organic compounds
Acta Crystallographica Section E
b = 3.9267 (6) Å
c = 23.366 (4) Å
= 94.791 (9)
V = 1152.3 (3) Å3
Z=4
Structure Reports
Online
ISSN 1600-5368
Mo K radiation
= 0.11 mm 1
T = 296 K
0.22 0.08 0.06 mm
Data collection
3,4-Dimethyl-N-[(E)-3-nitrobenzylidene]1,2-oxazol-5-amine
Abdullah M. Asiri,a,b Salman A. Khanb and M. Nawaz
Tahirc*
a
The Center of Excellence for Advanced Materials Research, King Abdul Aziz
University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry,
Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi
Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
Correspondence e-mail: dmntahir_uos@yahoo.com
Received 5 September 2010; accepted 6 September 2010
Key indicators: single-crystal X-ray study; T = 296 K; mean (C–C) = 0.006 Å;
R factor = 0.061; wR factor = 0.161; data-to-parameter ratio = 12.3.
In the title compound, C12H11N3O3, the dihedral angle
between the 3-nitrobenzaldehyde and 5-amino-3,4-dimethyl1,2-oxazole moieties is 2.46 (12) . The molecule is close to
planar, the r.m.s. deviation for the non-H atoms being 0.028 Å.
The packing only features van der Waals interactions between
the molecules.
For background and related crystal structures, see: Asiri et al.
(2010a,b,c,d).
Experimental
Crystal data
Acta Cryst. (2010). E66, o2539
8616 measured reflections
2046 independent reflections
846 reflections with I > 2(I)
Rint = 0.097
Refinement
R[F 2 > 2(F 2)] = 0.061
wR(F 2) = 0.161
S = 0.99
2046 reflections
166 parameters
H-atom parameters constrained
max = 0.16 e Å 3
min = 0.19 e Å 3
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT
(Bruker, 2009); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine
structure: SHELXL97 (Sheldrick, 2008); molecular graphics:
ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software
used to prepare material for publication: WinGX (Farrugia, 1999) and
PLATON.
The authors would like to thank the Chemistry Department,
King Abdul Aziz University, Jeddah, Saudi Arabia for
providing research facilities and for the financial support of
this work via grant No. (3–045/430).
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: HB5634).
Related literature
C12H11N3O3
Mr = 245.24
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
Tmin = 0.992, Tmax = 0.995
Monoclinic, P21 =c
a = 12.602 (2) Å
References
Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2127.
Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2077.
Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66,
o2046.
Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66,
o2019.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
doi:10.1107/S160053681003583X
Asiri et al.
o2539
supplementary materials
supplementary materials
Acta Cryst. (2010). E66, o2539
[ doi:10.1107/S160053681003583X ]
3,4-Dimethyl-N-[(E)-3-nitrobenzylidene]-1,2-oxazol-5-amine
A. M. Asiri, S. A. Khan and M. N. Tahir
Comment
The title compound (I, Fig. 1) is being reported in continuation of our synthetic and structural studies of various Schiff bases
of 5-amino-3,4-dimethylisoxazole (Asiri et al., 2010a, b, c, d).
In (I), the 3-nitrobenzaldehyde moiety A (C1—C7/N1/O1/O2) and 5-amino-3,4-dimethylisoxazole moiety B (N2/
C8—C12/N3/O3) are planar with r. m. s. deviation of 0.0124 and 0.0099 Å, respectively. The dihedral angle between A/B
is 2.46 (12)°. All the heavy atoms (C1—C12/N1—N3/O1—O3) consituate plane with r. m. s. deviation of 0.0276 Å. In
this plane, the methyl atom C12 deviates at the maximum with 0.0721 (33) Å. The title compound essentially consists of
monomers. There exists no π···π interactions in the crystal.
Experimental
A mixture of 4-nitrobenzaldehyde (0.33 g, 2.2 mmol) and 5-amino-3,4-dimethylisoxazole (0.24 g, 2.2 mmol) in ethanol
(15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. This material was filtered off and washed with
ethanol to give long thin needles of (I).
Yield: 56.45%; m.p. 463–464 K.
IR (KBr) \vmax cm-1: 3069 (C—H for CH3), 2922 (C—H), 1568 (C═C), 1523 (C═N), 1162 (C—N).
Refinement
The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x
= 1.5 for methyl and x = 1.2 for other H-atoms.
Figures
Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
3,4-Dimethyl-N-[(E)-3-nitrobenzylidene]-1,2-oxazol-5-amine
Crystal data
C12H11N3O3
F(000) = 512
Mr = 245.24
Dx = 1.414 Mg m−3
sup-1
supplementary materials
Monoclinic, P21/c
Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc
a = 12.602 (2) Å
Cell parameters from 846 reflections
θ = 2.3–25.0°
b = 3.9267 (6) Å
µ = 0.11 mm−1
T = 296 K
Needle, colorless
c = 23.366 (4) Å
β = 94.791 (9)°
V = 1152.3 (3) Å3
Z=4
0.22 × 0.08 × 0.06 mm
Data collection
Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
Detector resolution: 8.20 pixels mm-1
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
Tmin = 0.992, Tmax = 0.995
2046 independent reflections
846 reflections with I > 2σ(I)
Rint = 0.097
θmax = 25.0°, θmin = 2.3°
h = −15→15
k = −4→4
l = −27→27
8616 measured reflections
Refinement
R[F2 > 2σ(F2)] = 0.061
Primary atom site location: structure-invariant direct
methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
wR(F2) = 0.161
H-atom parameters constrained
Refinement on F2
Least-squares matrix: full
S = 0.99
w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
2046 reflections
(Δ/σ)max < 0.001
166 parameters
Δρmax = 0.16 e Å−3
0 restraints
Δρmin = −0.19 e Å−3
Special details
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the
variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.
sup-2
supplementary materials
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
O1
O2
O3
N1
N2
N3
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
H2
H3
H4
H6
H7
H11A
H11B
H11C
H12A
H12B
H12C
x
y
z
Uiso*/Ueq
0.0661 (2)
0.0217 (3)
0.5961 (2)
0.0873 (3)
0.5490 (3)
0.6882 (3)
0.3736 (3)
0.3985 (3)
0.3218 (4)
0.2194 (4)
0.1954 (3)
0.2697 (3)
0.4530 (3)
0.6232 (3)
0.7266 (3)
0.7629 (3)
0.8723 (3)
0.7889 (3)
0.46743
0.33974
0.16713
0.25095
0.43386
0.87321
0.89153
0.92235
0.82773
0.83789
0.74137
0.9618 (9)
0.7756 (9)
0.7628 (6)
0.8153 (10)
0.5694 (8)
0.7702 (8)
0.6218 (9)
0.4605 (10)
0.4146 (10)
0.5255 (10)
0.6856 (10)
0.7379 (9)
0.6720 (9)
0.6142 (10)
0.5238 (9)
0.6275 (9)
0.5881 (10)
0.3614 (10)
0.38159
0.30952
0.49195
0.84733
0.77846
0.67477
0.35146
0.71279
0.53290
0.20017
0.24627
0.11316 (16)
0.19373 (16)
0.02581 (12)
0.15894 (19)
0.11691 (13)
−0.00509 (15)
0.14659 (17)
0.19866 (18)
0.23763 (18)
0.22380 (19)
0.17248 (19)
0.13294 (17)
0.10518 (17)
0.07766 (17)
0.08165 (17)
0.02938 (19)
0.00968 (19)
0.13104 (17)
0.20778
0.27277
0.24908
0.09826
0.07029
−0.02869
0.01024
0.03486
0.15333
0.11712
0.15460
0.0932 (16)
0.1103 (19)
0.0630 (11)
0.0708 (17)
0.0523 (12)
0.0660 (17)
0.0475 (17)
0.0579 (17)
0.0629 (17)
0.0618 (17)
0.0534 (17)
0.0511 (17)
0.0527 (17)
0.0521 (17)
0.0485 (17)
0.0513 (17)
0.0727 (19)
0.0672 (17)
0.0695*
0.0758*
0.0742*
0.0611*
0.0629*
0.1088*
0.1088*
0.1088*
0.1006*
0.1006*
0.1006*
Atomic displacement parameters (Å2)
O1
O2
O3
N1
N2
N3
C1
C2
C3
C4
C5
U11
0.064 (2)
0.066 (3)
0.0537 (19)
0.057 (3)
0.048 (2)
0.065 (3)
0.050 (3)
0.052 (3)
0.073 (3)
0.065 (3)
0.046 (3)
U22
0.141 (3)
0.170 (4)
0.084 (2)
0.097 (3)
0.061 (2)
0.080 (3)
0.047 (3)
0.068 (3)
0.071 (3)
0.073 (3)
0.059 (3)
U33
0.074 (3)
0.100 (3)
0.051 (2)
0.059 (3)
0.048 (2)
0.054 (3)
0.045 (3)
0.053 (3)
0.045 (3)
0.049 (3)
0.054 (3)
U12
0.0185 (19)
0.011 (2)
0.0055 (14)
0.002 (2)
−0.0018 (17)
−0.001 (2)
−0.0016 (19)
−0.001 (2)
−0.003 (2)
−0.007 (2)
−0.006 (2)
U13
0.003 (2)
0.037 (2)
0.0022 (15)
0.009 (2)
0.0047 (18)
0.011 (2)
0.001 (2)
0.000 (2)
0.006 (3)
0.014 (2)
−0.002 (2)
U23
0.011 (2)
0.017 (2)
0.0092 (15)
−0.011 (2)
−0.0012 (16)
0.0068 (19)
−0.005 (2)
−0.010 (2)
−0.003 (2)
−0.010 (2)
−0.013 (2)
sup-3
supplementary materials
C6
C7
C8
C9
C10
C11
C12
0.050 (3)
0.049 (3)
0.056 (3)
0.042 (3)
0.049 (3)
0.063 (3)
0.064 (3)
0.058 (3)
0.065 (3)
0.056 (3)
0.055 (3)
0.053 (3)
0.079 (3)
0.078 (3)
0.045 (3)
0.044 (3)
0.043 (3)
0.048 (3)
0.052 (3)
0.079 (4)
0.059 (3)
−0.0016 (19)
−0.001 (2)
−0.001 (2)
0.001 (2)
0.001 (2)
0.000 (2)
0.010 (2)
0.003 (2)
0.004 (2)
−0.003 (2)
0.001 (2)
0.004 (2)
0.024 (3)
0.002 (2)
−0.005 (2)
0.000 (2)
0.003 (2)
−0.003 (2)
−0.005 (2)
0.000 (3)
0.002 (2)
Geometric parameters (Å, °)
O1—N1
O2—N1
O3—N3
O3—C8
N1—C5
N2—C7
N2—C8
N3—C10
C1—C2
C1—C6
C1—C7
C2—C3
C3—C4
C4—C5
C5—C6
1.224 (6)
1.217 (6)
1.418 (5)
1.362 (5)
1.464 (5)
1.283 (5)
1.375 (5)
1.312 (5)
1.384 (6)
1.398 (5)
1.462 (5)
1.394 (6)
1.375 (7)
1.365 (6)
1.385 (6)
C8—C9
C9—C10
C9—C12
C10—C11
C2—H2
C3—H3
C4—H4
C6—H6
C7—H7
C11—H11A
C11—H11B
C11—H11C
C12—H12A
C12—H12B
C12—H12C
1.346 (5)
1.400 (6)
1.484 (5)
1.498 (5)
0.9300
0.9300
0.9300
0.9300
0.9300
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
N3—O3—C8
O1—N1—O2
O1—N1—C5
O2—N1—C5
C7—N2—C8
O3—N3—C10
C2—C1—C6
C2—C1—C7
C6—C1—C7
C1—C2—C3
C2—C3—C4
C3—C4—C5
N1—C5—C4
N1—C5—C6
C4—C5—C6
C1—C6—C5
N2—C7—C1
O3—C8—N2
O3—C8—C9
N2—C8—C9
C8—C9—C10
C8—C9—C12
C10—C9—C12
N3—C10—C9
107.9 (3)
122.2 (4)
118.9 (4)
118.9 (4)
120.0 (3)
104.8 (3)
119.3 (4)
121.7 (3)
119.0 (3)
121.0 (4)
119.6 (4)
119.2 (4)
118.9 (4)
118.2 (4)
122.8 (4)
118.2 (4)
120.1 (3)
120.9 (3)
110.1 (3)
128.9 (4)
104.4 (3)
127.8 (4)
127.8 (3)
112.9 (3)
N3—C10—C11
C9—C10—C11
C1—C2—H2
C3—C2—H2
C2—C3—H3
C4—C3—H3
C3—C4—H4
C5—C4—H4
C1—C6—H6
C5—C6—H6
N2—C7—H7
C1—C7—H7
C10—C11—H11A
C10—C11—H11B
C10—C11—H11C
H11A—C11—H11B
H11A—C11—H11C
H11B—C11—H11C
C9—C12—H12A
C9—C12—H12B
C9—C12—H12C
H12A—C12—H12B
H12A—C12—H12C
H12B—C12—H12C
119.2 (4)
127.9 (4)
120.00
120.00
120.00
120.00
120.00
120.00
121.00
121.00
120.00
120.00
109.00
109.00
109.00
109.00
109.00
109.00
109.00
109.00
109.00
109.00
109.00
109.00
sup-4
supplementary materials
C8—O3—N3—C10
N3—O3—C8—C9
N3—O3—C8—N2
O2—N1—C5—C4
O2—N1—C5—C6
O1—N1—C5—C4
O1—N1—C5—C6
C7—N2—C8—C9
C8—N2—C7—C1
C7—N2—C8—O3
O3—N3—C10—C11
O3—N3—C10—C9
C6—C1—C2—C3
C7—C1—C2—C3
C6—C1—C7—N2
C2—C1—C6—C5
0.2 (4)
−0.5 (4)
−179.4 (3)
−0.3 (6)
−178.9 (4)
179.3 (4)
0.7 (6)
−179.6 (4)
179.4 (3)
−0.9 (5)
179.1 (3)
0.1 (4)
−0.4 (6)
−180.0 (4)
179.6 (3)
−0.1 (5)
C7—C1—C6—C5
C2—C1—C7—N2
C1—C2—C3—C4
C2—C3—C4—C5
C3—C4—C5—N1
C3—C4—C5—C6
N1—C5—C6—C1
C4—C5—C6—C1
O3—C8—C9—C10
N2—C8—C9—C12
O3—C8—C9—C12
N2—C8—C9—C10
C8—C9—C10—N3
C12—C9—C10—C11
C8—C9—C10—C11
C12—C9—C10—N3
179.5 (3)
−0.9 (6)
1.2 (6)
−1.4 (6)
−177.6 (4)
0.9 (6)
178.4 (3)
−0.2 (6)
0.5 (4)
−2.5 (7)
178.7 (3)
179.4 (4)
−0.4 (4)
2.5 (6)
−179.3 (4)
−178.6 (4)
sup-5
supplementary materials
Fig. 1
sup-6