Cr1C6 1.892(5).? Cr1C3 1.893(5).? Cr1C4 1.907(6).? Cri PI 2.3890(13). ? K1 06 2.749(8). ? K1 06 2.749(8) 14_665 ? K1 08 2.764(8). ? MonJul 14 09:31:58 2003 Page 10 enClFer: ash.cif K1 OB 2.764(8) 14_665 ? K1 Oil 2.768(9) 14_665? K1 011 2.768(9).? K1 07 2.778(6). ? K107 2.778(6) 14_665? K1 09 2.797(7) 14_665 ? K1 09 2.797(7).? K1O10 2.847(9) 14_665? K1 010 2.847(9).? PI 021.875(5).? PI 01 1.875(4).? F1C1 1.342(5).? F2C1 1.343(5).? F3ei 1.337(5).? F4 02 1.340(6).? F5 02 1.351 (5).? F6 02 1.342(6).? 0103.1.156(5).? 02 041.156(6).? 03 051.165(5).? 04 061.146(6).? 05 071.177(5).? 06 081.419(9).? 06 019 1.446(13).? 07 010 1.419(9).? 07 091.420(8).? 08 011 1.417(8).? 08 0121.422(9).? 09 0131.412(8).? 09 0141.414(9).? 010 0151.416(7).? 010 0161.418(9).? Mon Jul 14 09:31:58 2003 Page 11 enCIFer: ash.cif 0110181.400(19).? 0110171.418(8).? 08 09 1.483(17).? O10C11 1.479(17).? 012 0131.482(17).? 014 0151.485(17).? 016 0171.485(16).? 018 0191.483(17).? loop_ _geom_angle_atom_sIte_label_1 jeom_angIe_atom_siteJabel_2 _geom_angle_atom_siteJabel_3 jeom_angle _geom_angle_site_symmetry_1 _fleom_angIe_site_symmetry_3 _geom_angle_pubI_flag PIAgl P1 169.17(6). 14_655 ? 07 Cri 05 92.3(2).. ? 07 Orl 06 87.4(2).. ? OSOrl 06 90.1(2)..? 07 Cn C3 90.4(2)..? 05 Orl 03177.3(2)..? 06 Orl 03 89.7(2).. ? 07 Orl 04 88.1(2)..? OSOrl 04 91.7(2)..? 06 on 04175.2(2)..? 03 Cri 04 88.7(2).. ? 07 Cri PI 177.68(17)..? 05 Orl PI 89.95(14).. ? 06 Cri PI 92.06(15).. ? 03 Orl PI 87.36(13).. ? Mon Jul 14 09:31:58 2003 Page 12 enCIFer: ash.cif C4 Cri PI 92.36(14).. ? 06K1 06 82.1(4). 14_665? 06 K1 08 120.4(3).. ? 06 K1 08 157.4(3) 14_665 . ? 06 K1 08 157.4(3). 14_665 ? 06 K1 08 120.4(3) 14_665 14_665 ? 08 K1 08 37.1(3), 14_665? 06 K1 Oil 21.28(18). 14_665 ? 06 K1 Oil 60.9(3) 14_665 14_665 ? 08 K1 Oil 141.6(3). 14_665 ? 08 K1 Oil 178.6(3) 14_665 14_665 ? 06K1 Oil 60.9(3)..? 06 K1 Oil 21.28(18) 14_665 . ? 08K1 Oil 178.6(3)..? 08 K1 Oil 141.6(3) 14_665 . ? Oil Kl Oil 39.7(4) 14_665 . ? 06 Kl 07 60.8(2).. ? 06¥1 07 141.6(2) 14_665 . ? 08 Kl 07 60.7(2).. ? 08 Kl 07 96.7(2) 14_665 . ? 011 Kl 07 81.9(2) 14_665 . ? Oil Kl 07120.7(2)..? 06 K1 07 141.6(2). 14_665 ? 06 Kl 07 60.8(2) 14_665 14_665 ? OB Kl 07 96.7(2). 14_665 ? 08 Kl 07 60.7(2) 14_665 14_665 ? Oil Kl 07 120.7(2) 14_665 14_665? Oil Kl 07 81.9(2). 14_665 ? 07 Kl 07 157.4(3). 14_665 ? 06 Kl 09 96.4(3). 14_665 ? 06 Kl 09 176.4(2) 14_665 14_665 ? 08 Kl 09 24.0(2). 14_665 ? Mon Jul 14 09:31:58 2003 Page 13 enCIFer: ash.cif 08 K1 09 61.1(3) 14_665 14_665 ? 011 K1 09 117.6(3) 14_665 14_665 ? Oil K1 09 157.2(3). 14_665 ? 07 K1 09 38.0(2). 14_665 ? 07 K1 09 120.0(2) 14_665 14_665 ? 06 K1 09 176.4(2).. ? 06 K1 09 96.4(3) 14_665.? 08 K1 09 61.1(3)..? 08 K1 09 24.0(2) 14_665 . ? Oil K1 09 157.2(3) 14_665 . ? Oil K1 09 117.6(3)..? 07 K1 09 120.0(2).. ? 07 K1 09 38.0(2) 14_665 . ? 09 K1 09 85.2(3) 14_665 . ? 06 K1 010 39.0(2). 14_665 ? 06 K1 010 120.0(3) 14_665 14_665 ? 08 K1 010 82.5(2). 14_665 ? 08 K1 O10 118.6(2) 14_665 14_665? Oil K1 010 60.0(2) 14_665 14_665 ? Oil K1 O10 98.9(2). 14_665 ? 07 K1 010 21.92(17). 14_665 ? 07 K1 010 179.2(2) 14_665 14_665 ? 09 K1 010 59.3(2) 14_665 14_665 ? 09 K1 O10 141.4(2). 14_665 ? 06 K1 010120.0(3)..? 06 K1 010 39.0(2) 14_665 . ? 08 K1 010118.6(2)..? 08 K1 O10 82.5(2) 14_665 . ? . 011 K1 010 98.9(2) 14_665 . 7 Oil K1 010 60.0(2)..? 07 K1 010179.2(2)..? 07 K1 010 21.92(17) 14_665 . ? Mon Jul 14 09:31:58 2003 Page 14 enCIFer: ash.cif 09 K1 010 141.4(2) 14_665 . ? 09 K1 010 59.3(2)..? 010 K1 010 158.8(3) 14_665 . ? C2P1C195.1(2)..? C2P1Cr1 111.50(16)..? C1 PICrl 114.95(15)..? C2P1 Agl 107.31(15)..? C1 PI Agl 105.35(15)..? Cri PI Agl 119.68(4)..? 02 F5 K1 172.7(3).. ? 05 03 K1 133.4(3).. ? F3 01F1 107.1(4)..? F3C1 F2 105.7(4). F101 F2 105.1(4). F3C1 PI 110.0(3). F1C1 PI 114.4(3). F2 01 PI 114.0(3). F4 02 F6 106.2(4). F4 02 F5 106.3(4). F6C2F5 106.0(4) F4 02P1 115.2(3). F6 02P1 109.2(3). F5C2P1 113.3(3). 01 03 Cri 179.6(5), 02 04Cr1 176,3(5)..? 03 05 0r1 179.7(5)..? 04 06 Cri 178,2(5)..? D5C7 0r1 178.7(5)..? 08 06 019112.0(12)..? C8 06K1 117.8(8)..? C19 06K1 113.8(8)..? O10 07 C9 115.1(13)..? MonJul 14 09:31:58 2003 Page 15 enCIFer: ash.cif C10O7K1 116.8(9)..? C9 07K1 113.5(8)..? C1108 012115.6(17)..? C1108K1 114.5(8)..? 012 08K1 114.3(8)..? 013 09 014109.6(15)..? C13 09K1 112.9(9)..? 014O9K1 116.0(8)..? 015 010 016112.6(12)..? 015 01 OKI 115.5(7)..? 016 O10K1 113.4(7)..? 018 011017 110.1(14).,? 018 011 K1 116.5(9)..? 017 011 K1 116.4(8)..? 06 08 09107.3(13)..? 07 09 08112.5(15)..? 07 010 011 108.6(15)..? 08 011 010112.1(15)..? 08 012 013112.3(17)..? 09 013 012107.2(14)..? 09 014 015111.9(15)..? 010 015 014106.6(13),.? 010 016 017111.7(12)..? Oil 017 016 107.0(13)..? Oil 018 019 108.5(11)..? 06 019 018109.9(13)..? loop_ _fleom_torsion_atom_siteJabel_1 _fleom_toiBion_atom_siteJabel_2 _geom_torsion_atom_siteJabel_3 _geom_torsion_atom_siteJabei_4 Mon Jul 14 09:31:58 2003 Page 16 enCIFer: ash.cif _5eom_torelon _geom_totsion_slte_symmetry_1 jeom_torsIon_site_symmetry_2 _jeom_toreion_site_symmetry_3 _geom_toreIon_site_symmetty_4 _geom_torslon_publ_flag C7Cr1 PI C2-111(4)....? C5Cr1 PI C2 55.1 (2)....? C6 Cri PI C2 -35.0(2) ? CaCrl PI C2-124.6(2) ? C4 Cri PI C2 146.8(2).... ? C7 Cri PI C1 142(4).... ? CSCrl PI C1-51.6(2)....? C6 Cri PI C1 -141.7(2).... ? C3 Cri PI C1 128.7(2).... ? C4 Cri PI C1 40.0(2)... . ? . C7Cr1 PI Agl 15(4)....? C5 Cr1 PI Agl -178.56(15).... ? C6 Cri PI Agl 91.34(15).,.. ? C3Cr1 PI Agl 1.72(14)....? C4 Cr1 PI Agl -86.90(15) ? PI Agl PI C2 89.25(18) 14_655 ... ? PI Ag1 PI C1 -170^31(16) 14_655 . .. ? PI Agl PI Cri -39.02(4) 14_655 ... ? 06K1 F5C2-104(2)....? 06 K1 F5 C2 179(100) 14_665 ... ? 08 K1 F5 C2 20(2).... ? 08 K1 F5 C2 55(2) 14_665 ... ? Oil K1 F5 C2 -124(2) 14_665 ... ? Oil K1 F5C2-161(2)....? 07 K1 F5 C2 -39(2).... ? 07 K1 F5 02 114(2) 14_665 ... ? Mon Jul 14 09:31:58 2003 Page 17 enCIFer: ash.cif 09 K1 F5 C2 -3(2) 14_665 ... ? 09 K1 F5 02 78(2).... ? 010 K1 F5 02 -65(2) 14_665 ... ? O10K1F5 02 140(2)....? 06 K1 03 05 -38.5(5).... ? 06 K1 03 05 -113.9(5) 14_665 ... ? 08 K1 03 05 89.5(4)... . ? 08 K1 03 05 121.1(4) 14_665 ... ? Oil K1 03 05 -57.5(5) 14_665 ... ? Oil K1 03 05-92.0(5).... ? 07 K1 03 05 24.2(5).... ? 07 K1 03 05 -179.5(5) 14_665 ... ? 09 K1 03 05 65.6(5) 14_665 ... ? 09 K1 03 05141.1(4)....? 010 K1 03 05 1.2(5) 14_665 ... ? 01 OKI 03 05-156.6(5)....? 02 PI 01 F3-177.0(3)....? Cri PI 01 F3 -60.5(3).. .. ? Agl PI 01 F3 73.5(3).... ? 02 PI 01 F1 -56.5(4).... ? Cri PI 01 F1 60.1(4)....? Agl PI 01 F1 -166.0(3).... ? 02 PI 01 F2 64.5(4).... ? OrlPIGI F2-178.9(3)....? Agl PI 01 F2-45.0(4)....? K1 F5 02 F4 0(2).... ? K1 F5 02 F6 113(2)....? K1 F5 02 PI-127(2)....? 01 P1 02 F4 -50.4(4)... . ? Cri PI 02 F4-169.7(3)....? Agl PI 02 F4 57.4(4).... ? 01 PI 02 F6-169.7(3)....? MonJul 14 09:31:58 2003 Page 18 enCIFen ash.cif Cri PI C2 F6 70.9(3).. Ag1 P1 C2F6-61.9(3). C1 PI C2 F5 72.4(4)... Cri PI C2 F5 -46.9(4).. Ag1 PI C2F5-179.8(3) C7 Cri C3 01 -77(80).. C5 Cri C3 01 96(80).. C6Cr1 C3 01 10(80).. ? C4Cr1 03 01-165(100)....? PI Cri C3 01 102(100)....? 07 Orl 04 02 -38(6).... ? OSOrl 04 02-130(6)....? 06 Cri 04 02-19(8)....? 03 Cri C4 02 52(6)... .'? PI Cri 04 02 140(6).... ? K1 03 05 Orl 73(88).... ? 07 Orl 05 03 54(88).. .. ? 06 Orl 05 03 -34(88).... ? • 03Cri 05 03-120(100)....? 04 Cri 05 03 142(100)....? PI Orl 05 03-126(100)....? C7Cr1 C6 04-2(14)....? 05 Cri 06 04.91(14)....? 03 Cri 06 04 -92(14).... ? 04 Cri C6 04-21(15)....? PI Orl 06 04-179(100)....? 05 Orl 07 05-174(100)....? 06 Cri 07 05 -84(23).... ? 03 Orl 07 05 6(23).... ? C4 Cri 07 05 95(23).... ? PI Orl 07 05 -8(27).... ? 06 K1 06 08 153.6(11) 14_665 . MonJul 14 09:31:58 2003 Page 19 enCIFer: ash.cif 08K1 06 08-28.1(11)....? 08 K1 06 08 -22.6(13) 14_665 ... ? 011 K1 06 08 156.1(13) 14_665 ... ? Oil K1 06 08152.6(11)....? 07 K1 06 08-16.3(11)....? 07 K1 06 08 167.9(11) 14_665 ... ? 09 K1 06 08 -29.8(11) 14_665 ... ? 09 K1 06 08 86(4).... ? 01 OKI 06 08-12.7(10) 14_665...? O10K1 06 08163.5(11)....? 06 K1 OB 019 19.7(6) 14_665 ... ? 08K1 06 019-162.0(7)....? 08 K1 06 019-156.5(7) 14_665 ... ? Oil K1 06 019 22.2(7) 14_665 ... ? O11K1O6 019 18.7(7).. ..? 07K1 06 019-150.2(8)....? 07 K1 06 019 34.0(8) 14_665 ... ? 09 K1 06 019 -163.7(7) 14_665 ... ? 09K1 06 019-48(4)....? 010 K1 06 019 -146.6(8) 14_665 ... ? 01 OKI 06 019 29.6(8)....? 06 K1 07 010-153.7(13).. .. ? 06 K1 07 010 -170.0(13) 14_665 ... ? 08 K1 07 01014.6(13)....? 08 K1 07 CIO 23.8(13) 14_665 ... ? Oil K1 07 CIO -156.5(13) 14_665 ... ? Oil K1 07 010-165.1(13)....? 07 K1 07 CIO 19.5(13) 14_665 ... ? 09 K1 07 O10 4.1(13) 14_665 ... ? 09K1 07 CIO 30.4(13)....? 010 K1 07 010 -159.8(14) 14_665 ... ? O10K1 07 010 40(19)....? Mon Jul 14 09:31:5S 2003 Page 20 enCIFer: ash.cif 06 K1 07 C9-16.2(7)....? 06 K1 07 C9 -32.4(8) 14_665 ... ? 08 K1 07 09152.1(8)....? 08 K1 07 09 161.4(7) 14_665 ... ? 011 K1 07 C9 -19.0(7) 14_665 ... ? 011 K1 07 09-27.5(8)....? 07 K1 07 09 157.1(7) 14^665 ... ? 09 K1 07 09 141.7(8) 14_665 ... ? 09 K1 07 09 167.9(7)....? 010 K1 07 09 -22.2(7) 14_665 ... ? O10K1 07 09 178(100).,..? 06K1 08C11 29.1(10)....? 06 K1 08 Oil -155.3(8) 14_665 .. . ? 08 K1 08 Oil -147.4(12) 14_665 ...'.. Oil K1 08 Oil 31.5(10) 14_665 . .. ? Oil K1 08 011-175(10)....? 07K1 O8 011 17.3(9)....? 07 K1 08 Oil -160.8(9) 14_665 . .. ? 09 K1 08 Oil 33.2(8) 14_665 .,. ? 09 K1 08 011-147.1(9)....? 010 K1 08 Oil 19.4(9) 14_665 ... ? 010 K1 08 Oil -162.4(9).... ? 06 K1 08 012 165.7(15).... ? 06 K1 08 012 -18.7(17) 14_665 ... ? 08 K1 08 012 -10.8(15) 14_665 ... ? Oil K1 08 012 168.1(15) 14_665 ...'. Oil K1 08 012-39(11)....? 07 K1 08 012153.9(16)....? 07 K1 08 012 -24.2(15) 14_665 ... ? 09 K1 08 012 169.8(18) 14_665 . .. ? 09 K1 08 012-10.5(15)....? 010 K1 08 012 156.0(16) 14_665 ... ? MonJul 14 09:31:58 2003 Page 21 enCIFer: ash.cif 01 OKI 08 012-25.7(16)....? 06 K1 09 013-139(4)....? 06 K1 09 013 153.6(10) 14_665 ... ? 08 K1 09 013-23.2(10)....? 08 K1 09 013 -22.8(10) 14_665 ... ? Oil K1 09 013 159.0(10) 14_665 . .. ? Oil K1 09 013 156.0(10)....? 07 K1 09 013-38.9(11)....? 07 K1 09 013 134.3(11) 14_665 ... ? 09 K1 09 013 -23.1(10) 14_665 ... ? 010 K1 09 013 -45.0(11) 14_665 . .. ? O10K1 09 013141.2(11)....? 06 K1 09 014 93(4).... ? 06 K1 09 014 25;9t14) 14_665 ... ? 08 K1 09 014-151.0(14)....? 08 K1 09 014 -150.5(16) 14_665 .., ? Oil K1 09 014 31.2(16) 14_665 . .. ? Oil K1 09 014 28.3(14)....? 07 K1 09 014-166.7(14)....? 07 K1 09 014 6.5(13) 14_665 ... ? 09 K1 09 014 -150.8(14) 14_665 . .. ? 010 K1 09 014 -172.7(14) 14_665 ... ? O10K1 09 014 13.5(14)....? 06 K1 O10 015-155.4(7).... ? 06 K1 010 015-139.7(9) 14_665 . .. ? 08 K1 010 015 36.0(9)....? 08 K1 O10 C15 27.0(8) 14_665 ... ? Oil K1 010 015-152.6(8) 14_665 ... ? Oil K1 010 015-144.4(9).,..? 07 K1 010 01510(19)....? 07 K1 010 015 32.0(7) 14_665 .. . ? 09 K1 O10 015 46.1(9) 14_665 .. . ? MonJul 14 09:31:58 2003 Page 22 enCIFer: ash.cif 09 K1 O10C15 20.5(7)....? 010 K1 O10 015-148.8(8) 14_665 ... ? 06 K1 010 016-23.4(11)....? 06 K1 010 016-7.7(10) 14_665 ... ? 08 K1 010 016168.0(10)....? 08 K1 010 016 159.0(10) 14_665 ... ? Oil K1 O10 016-20.7(10) 14_665 ... ? Oil K1 010 016-12.4(10)....? 07 K1 010 016142(19)....? 07 K1 O10 016 163.9(13) 14_665 ... ? 09 K1 O10 016 178.1(10) 14_665 ... ? 09 K1 010 016152.5(11)....? 01 OKI O10O16-16.8(10)14_665...? 06K1 Oil 018 14.8(9)....? 06 K1 Oil 018 -162.4(13) 14_665 ... ? 08 K1 011018-141(11)....? 08 Ki Oil 018 -168.2(8) 14_665 ... ? 011 m 011 018 12.8(7) 14_665 ... ? 07Ki011 018 26.1(9)....? 07 KI 011 018 -155.7(9) 14_665 ... ? 09 KI Oil 018 8.7(12) 14_665 ... ? 09 KI 011018-169.0(9)....? 010 KI 011 018 24.1 (9) 14_665 ... ? O10K1 Oil 018-154.3(9) ? 06K1 Oil 017 147.4(8)....? 06 KI 011 017 -29.8(6) 14_665 ... ? 08 KI 011017-8(11)....? . 08 KI 011 017 -35.6(9) 14_665 ... ? Oil K1 Oil 017 145.4(10) 14_665 . .. ? 07 KI 011017158.7(7)....? 07 KI Oil 017 -23.1(7) 14_665 ... ? 09 KI 011 017 141.3(7) 14_665 ... ? Mon Jul 14 09:31:58 2003 Page 23 enCIFer: ash.cif 09K1011 C17-36,4(8)....? O10 K1 Oil C17 156.7(7) 14_665 .. O10K1 Oil 017-21.7(7)....? 019 06 08 09 179.4(11)....? K1 06 08 09 44.7(17)....? O10 07 09 08 -174.6(14),... ? K1 07 09 08 47.1(12)....? 06 08 09 07-60.8(16)....? 09 07 010 011-179.8(12)....? K1 07 010 011-43(2)....? 012 08 011 010176.4(14)....? K1 08C11 010-47.6(14)....? 07 CIO Oil 08 60.1(19)....? Oil 08 012 013 179.0(15),... ? K1 08 012 013 43(2)....? 014 09 013 012 -176.0(14),... ? K1 09 013 012 52.9(15)..,,? 08 012 013 09-65(2)....? 013 09 014 015-175.0(14).... ? K1 09 014 015-46(2)....? 016 O10 015 014 178.0(12).... ? K1 O10 CIS C14 -49.7(11).,., ? 09 014 015 010 63,1(19),...? 015 O10 016 017 177.7(11)... . ? K1 010 016 017 44.3(16)....? 018 011 C17 016-172.7(12),.,,? K1 Oil 017 016 51,9(10),,,.? 010 C16 C17 Oil -64,0(15),,,, ? 017 011 018 019179.5(11)..,,? K1 011018 019-45,1(14)...,? 08 06 019 C18 173.7(14)....? K1 06 C19 018-49.7(12)...,? MOD JUI 14 09:31:58 2003 Page 24 enCIFer: ash.cif 011 C18C19 06 62.9(15)....? _dlffm_measured_fraction_tfiete_max 0.989 _cllffm_reflns_tiietejull 24.13 _diffm_measured_fraction_tiieta_full 0.989 _reflne_diff_denslty_max 0.531 _refine_diff_density_min -0,306 _refine_diff_density_rms 0.062 ioop_ _publ_author_nam6 _pub!_author_address 'Hoge, Berthold' ;lnstitutf\"urAnorganische Chemie Unlverslt\"atzuK\"oln Grelnstr. 6 D-50939 W'oln, Germany 'ThVesen, Christoph' ;lnst!tutf\"ur^organlsche Chemie UniversitratzuK^oln Grelnstr. 6 D-50939 W"oln, Germany 'Herrmann, Tobias' ;lnstitutf\''ur Anoi^anische Chemie Unlversit\"atzuK\"oln Grelnstr. 6 D-50939 fc"oln, Germany 'Vij, Ashwani' ;Air Force Research Laboratory, PRSP Space and Missile Division MonJul14 09:31:58 2003 Page 25 enCIFer: ash.cif Edwards Air Force Base Edwards CA 93536 661-275-6278 (Phone), 661-275-5471 (FAX) ashwani.wj@edwards.af.miI _ccdc_chemical_compound_source_recrystalllsation'hexane/diethyl ether' Mon Jul 14 09:31:58 2003 Page 26