Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك‬ ‫ﺟﻠﺪ ﺑﯿﺴﺖ و ﺳﻮم‪ ،‬ﺷﻤﺎره ﺳﻮم‪1395 ،‬‬ ‫‪http://jwsc.gau.ac.ir‬‬ ‫ﺑﯿﺸﯿﻨﻪﺳﺎزي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ در ﺳﯿﺴﺘﻢ ﻣﺨﺎزن ﭼﻨﺪﻣﻨﻈﻮره )ﺳﯿﺴﺘﻢ ‪ 6‬ﺳﺪي ﺣﻮﺿﻪ ﮐﺎرون ﺑﺰرگ(‬ ‫‪2‬‬ ‫*ﻣﻬﺮداد ﺗﻘﯿﺎن‪ 1‬و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫‪1‬ﻋﻀﻮ ﺳﺎزﻣﺎن آب و ﺑﺮق ﺧﻮزﺳﺘﺎن‪2 ،‬اﺳﺘﺎدﯾﺎر ﮔﺮوه ﻣﻬﻨﺪﺳﯽ آب‪ ،‬داﻧﺸﮕﺎه زﻧﺠﺎن‬ ‫ﭼﮑﯿﺪه‬ ‫‪1‬‬ ‫ﺗﺎرﯾﺦ درﯾﺎﻓﺖ‪ 93/9/1 :‬؛ ﺗﺎرﯾﺦ ﭘﺬﯾﺮش‪95/2/5 :‬‬ ‫ﺳﺎﺑﻘﻪ و ﻫﺪف‪ :‬در ﺳﯿﺴﺘﻢﻫﺎي ﻣﻨﺎﺑﻊ آب ﺑﺎ ﻣﺨﺎزن ﭼﻨﺪﻣﻨﻈﻮره‪ ،‬ﻣﻌﻤﻮﻻً ﺑﺮﺧﯽ اﻫﺪاف در ﺗﻀﺎد ﺑﺎ ﯾﮑﺪﯾﮕﺮ ﻗﺮار دارﻧﺪ‪ .‬ﯾﮑﯽ‬ ‫از راﯾﺞﺗﺮﯾﻦ ﻣﻮارد‪ ،‬ﺗﻘﺎﺑﻞ ﻫﺪف ﺑﺮﻗﺎﺑﯽ ﺑﺎ ﺳﺎﯾﺮ اﻫﺪاف ﺗﺄﻣﯿﻦ آب اﺳﺖ‪ .‬در اﯾﻦ ﺷﺮاﯾﻂ‪ ،‬ﺑﺎﻻ ﻧﮕـﻪ داﺷـﺘﻦ ﺗـﺮاز ﺣـﺪاﻗﻞ‬ ‫ﺑﻬﺮهﺑﺮداري‪ ،‬ﺳﺒﺐ اﻓﺰاﯾﺶ ارﺗﻔﺎع آب )ﻫﺪ ﻣﺆﺛﺮ( و ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ ﺑﯿﺶﺗﺮ ﻣﯽﺷﻮد‪ .‬اﻣﺎ اﯾﻦ ﺳﯿﺎﺳﺖ ﺑﻬﺮهﺑﺮداري‪ ،‬ﻣﻨﺠـﺮ ﺑـﻪ‬ ‫ﻣﺤﺪود ﺷﺪن داﻣﻨﻪ ﺗﻐﯿﯿﺮات ذﺧﯿﺮه و ﮐﺎﻫﺶ ﺣﺠﻢ ﻓﻌﺎل ﻣﺨﺰن ﻣﯽﺷﻮد ﮐﻪ ﻣﻤﮑﻦ اﺳﺖ ﺑﺎ اﻓﺰاﯾﺶ ﺧﺴﺎرت در ﺗﺄﻣﯿﻦ ﻧﯿﺎزﻫـﺎي‬ ‫ﭘﺎﯾﺎب ﺗﻮأم ﺑﺎﺷﺪ‪ .‬ﺑﺮ اﯾﻦ اﺳﺎس‪ ،‬ﯾﮑﯽ از اﻫﺪاف اﺻﻠﯽ در اﯾﻦ ﭘﮋوﻫﺶ‪ ،‬ﺣﺪاﮐﺜﺮ ﻧﻤﻮدن اﻧﺮژي ﺑﺮﻗﺎﺑﯽ ﺗﻮﻟﯿـﺪي در ﺳﯿـﺴﺘﻢﻫـﺎي‬ ‫ﭘﯿﭽﯿﺪه ﭼﻨﺪﻣﺨﺰﻧﻪ و ﭼﻨﺪﻫﺪﻓﻪ اﺳﺖ ﺑﻪﻃﻮريﮐﻪ ﻧﯿﺎزﻫﺎي ﭘﺎﯾﺎب ﻧﯿﺰ ﺑﺎ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻮرد ﻧﻈﺮ ﺗﺄﻣﯿﻦ ﮔﺮدﻧﺪ‪ .‬ﺟﻬﺖ ﻧﯿﻞ ﺑﻪ اﯾـﻦ‬ ‫ﻫﺪف‪ ،‬ﺗﺮاز ﺑﻬﯿﻨﻪ ﺣﺪاﻗﻞ ﺑﻬﺮهﺑﺮداري ﻣﺨﺎزن ﺑﺮآورد ﻣﯽﮔﺮدد‪ .‬در اﯾﻦ زﻣﯿﻨﻪ ﻣﯽﺗﻮان ﺑﻪ ﻣﺪلﻫﺎي ﺗﺮﮐﯿﺒﯽ ﺑﻬﯿﻨﻪﺳﺎزي رﯾﺎﺿﯽ‬ ‫ﮐﻼﺳﯿﮏ و ﻓﺮاﮐﺎوﺷﯽ‪ ،‬ﻣﺪلﻫﺎي ﺗﺮﮐﯿﺒﯽ دو اﻟﮕﻮرﯾﺘﻢ ﻓﺮاﮐﺎوﺷﯽ و ﻣﺪلﻫﺎي ﺑﻬﯿﻨﻪﺳﺎزي ﭼﻨﺪﻫﺪﻓﻪ اﺷﺎره ﻧﻤﻮد‪.‬‬ ‫ﻣﻮاد و روشﻫﺎ‪ :‬در اﯾﻦ ﭘﮋوﻫﺶ‪ ،‬ﺑﻪ ﺗﻮﺳﻌﻪ ﯾﮏ ﻣﺪل ﺷﺒﯿﻪﺳﺎزي‪ -‬ﺑﻬﯿﻨﻪﺳﺎزي در ﺣﻮﺿﻪ آﺑﺮﯾﺰ ﮐﺎرون ﺑﺰرگ ﺑﺎ در ﻧﻈـﺮ‬ ‫ﮔﺮﻓﺘﻦ ﺳﯿﺴﺘﻢ ‪ 6‬ﺳﺪي وﺿﻊ ﻣﻮﺟﻮد ﭘﺮداﺧﺘﻪ ﺷﺪه اﺳﺖ‪ .‬در اﯾﻦ ﻣﺪل ﺗﺮﮐﯿﺒﯽ‪ ،‬ﺑﯿﺸﯿﻨﻪﺳﺎزي ﻣﺠﻤﻮع اﻧـﺮژي ﺗﻮﻟﯿـﺪي در‬ ‫ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ ﺑﻪﻋﻨﻮان ﺗﺎﺑﻊ ﻫﺪف ﺗﻌﺮﯾﻒ ﺷﺪه اﺳﺖ ﮐﻪ ﻗﯿﻮد و ﻣﺤﺪودﯾﺖﻫﺎي آن ﺷﺎﻣﻞ ﺑـﯿﻼن آب و اﻋﺘﻤـﺎدﭘـﺬﯾﺮي‬ ‫اﺳﺖ‪ .‬اﯾﻦ ﻣﺪل‪ ،‬ﻗﺎدر ﺑﻪ ﺑﺮرﺳﯽ دﻗﯿﻖ ﺟﺰﺋﯿﺎت ﺳﯿﺴﺘﻢ ﻣﻨﺎﺑﻊ آب و اوﻟﻮﯾـﺖﺑﻨـﺪي ﺗﺨـﺼﺺ آب ﺑـﻪ ﻧﯿﺎزﻫـﺎي ﻣﺨﺘﻠـﻒ‬ ‫ﺧﻮاﻫﺪ ﺑﻮد‪ .‬در اﯾﻦ راﺳﺘﺎ‪ ،‬ﻣﻘﺎدﯾﺮ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ ﺗﻮﻟﯿﺪ ﺷﺪه ﺑﺎ اﺳﺘﻔﺎده از اﻟﮕـﻮرﯾﺘﻢ ژﻧﺘﯿـﮏ و ﻃـﯽ ﯾـﮏ ﻓﺮآﯾﻨـﺪ ﺗﮑﺎﻣـﻞ‬ ‫ﺗﺪرﯾﺠﯽ ﺣﺪاﮐﺜﺮ ﺷﺪه و اﻧﺤﺮاف از اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻄﻠﻮب ﺑﺮاي ﺗﺎﻣﯿﻦ ﻧﯿﺎزﻫﺎي ﭘﺎﯾﺎب ﻧﯿﺰ ﺑﺎ اﻋﻤﺎل ﺟﺮﯾﻤﻪ در ﺗﺎﺑﻊ ﻫﺪف‪،‬‬ ‫ﺑﻪﻃﻮر ﻫﻢزﻣﺎن ﮐﻨﺘﺮل ﻣﯽﮔﺮدد‪.‬‬ ‫ﯾﺎﻓﺘﻪﻫﺎ‪ :‬ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ ﺳﯿﺴﺘﻢ ﺿﻤﻦ ﺗﺄﻣﯿﻦ ﻧﯿﺎزﻫﺎ ﺑﺎ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻄﻠﻮب ‪ 75‬درﺻﺪ‪ ،‬ﻗﺎدر ﺑﻪ ﻣﺠﻤﻮع ﺗﻮﻟﯿﺪ اﻧـﺮژي‬ ‫ﺑﺮﻗﺎﺑﯽ ﺑﺎ ﻣﯿﺎﻧﮕﯿﻦ ﺳﺎﻻﻧﻪ ‪ 18193‬ﮔﯿﮕﺎوات ﺳﺎﻋﺖ ﺑﻮده اﺳﺖ ﮐﻪ ﺑﯿﺸﺘﺮﯾﻦ ﺳﻬﻢ ﻣﺮﺑـﻮط ﺑـﻪ ﺳـﺪ ﮐـﺎرون ‪ 1‬ﺑـﺎ ‪ 3483‬و‬ ‫ﮐﻢﺗﺮﯾﻦ آن ﻣﺮﺑﻮط ﺑﻪ ﺳﺪ ﮐﺎرون ‪ 4‬ﺑﺎ ‪ 2007‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﺳـﺎل اﺳـﺖ‪ .‬ﻋـﻼوه ﺑـﺮ آن‪ ،‬ﺷـﺒﮑﻪﻫـﺎي ﮐـﺸﺎورزي‬ ‫رودﺧﺎﻧﻪ دز و ﺷﺒﮑﻪ ﮔﺮﮔﺮ ﺑﺮ روي رودﺧﺎﻧﻪ ﮔﺮﮔﺮ از اﻧﺸﻌﺎﺑﺎت رودﺧﺎﻧﻪ ﮐﺎرون‪ ،‬ﻧﻘﺎط ﻣﺮزي ﺑﻬﯿﻨـﻪﺳـﺎزي ﺑـﺮاي ﺗـﺄﻣﯿﻦ‬ ‫ﺣﺪاﻗﻞ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻗﺎﺑﻞﻗﺒﻮل ﻫﺴﺘﻨﺪ و ﺑﻪﻋﻨﻮان ﺷﺒﮑﻪﻫﺎي ﺑﺤﺮاﻧﯽ ﺗﺎﻣﯿﻦ آب ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪﻧﺪ‪.‬‬ ‫ﻧﺘﯿﺠﻪﮔﯿﺮي‪ :‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﯾﻦﮐﻪ اﻟﮕﻮرﯾﺘﻢﻫﺎي ﻓﺮاﮐﺎوﺷﯽ در ﺣﺎﻟﺖ ﻣﻌﻤﻮل ﻗﺎدر ﺑﻪ ﭘﺬﯾﺮش ﻗﯿﺪ ﻧﯿﺴﺘﻨﺪ و ﺑﺎﯾﺴﺘﯽ ﺑﺮاي اﻋﻤﺎل‬ ‫ﻣﺤﺪودﯾﺖﻫﺎ ﭼﺎرهﺟﻮﯾﯽ ﮔﺮدد‪ ،‬ﭘﮋوﻫﺶ ﭘﯿﺶرو ﻧﺸﺎن داد ﮐﻪ اﺳﺘﻔﺎده از اﻋﻤﺎل ﺟﺮﯾﻤﻪ در ﺗﺎﺑﻊ ﻫﺪف ﻣﺘﻨﺎﺳﺐ ﺑـﺎ ﻣﯿـﺰان‬ ‫* ﻣﺴﺌﻮل ﻣﮑﺎﺗﺒﻪ‪mehrdad.taghian@gmail.com :‬‬ ‫‪303‬‬ ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ )‪ ،(23‬ﺷﻤﺎره )‪1395 (3‬‬ ‫اﻧﺤﺮاف از اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻄﻠﻮب )ﻗﯿﺪ( داراي ﮐﺎراﯾﯽ ﻣﻄﻠﻮب در ﺳﯿﺴﺘﻢﻫﺎي ﭘﯿﭽﯿﺪه اﺳﺖ‪ .‬ﻋﻼوه ﺑﺮ آن‪ ،‬اﺳﺘﻔﺎده از ﻣﺪل‬ ‫ﺗﺮﮐﯿﺒﯽ ﺷﺒﯿﻪﺳﺎزي‪ -‬ﺑﻬﯿﻨﻪﺳﺎزي ﮐﻤﮏ ﻗﺎﺑﻞﻣﻼﺣﻈﻪاي ﺑﻪ وارد ﮐﺮدن ﺟﺰﺋﯿﺎت ﺳﯿﺴﺘﻢ ﻣﻨﺎﺑﻊ آب در ﻣﺪل ﺷﺒﯿﻪﺳﺎزي ﻧﻤﻮده‬ ‫اﺳﺖ‪ .‬اﯾﻦ در ﺣﺎﻟﯽ اﺳﺖ ﮐﻪ در ﺷﺮاﯾﻂ اﺳﺘﻔﺎده ﻣﻌﻤﻮل از ﻣﺪلﻫﺎي ﺑﻬﯿﻨﻪﺳﺎزي‪ ،‬ﻧﯿﺎز ﺑﻪ ﺳﺎدهﺳﺎزي زﯾﺎد ﻣﺴﺄﻟﻪ اﺳﺖ‪.‬‬ ‫واژهﻫﺎي ﮐﻠﯿﺪي‪ :‬اﻟﮕﻮرﯾﺘﻢ ژﻧﺘﯿﮏ‪ ،‬اﻧﺮژي ﺑﺮﻗﺎﺑﯽ‪ ،‬ﺑﻬﯿﻨﻪﺳﺎزي‪ ،‬ﭼﻨﺪﻣﻨﻈﻮره‪ ،‬ﻣﺨﺎزن‬ ‫ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺧﻄﯽ‪ ،(13 ،12) 1‬ﺑﺮﻧﺎﻣﻪرﯾﺰي ﭘﻮﯾﺎ‪(19 ،2) 2‬‬ ‫ﻣﻘﺪﻣﻪ‬ ‫اﻣﺮوزه ﺑﻪدﻟﯿﻞ ﻣﺤﺪودﯾﺖ ﺳـﻮﺧﺖﻫـﺎي ﻓـﺴﯿﻠﯽ و‬ ‫‪3‬‬ ‫و ﺑﺮﻧﺎﻣﻪرﯾﺰي ﻏﯿﺮﺧﻄﯽ )‪ (16 ،6‬ﻣﺘﻤﺮﮐﺰ ﺑﻮده اﺳﺖ‪ .‬در‬ ‫دو دﻫﻪ اﺧﯿﺮ‪ ،‬ﺑﺎ ﺗﻮﺳﻌﻪ اﻟﮕﻮرﯾﺘﻢﻫﺎي ﻓﺮاﮐﺎوﺷﯽ‪ ،4‬اﻓﻖ و‬ ‫آﻟــﻮدﮔﯽﻫــﺎي زﯾــﺴﺖﻣﺤﯿﻄــﯽ ﻧﺎﺷــﯽ از آن‪ ،‬ﺗﻮﺳــﻌﻪ‬ ‫اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ از ﺟﻤﻠﻪ اﻧـﺮژي ﺑﺮﻗـﺎﺑﯽ ﻣـﻮرد‬ ‫ﭼﺸﻢاﻧﺪاز ﺟﺪﯾﺪي ﺑﺮاي ﺣﻞ اﯾﻦ ﮔﻮﻧﻪ ﻣﺴﺎﺋﻞ ﮔـﺸﻮده‬ ‫ﺗﻮﺟﻪ ﺑﯿﺶﺗـﺮي ﻗـﺮار ﮔﺮﻓﺘـﻪ اﺳـﺖ‪ .‬از آنﺟـﺎ ﮐـﻪ در‬ ‫ﺷﺪه اﺳﺖ‪ .‬ﺑﺎ ﮐﺎرﺑﺮد ﻣﻨﺎﺳﺐ اﯾﻦ اﻟﮕﻮرﯾﺘﻢﻫﺎ ﻣﯽﺗﻮان ﺑﺮ‬ ‫ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ‪ ،‬ﻣﻌﻤﻮﻻً ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗـﺎﺑﯽ در ﮐﻨـﺎر‬ ‫ﻣﺸﮑﻼت ﻣﺮﺑﻮط ﺑﻪ ﺳﺎدهﺳﺎزي رواﺑﻂ در ﻣﺴﺎﺋﻞ ﺧﻄﯽ‪،‬‬ ‫‪5‬‬ ‫ﺳﺎﯾﺮ اﻫﺪاف ﺗﺄﻣﯿﻦ آب ﻣﻄﺮح اﺳـﺖ‪ ،‬ﺑﻬـﺮهﺑـﺮداري از‬ ‫ﮔﺮﻓﺘــﺎر ﺷــﺪن در ﭘﺎﺳــﺦﻫــﺎي ﺑﻬﯿﻨــﻪ ﻣﺤﻠــﯽ و ﻋــﺪم‬ ‫دﺳﺖﯾﺎﺑﯽ ﺑﻪ ﭘﺎﺳﺦ ﺑﻬﯿﻨﻪ ﻣﻄﻠﻖ‪ 6‬در ﻣـﺴﺎﺋﻞ ﻏﯿﺮﺧﻄـﯽ‪،‬‬ ‫ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ ﭼﻨﺪﻣﻨﻈﻮره ﺑﺎﯾﺴﺘﯽ ﺑﻪﮔﻮﻧﻪاي ﺑﺎﺷﺪ ﺗـﺎ‬ ‫ﺗﻌﺪاد زﯾـﺎد ﻣﺘﻐﯿﺮﻫـﺎ و ﻣـﺸﮑﻼت اﺑﻌـﺎدي‪ 7‬در ﻣـﺴﺎﺋﻞ‬ ‫ﺿﻤﻦ ﺗﻮﻟﯿﺪ ﺣﺪاﮐﺜﺮ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ‪ ،‬ﺗﺎﻣﯿﻦ ﺳﺎﯾﺮ ﻧﯿﺎزﻫﺎ و‬ ‫اﻫﺪاف را ﺑﻪ ﻣﺨﺎﻃﺮه ﻧﯿﺎﻧﺪازد‪ .‬از دﯾﺪﮔﺎه ﺗﻮﻟﯿـﺪ اﻧـﺮژي‬ ‫ﺑﺮﻧﺎﻣﻪرﯾﺰي ﭘﻮﯾﺎ ﻏﻠﺒﻪ ﻧﻤﻮد‪ .‬اوﻟﯿﻮﯾﺮا و ﻻﮐﺲ )‪ (1997‬از‬ ‫ﺑﺮﻗﺎﺑﯽ‪ ،‬ﺑﻬﺮهﺑﺮداران ﺗﻤﺎﯾﻞ ﺑﻪ ﺣﻔﻆ ﺗﺮاز ﺳـﻄﺢ آب در‬ ‫ﭘﯿــﺸﮕﺎﻣﺎن ﮐــﺎرﺑﺮد اﯾــﻦ ﻧــﻮع اﻟﮕــﻮرﯾﺘﻢﻫــﺎ در ﺳﯿــﺴﺘﻢ‬ ‫ﺳﻄﻮح ﺑﺎﻻي ﻣﺨﺰن را دارﻧﺪ‪ .‬در اﯾﻦ وﺿﻌﯿﺖ ﺑﺎ اﻓﺰاﯾﺶ‬ ‫ﺑﻬﺮهﺑﺮداري از ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ ﺑﻮدهاﻧﺪ )‪ (10‬و ﺑﺮاي اوﻟﯿﻦ‬ ‫ﻫﺪ ﻣﺆﺛﺮ‪ ،‬اﻣﮑﺎن ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ اﻓﺰاﯾﺶ ﻣﯽﯾﺎﺑﺪ‪ .‬اﯾﻦ‬ ‫ﺑــﺎر اﻟﮕــﻮرﯾﺘﻢ ژﻧﺘﯿــﮏ را ﺑــﺮاي ﺑﻬﯿﻨــﻪﺳــﺎزي ﺳﯿﺎﺳــﺖ‬ ‫در ﺣـﺎﻟﯽ اﺳـﺖ ﮐـﻪ در ﺑـﺴﯿﺎري از دورهﻫـﺎي زﻣــﺎﻧﯽ‬ ‫ﺑﻬﺮهﺑﺮداري ﯾﮏ ﺳﯿﺴﺘﻢ ﻣﻨﺎﺑﻊ آب ﭼﻨﺪﻣﺨﺰﻧﻪ ﺑﻪﮐﺎر ﺑﺮدﻧﺪ‪.‬‬ ‫ﺑﻬﺮهﺑﺮداري از ﺟﻤﻠﻪ دوره ﺧﺸﮑﺴﺎﻟﯽ‪ ،‬ﻧﺎﮔﺰﯾﺮ ﺑﻪ اﺳﺘﻔﺎده‬ ‫ﺑﻪ دﻧﺒﺎل آن‪ ،‬ﮐﺎرﺑﺮد وﺳﯿﻊ اﻧﻮاع ﻣﺨﺘﻠﻒ اﯾﻦ اﻟﮕﻮرﯾﺘﻢﻫﺎ را‬ ‫از ذﺧﯿﺮه ﻣﺨﺰن ﺗﺎ ﭘﺎﯾﯿﻦﺗﺮﯾﻦ ﺳﻄﺢ ﻣﻤﮑﻦ ﺟﻬﺖ ﺗﺎﻣﯿﻦ‬ ‫در ﺣﻞ ﻣﺴﺎﺋﻞ ﺑﻬﺮهﺑﺮداري از ﻣﺨﺎزن را ﺷﺎﻫﺪ ﺑﻮدهاﯾﻢ ﮐـﻪ‬ ‫و ‪ ...‬ﻫﺴﺘﯿﻢ‪ .‬ﺑﻨﺎﺑﺮاﯾﻦ‪ ،‬اﻫﺪاف ﺗﻮﻟﯿـﺪ اﻧـﺮژي ﺑﺮﻗـﺎﺑﯽ و‬ ‫‪ ،(20‬ﺑﻬﯿﻨﻪﺳﺎزي ازدﺣﺎم ذرات‪ ،(15 ،11 ،7) 9‬ﺑﻬﯿﻨﻪﺳﺎزي‬ ‫از آن ﺟﻤﻠﻪ ﻣﯽﺗﻮان ﺑـﻪ اﻟﮕـﻮرﯾﺘﻢ ژﻧﺘﯿـﮏ‪،18 ،9 ،5 ،3) 8‬‬ ‫ﻧﯿﺎزﻫﺎي ﮐﺸﺎورزي‪ ،‬ﺷﺮب و ﺻـﻨﻌﺖ‪ ،‬زﯾـﺴﺖﻣﺤﯿﻄـﯽ‬ ‫‪1‬‬ ‫ﺗﺎﻣﯿﻦ آب ﻧﯿﺎزﻫﺎي ﻣﺼﺮﻓﯽ ﭘﺎﯾﺎب در ﺑﺴﯿﺎري از ﺑﺎزهﻫﺎي‬ ‫ﺟﺎﻣﻌــﻪ ﻣﻮرﭼﮕــﺎن )‪ ،(21 ،17‬ﻣــﺪلﻫــﺎي ﺗﺮﮐﯿﺒــﯽ‬ ‫زﻣﺎﻧﯽ ﺑﻬﺮهﺑﺮداري در ﺗﻘﺎﺑﻞ ﺑﺎ ﯾﮑﺪﯾﮕﺮ ﻗﺮار دارﻧـﺪ‪ .‬در‬ ‫ﺑﻬﯿﻨﻪﺳﺎزي رﯾﺎﺿﯽ ﮐﻼﺳـﯿﮏ و ﻓﺮاﮐﺎوﺷـﯽ )‪،(22 ،14‬‬ ‫ﺳﯿﺴﺘﻢﻫﺎي ﻣﻨﺎﺑﻊ آﺑﯽ ﮐﻪ داراي ﻣﺨﺎزن ﺳﺮي و ﻣﻮازي ﺑﺎ‬ ‫ﻣﺪلﻫﺎي ﺗﺮﮐﯿﺒﯽ دو اﻟﮕﻮرﯾﺘﻢ ﻓﺮاﮐﺎوﺷﯽ )‪ (4‬و ﻣﺪلﻫﺎي‬ ‫ﺷﺒﮑﻪﻫﺎي ﻣﺘﻌﺪد ﻧﯿﺎز آﺑﯽ ﻫﺴﺘﻨﺪ‪ ،‬ﺣﻞ ﻣـﺴﺄﻟﻪ ﻓـﻮق ﺑـﺎ‬ ‫ﺑﻬﯿﻨﻪﺳﺎزي ﭼﻨﺪ ﻫﺪﻓﻪ )‪ (8 ،1‬اﺷﺎره ﻧﻤﻮد‪.‬‬ ‫ﭘﯿﭽﯿﺪﮔﯽﻫﺎي ﻓﺮاواﻧﯽ ﺗﻮأم ﺧﻮاﻫـﺪ ﺑـﻮد‪ .‬ﺑﻨـﺎﺑﺮاﯾﻦ‪ ،‬در‬ ‫ﭼﻨﯿﻦ ﺷﺮاﯾﻄﯽ ﻧﺎﮔﺰﯾﺮ ﺑﻪ اﺳﺘﻔﺎده از ﻣﺪلﻫﺎي ﺑﻬﯿﻨﻪﺳﺎزي‬ ‫‪1- Linear Programming‬‬ ‫‪2- Dynamic Programming‬‬ ‫‪3- Non-linear Programming‬‬ ‫‪4- Evolutionary Algorithms‬‬ ‫‪5- Local Optimum‬‬ ‫‪6- Global Optimum‬‬ ‫‪7- Curse of dimensionality‬‬ ‫)‪8- Genetic Algorithm (GA‬‬ ‫)‪9- Particle Swarm Optimization (PSO‬‬ ‫ﺑﻪﻣﻨﻈﻮر ﺗﺠﻮﯾﺰ ﺑﻬﺘﺮﯾﻦ ﺳﯿﺎﺳﺖ ﺑﻬـﺮهﺑـﺮداري ﻫـﺴﺘﯿﻢ‪.‬‬ ‫ﺗﻼش ﭘﮋوﻫﺸﮕﺮان ﺑﺮاي ﺣﻞ اﯾﻦ ﮔﻮﻧﻪ ﻣﺴﺎﺋﻞ‪ ،‬اﺑﺘﺪا ﺑﺮ‬ ‫روشﻫــﺎي ﺑﻬﯿﻨــﻪﺳــﺎزي رﯾﺎﺿــﯽ ﮐﻼﺳــﯿﮏ ﻣﺎﻧﻨــﺪ‬ ‫‪304‬‬ ‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫از ﻣﺤﺪوده ﮐﻮﻫﺴﺘﺎن در ﭘﻬﻨﻪ دﺷﺖ ﺧﻮزﺳﺘﺎن ﺟﺮﯾـﺎن‬ ‫ﻫﺪف اﺻﻠﯽ در اﯾـﻦ ﭘـﮋوﻫﺶ ﺗﻌﯿـﯿﻦ ﺗـﺮاز ﺑﻬﯿﻨـﻪ‬ ‫ﺣﺪاﻗﻞ ﺑﻬﺮهﺑﺮداري ﻫﺮ ﻣﺨﺰن در ﺳﯿﺴﺘﻢ ‪ 6‬ﺳﺪي ﮐﺎرون‬ ‫ﯾﺎﻓﺘﻪ و ﭘﺲ از ﺗﻼﻗﯽ ﺑﺎ ﯾﮑﺪﯾﮕﺮ ﮐﺎرون ﺑﺰرگ را ﺗﺸﮑﯿﻞ‬ ‫ﮔﺮدد و از ﺳﻮي دﯾﮕﺮ ﺗﺎﻣﯿﻦ ﻧﯿﺎزﻫﺎي ﮐﺸﺎورزي‪ ،‬ﺷﺮب‬ ‫ﺣﻮﺿﻪ آﺑﺮﯾﺰ ﮐﺸﻮر در ﺷـﺮاﯾﻂ وﺿـﻊ ﻣﻮﺟـﻮد ﺷـﺎﻣﻞ‬ ‫ﻧﻈﺮ ﺗﺎﻣﯿﻦ ﮔﺮدد‪ .‬ﺑﺪﯾﻦ ﻣﻨﻈﻮر در اﯾﻦ ﭘﮋوﻫﺶ‪ ،‬ﯾﮏ ﻣﺪل‬ ‫ﮔﺪارﻟﻨﺪر و ﮔﺘﻮﻧﺪ ﻋﻠﯿـﺎ اﺳـﺖ‪ .‬اﻫﻤﯿـﺖ ﭘﺘﺎﻧـﺴﯿﻞ آﺑـﯽ‬ ‫و اﻟﮕﻮرﯾﺘﻢ ژﻧﺘﯿﮏ ﺑﻪ آن ﻣﺘﺼﻞ ﮔﺮدﯾﺪه اﺳﺖ‪ .‬اﯾﻦ ﻣﺪل‬ ‫ﻣﺼﺎرف آن‪ ،‬ﺑﻬﺮهﺑﺮداري از اﯾﻦ ﺳﯿﺴﺘﻢ و ﺑﺮﻧﺎﻣﻪرﯾـﺰي‬ ‫ﻣﯽدﻫﻨﺪ‪ .‬ﺣﻮﺿﻪ آﺑﺮﯾﺰ ﮐﺎرون ﺑﺰرگ ﺑﻪﻋﻨﻮان ﭘﺮآبﺗﺮﯾﻦ‬ ‫ﺑﺰرگ اﺳﺖ ﺑﻪﻃﻮريﮐﻪ ﺣﺪاﮐﺜﺮ اﻧـﺮژي ﺑﺮﻗـﺎﺑﯽ ﺗﻮﻟﯿـﺪ‬ ‫ﺳــﺪﻫﺎي ﮐــﺎرون ‪ ،3‬ﮐــﺎرون ‪ ،4‬دز‪ ،‬ﺷــﻬﯿﺪ ﻋﺒﺎﺳــﭙﻮر‪،‬‬ ‫و ﺻﻨﻌﺖ و زﯾﺴﺖﻣﺤﯿﻄﯽ ﭘﺎﯾﺎب ﺑﺎ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻮرد‬ ‫ﻣﻮﺟﻮد در اﯾﻦ ﺣﻮﺿﻪ و ﭘﯿﭽﯿﺪﮔﯽﻫﺎي ﺷﺒﮑﻪ ﻣﻨـﺎﺑﻊ و‬ ‫ﺷﺒﯿﻪﺳﺎزي ﻣﺠﻬﺰ ﺑﻪ ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺧﻄﯽ ﺗﻮﺳﻌﻪ داده ﺷﺪه‬ ‫ﺑﺮاي ﺗﻮﺳﻌﻪ آن را ﺑﺎ دﺷﻮاريﻫﺎي زﯾﺎدي ﻫﻤﺮاه ﺳﺎﺧﺘﻪ‬ ‫ﺗﺮﮐﯿﺒﯽ ﻗﺎدر ﺑﻪ ﺑﺮرﺳﯽ دﻗﯿﻖ ﺟﺰﺋﯿﺎت ﺳﯿﺴﺘﻢ ﻣﻨﺎﺑﻊ آب‬ ‫و اوﻟﻮﯾﺖﺑﻨﺪي ﺗﺨﺼﺺ آب ﺑﻪ ﻧﯿﺎزﻫﺎي ﻣﺨﺘﻠﻒ ﺧﻮاﻫﺪ‬ ‫اﺳﺖ‪ .‬ﺑﺮ اﯾﻦ اﺳﺎس‪ ،‬ﺳﯿﺴﺘﻢ ﻣﻨﺎﺑﻊ آب ﮐﺎرون ﺑﺰرگ در‬ ‫)ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ( را ﺣـﺪاﮐﺜﺮ و ﻣﯿـﺰان اﻧﺤـﺮاف از‬ ‫ﭘﮋوﻫﺶ ﻣﺪ ﻧﻈﺮ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ‪ .‬ﻣﻮﻗﻌﯿﺖ ﺣﻮﺿـﻪ در‬ ‫ﺷﺮاﯾﻂ ﻣﻮﺟﻮد ﺑﺮاي ﭘﯿﺎدهﺳﺎزي ﻣﺪل ﺗﻮﺳﻌﻪ ﺷﺪه در اﯾﻦ‬ ‫ﺑﻮد و ﻃﯽ ﯾﮏ ﻓﺮآﯾﻨﺪ ﺗﮑﺎﻣﻞ ﺗﺪرﯾﺠﯽ ﻣﻘﺎدﯾﺮ ﺗﺎﺑﻊ ﻫﺪف‬ ‫ﺷـــﮑﻞ ‪ ،1‬ﭘﯿﮑﺮﺑﻨـــﺪي ﺷـــﻤﺎﺗﯿﮏ آن در ﺷـــﮑﻞ ‪ 2‬و‬ ‫اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻮرد ﻧﻈﺮ در ﺗـﺎﻣﯿﻦ ﻧﯿﺎزﻫـﺎي آﺑـﯽ را ﺑـﺎ‬ ‫ﻣﺤﺎﺳﺒﻪ ﺟﺮﯾﻤﻪ ﻣﺘﻨﺎﺳﺐ ﺑﺎ ﻣﯿﺰان اﻧﺤﺮاف و اﻋﻤﺎل آن در‬ ‫ﻣﺸﺨﺼﺎت ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ ﻣﻮﺟﻮد در ﺟﺪول ‪ 1‬اراﺋـﻪ‬ ‫ﺗﺮاز ﺑﻬﯿﻨﻪ ﺣﺪاﻗﻞ ﺑﻬﺮهﺑﺮداري ﻧﯿﺰ ﺑﺮآورد ﻣﯽﮔﺮدد‪.‬‬ ‫ﺳﯿﺴﺘﻢ‪ 14 ،‬ﮔﺮه ﺷﺒﮑﻪ آﺑﯿﺎري‪ 5 ،‬آﺑﺮاﻫـﻪ اﻧﺤﺮاﻓـﯽ آب‬ ‫ﺷﺪه اﺳﺖ‪ .‬اﯾﻦ ﭘﯿﮑﺮﺑﻨﺪي ﺷﺎﻣﻞ ‪ 7‬ﻣﻨﺒﻊ آب ورودي ﺑﻪ‬ ‫ﺗﺎﺑﻊ ﻫﺪف‪ ،‬ﺣﺪاﻗﻞ ﮔﺮدد‪ .‬در ﻃﯽ اﯾﻦ ﻓﺮآﯾﻨـﺪ‪ ،‬ﻣﻘـﺎدﯾﺮ‬ ‫ﺟﻬﺖ ﺗﺎﻣﯿﻦ ﻧﯿﺎزﻫﺎي ﺷﺮب و ﺻﻨﻌﺖ و دو ﺑﺎزه ﺣﻔـﻆ‬ ‫ﻣﻮاد و روشﻫﺎ‬ ‫ﺣﺪاﻗﻞ ﺟﺮﯾﺎن در ﺳﺮاب و ﭘﺎﯾﺎب ﺷـﻬﺮ اﻫـﻮاز اﺳـﺖ‪.‬‬ ‫اﻃﻼﻋﺎت ﻣﻮرد ﻧﯿﺎز از ﮔﺰارش ﺑﺮﻧﺎﻣﻪرﯾﺰي و ﻣـﺪﯾﺮﯾﺖ‬ ‫ﺣﻮﺿﻪ آﺑﺮﯾﺰ ﮐﺎرون و دز‪ :‬رودﺧﺎﻧﻪﻫﺎي ﭘﺮآب ﮐﺎرون‬ ‫ﻣﻨﺎﺑﻊ آب ﺳﺪ ﮐﺎرون ‪ 2‬اﺳﺘﺨﺮاج ﮔﺮدﯾﺪ )‪.(23‬‬ ‫و دز از داﻣﻨﻪﻫﺎي ﻏﺮﺑﯽ رﺷﺘﻪ ﮐـﻮه زاﮔـﺮس در ﻏـﺮب‬ ‫اﯾﺮان ﺳﺮﭼﺸﻤﻪ ﻣﯽﮔﯿﺮﻧﺪ‪ .‬اﯾﻦ رودﺧﺎﻧﻪﻫﺎ ﭘﺲ از ﺧﺮوج‬ ‫ﺷﮑﻞ ‪ -1‬ﻧﻘﺸﻪ ﻣﻮﻗﻌﯿﺖ ﮐﻠﯽ ﺣﻮﺿﻪ آﺑﺮﯾﺰ ﮐﺎرون‪.‬‬ ‫‪1‬‬ ‫‪Figure 1. General location map for the Karun basin.‬‬ ‫)‪1- Ant Colony Optimization (ACO‬‬ ‫‪305‬‬ 1395 (3) ‫ ﺷﻤﺎره‬،(23) ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ‬ .‫ ﭘﯿﮑﺮﺑﻨﺪي ﺷﻤﺎﺗﯿﮏ ﺳﯿﺴﺘﻢ ﻣﻨﺎﺑﻊ آب ﮐﺎرون‬-2 ‫ﺷﮑﻞ‬ Figure 2. Schematic configuration of the Karun water resource system. .‫ ﻣﺸﺨﺼﺎت ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ ﻣﻮرد ﺑﺮرﺳﯽ‬-1 ‫ﺟﺪول‬ Table 1. Characteristics of the studied reservoir dams. ‫راﻧﺪﻣﺎن ﻧﯿﺮوﮔﺎه‬ ‫ﻇﺮﻓﯿﺖ ﻧﺼﺐ ﻧﯿﺮوﮔﺎه‬ ‫ﺣﺠﻢ ﻣﺨﺰن‬ ‫ﺗﺮاز ﻧﺮﻣﺎل‬ ‫ﺣﺪاﻗﻞ ﺗﺮاز اﻣﮑﺎنﭘﺬﯾﺮ‬ ‫ﺳﺪ ﻣﺨﺰﻧﯽ‬ Power plant Efficiency (%) Power plant installed capacity (MW) Storage Capacity (MCM) Normal level (M) Possible minimum level (M) Reservoir dam 92 1000 2190 1025 980 4 ‫ﮐﺎرون‬ 94 2000 2970 845 790 90 2000 2997 530 490 92 2000 211 370.2 360 93 2000 4097 230 180 89 520 2864 352.5 290 306 (Karun 4) 3 ‫ﮐﺎرون‬ (Karun 3) 1 ‫ﮐﺎرون‬ (Karun 1) ‫ﮔﺪار ﻟﻨﺪر‬ (Godarlandar) ‫ﮔﺘﻮﻧﺪ ﻋﻠﯿﺎ‬ (UP Gotvand) ‫دز‬ (Dez) ‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫رواﺑﻂ و ﻣﻌﺎدﻻت‪ :‬در ﺷﺮاﯾﻂ ﻋﺎدي ﺑﻬﺮهﺑﺮداري‪ ،‬ﺗـﺮاز‬ ‫)‪ (4‬ﻣﺤﺪودﯾﺖ ذﺧﯿﺮه‬ ‫ﺳﻄﺢ آب ﻣﺨﺰن ﻣﯽﺗﻮاﻧﺪ ﺑﯿﻦ ﺗﺮاز ﻧﺮﻣﺎل ﺑﻬـﺮهﺑـﺮداري‬ ‫‪S min  n  St ,n  S max  n‬‬ ‫‪ (NWL)1‬و ﺗﺮاز ﺣﺪاﻗﻞ ﺑﻬﺮهﺑﺮداري ‪ (MWL)2‬ﺗﻐﯿﯿـﺮ‬ ‫)‪ (5‬ﻣﺤﺪودﯾﺖ اﻋﺘﻤﺎدﭘﺬﯾﺮي‬ ‫ﻧﻤﺎﯾﺪ‪ .‬ﺣﺠﻢ ﻣﺨﺰن ﺑﯿﻦ ﺗﺮاز آب ﻣﻮﺟـﻮد ‪ (CWL)3‬و‬ ‫‪ MWL‬اﺳﺖ‪ .‬در اﯾﻦ ﺣﺎﻟﺖ اﮔـﺮ ‪ CWL‬ﺑـﺰرگﺗـﺮ از‬ ‫‪Rei  Re reqi‬‬ ‫‪ NWL‬ﺑﺎﺷﺪ‪ ،‬ﻣﺨﺰن ﺳﺮرﯾﺰ ﺧﻮاﻫﺪ ﻧﻤﻮد و اﮔﺮ ‪CWL‬‬ ‫)‪ (6‬ﭘﺎراﻣﺘﺮﻫﺎي ﺷﻤﺎرﻧﺪه‬ ‫ﮐﻮﭼﮏﺗـﺮ از ‪ MWL‬ﮔـﺮدد‪ ،‬رﻫﺎﺳـﺎزي از ﻣﺨـﺰن ﺗـﺎ‬ ‫زﻣﺎﻧﯽ ﮐﻪ ﺗﺮاز ﺳﻄﺢ آب ﺑﻪ ‪ MWL‬ﺑﺮﺳﺪ‪ ،‬ﺑﺮاﺑﺮ ﺻـﻔﺮ‬ ‫‪n  1,2,3,...N‬‬ ‫ﺧﻮاﻫﺪ ﺑﻮد‪ .‬ﻫﺪف اﺻﻠﯽ اﯾﻦ ﭘﮋوﻫﺶ ﺣﺪاﮐﺜﺮ ﻧﻤـﻮدن‬ ‫‪t  1,2,3,...T‬‬ ‫‪i  1,2,3,...M‬‬ ‫ﮐﻪ در آن‪ Z ،‬ﻣﺠﻤﻮع اﻧﺮژي ﺗﻮﻟﯿـﺪي )ﺗـﺎﺑﻊ ﻫـﺪف(‪،‬‬ ‫ﺗﻮﻟﯿــﺪ اﻧــﺮژي ﺑﺮﻗــﺎﺑﯽ در ﺳﯿــﺴﺘﻢ ﭘﯿﭽﯿــﺪه ﻣﻨــﺎﺑﻊ آب‬ ‫‪ N‬ﺗﻌــﺪاد ﻣﺨــﺎزن در ﺳﯿــﺴﺘﻢ‪ T ،‬ﺗﻌــﺪاد دورهﻫــﺎي‬ ‫‪ 6‬ﺳﺪي ﮐﺎرون ﺑﺰرگ اﺳﺖ ﺑﻪﻃﻮريﮐﻪ ﺳﺎﯾﺮ ﻧﯿﺎزﻫـﺎ و‬ ‫زﻣﺎﻧﯽ ﺷﺒﯿﻪﺳﺎزي ﺑﺮ ﺣﺴﺐ ﻣﺎه‪ M ،‬ﺗﻌﺪاد ﮔـﺮهﻫـﺎي‬ ‫ﻣﺼﺎرف ﺳﯿﺴﺘﻢ ﻧﯿﺰ ﺑﺎ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣـﻮرد ﻧﻈـﺮ ﺗـﺎﻣﯿﻦ‬ ‫ﮔــﺮدد‪ .‬ﺑــﺪﯾﻦ ﻣﻨﻈــﻮر ﻣﻘــﺎدﯾﺮ ﺑﻬﯿﻨــﻪ ﺗــﺮاز ﺣــﺪاﻗﻞ‬ ‫ﻣﺼﺮﻓﯽ در ﺳﯿﺴﺘﻢ‪ x N ،‬رﻗـﻮم ﺣـﺪاﻗﻞ ﺑﻬـﺮهﺑـﺮداري‬ ‫ﺑﻬﺮهﺑﺮداري ﻣﺨﺎزن ﻣﺤﺎﺳﺒﻪ ﺷﺪه ﺗـﺎ ﺿـﻤﻦ ﺑـﺎﻻ ﻧﮕـﻪ‬ ‫ﺑــﺮاي ﻫــﺮ ﮐــﺪام از ‪ N‬ﻣﺨــﺰن اﺳــﺖ‪ ،‬در ﺣﻘﯿﻘــﺖ‪،‬‬ ‫داﺷﺘﻦ ﺗﺮاز ﺳـﻄﺢ آب ﺟﻬـﺖ ﺗﻮﻟﯿـﺪ اﻧـﺮژي ﺑﺮﻗـﺎﺑﯽ‪،‬‬ ‫ﺣﺪاﻗﻞ ﺗﺮاز ﺑﻬﺮهﺑﺮداري ﺷﺎﻣﻞ ‪ N‬ﻣﺘﻐﯿﺮ ﺗﺼﻤﯿﻢﮔﯿـﺮي‬ ‫ﺗﺒﻌﺎت ﻧﺎﺷﯽ از ﮐﺎﻫﺶ ﺣﺠـﻢ آب ﻗﺎﺑـﻞ ﺑﺮﻧﺎﻣـﻪرﯾـﺰي‬ ‫اﺳﺖ ﮐﻪ ﺑﺎﯾﺴﺘﯽ ﺑﻬﯿﻨﻪ ﮔﺮدد‪  n .‬راﻧﺪﻣﺎن ﻧﯿﺮوﮔـﺎه در‬ ‫ﺑﺮاي ﺗـﺎﻣﯿﻦ ﻧﯿﺎزﻫـﺎ ﻣـﺪ ﻧﻈـﺮ ﻗـﺮار ﮔﯿـﺮد‪ .‬ﺑـﺮ اﺳـﺎس‬ ‫ﻣﺨـــﺰن ‪  ، n‬وزن ﻣﺨـــﺼﻮص آب‪ Rt ,n ،‬ﻣﯿـــﺰان‬ ‫ﻓﺮﺿﯿﺎت ﻓﻮق‪ ،‬ﻣﻌﺎدﻻت اﺳﺎﺳﯽ ﻣﺪل رﯾﺎﺿـﯽ ﺗﻮﺳـﻌﻪ‬ ‫رﻫﺎﺳﺎزي ﺟﺮﯾﺎن از ﻣﺨﺰن ‪ n‬ﺑﺮاي ﺗﻮﻟﯿﺪ ﻧﯿﺮو در ﮔـﺎم‬ ‫داده ﺷﺪه ﺑﻪﺷﺮح زﯾﺮ اﺳﺖ‪:‬‬ ‫زﻣﺎﻧﯽ ‪ H ، t‬ﻫـﺪ ذﺧﯿـﺮه ﻣﺨـﺰن‪ S ،‬ﺣﺠـﻢ ذﺧﯿـﺮه‬ ‫)‪ (1‬ﺗﺎﺑﻊ ﻫﺪف‬ ‫ﻣﺨــﺰن‪ Q ،‬ﺟﺮﯾــﺎن ورودي ﺑــﻪ ﻣﺨــﺰن‪ E ،‬ﺗﺒﺨﯿــﺮ‬ ‫ﻣﺨــﺰن‪ O ،‬ﺳــﺮرﯾﺰ از ﻣﺨـــﺰن‪S min n , S max  n ،‬‬ ‫) ‪Maximize Z ( x N )   nN1 Tt1 ( n  Rt , n H t ,n‬‬ ‫ﺣﺪاﮐﺜﺮ و ﺣﺪاﻗﻞ ﻇﺮﻓﯿﺖ ﻣﺨـﺰن اﺳـﺖ‪ .‬دوره زﻣـﺎﻧﯽ‬ ‫و ﻣﺤﺪوﯾﺖﻫﺎي ﻣﺮﺑﻮط ﺑﻪ اﯾﻦ ﺗﺎﺑﻊ ﻫﺪف ﻣﺤـﺪود‬ ‫ﻣــﺪلﺳــﺎزي در اﯾــﻦ ﻣﻄﺎﻟﻌــﺎت‪ ،‬ﯾــﮏ ﺑــﺎزه زﻣــﺎﻧﯽ‬ ‫ﺑﻪ رواﺑﻂ زﯾﺮ اﺳﺖ‪:‬‬ ‫درازﻣــﺪت آﺑــﺪﻫﯽ ‪ 41‬ﺳــﺎﻟﻪ )‪ 492‬ﻣــﺎه( را در ﺑــﺮ‬ ‫)‪ (2‬ﻣﺤﺪودﯾﺖ ﺑﯿﻼن‬ ‫ﻣﯽﮔﯿﺮد ﮐﻪ ﻣﺸﺘﻤﻞ ﺑﺮ دورهﻫﺎي ﺧﺸﮑـﺴﺎﻟﯽ‪ ،‬ﺗﺮﺳـﺎﻟﯽ‬ ‫و ﻧﺮﻣﺎل ﺑﻮده اﺳﺖ‪.‬‬ ‫‪S t 1, n  St , n  Qt ,n  Et ,n  Rt ,n  Ot , n‬‬ ‫اﻋﺘﻤﺎدﭘــﺬﯾﺮي‪ 4‬از ﻗــﺪﯾﻤﯽﺗــﺮﯾﻦ و در ﻋــﯿﻦﺣــﺎل‬ ‫)‪ (3‬ﻣﺤﺪودﯾﺖ ﺳﺮرﯾﺰ‬ ‫ﭘﺮﮐﺎرﺑﺮدﺗﺮﯾﻦ ﺷﺎﺧﺺﻫﺎ در ﻣﺴﺎﺋﻞ ﻣﺪﯾﺮﯾﺖ ﻣﻨﺎﺑﻊ آب‬ ‫اﺳﺖ ﮐﻪ ﺗﻌﺮﯾﻒ اوﻟﯿﻪ آن ﻋﺒﺎرت اﺳﺖ از اﺣﺘﻤـﺎل )‪(p‬‬ ‫‪Ot ,n  max0, ( St 1,n  S max n )‬‬ ‫اﯾﻦ ﮐﻪ وﺿﻌﯿﺖ ﺳﯿﺴﺘﻢ )‪ (S‬در ﺷﺮاﯾﻂ ﻣﻄﻠﻮب‪(NF) 5‬‬ ‫‪1- Normal Water Level‬‬ ‫‪2- Minimum Water Level‬‬ ‫‪3- Current Water Level‬‬ ‫‪4- Reliability‬‬ ‫‪5- Not Failure‬‬ ‫‪307‬‬ ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ )‪ ،(23‬ﺷﻤﺎره )‪1395 (3‬‬ ‫ﻗﺮار ﮔﯿﺮد‪ .‬در اﯾﻦ ﺣﺎﻟﺖ اﮔﺮ ‪ T‬ﮐﻞ ﮔـﺎمﻫـﺎي زﻣـﺎﻧﯽ‪،‬‬ ‫آن ﭘﺮداﺧﺘﻪ ﺷﺪ‪ ،‬ﺗﻮﺳﻌﻪﯾﺎﻓﺘﻪ و از اﻟﮕﻮرﯾﺘﻢ ژﻧﺘﯿـﮏ ﻧﯿـﺰ‬ ‫‪ J‬ﺷﻤﺎرﻧﺪه روﯾﺪاد ﺷﮑﺴﺖ‪) 1‬ﻋﺪم ﺗﺄﻣﯿﻦ ﮐﺎﻣـﻞ ﻧﯿـﺎز(‪،‬‬ ‫ﺑﻪﻋﻨﻮان اﺑﺰار ﺑﻬﯿﻨﻪﺳﺎزي ﺑﻬﺮهﺑـﺮداري ﺷـﺪه اﺳـﺖ‪ .‬در‬ ‫‪ M‬ﺗﻌﺪاد رﺧﺪادﻫﺎي ﺷﮑﺴﺖ و ‪ dJ‬ﻣـﺪت زﻣـﺎﻧﯽ ﮐـﻪ‬ ‫اﯾﻦ راﺳﺘﺎ‪ ،‬اﺑﺘﺪا ﯾﮏ ﺟﻤﻌﯿﺖ از راهﺣﻞﻫﺎي ﮐﺎﻧﺪﯾﺪ ﺑـﻪ‬ ‫ﺳﯿـﺴﺘﻢ ﺑـﺮاي ﺑـﺎر ‪ J‬ام در ﯾـﮏ دوره ﺷﮑـﺴﺖ ﻗـﺮار‬ ‫ﻧﺎم ﮐﺮوﻣﻮزوم ﺑﺎ اﺳﺘﻔﺎد از ﻓﺮآﯾﻨـﺪﻫﺎي ﺗـﺼﺎدﻓﯽ ﺗﻮﻟﯿـﺪ‬ ‫ﻣﯽﮔﯿﺮد ﺑﺎﺷﺪ‪ ،‬اﻋﺘﻤﺎدﭘﺬﯾﺮي ﺑﺎ اﺳـﺘﻔﺎده از راﺑﻄـﻪ زﯾـﺮ‬ ‫ﺷــﺪه اﺳــﺖ‪ .‬ﻫــﺮ ﮐﺮوﻣــﻮزوم ﺷــﺎﻣﻞ ﺗﺮازﻫــﺎي رﻗــﻮم‬ ‫ﺑﺮآورد ﻣﯽﮔﺮدد‪:‬‬ ‫ﺣﺪاﻗﻞ ﺑﻬﺮهﺑﺮداري ﻣﺨﺎزن ) ‪ ( x N‬اﺳـﺖ‪ .‬ﺑـﻪازاي ﻫـﺮ‬ ‫‪iM1 d J‬‬ ‫)‪(7‬‬ ‫‪T‬‬ ‫ﮐﺮوﻣﻮزوم‪ ،‬ﻣﺪل ﺷﺒﯿﻪﺳﺎزي ﯾﮏ ﺑﺎر اﺟـﺮا ﻣـﯽﺷـﻮد و‬ ‫‪Re  1 ‬‬ ‫ﺗﺎﺑﻊ ﻫﺪف ﻣﺘﻨﺎﻇﺮ ﺑـﺎ آن و اﻧﺤـﺮاف از اﻋﺘﻤـﺎدﭘـﺬﯾﺮي‬ ‫ﻣﺤﺎﺳﺒﻪ ﻣﯽﺷﻮد‪ .‬ﺑﺪﯾﻦ ﺗﺮﺗﯿﺐ در ﯾـﮏ ﻓﺮآﯾﻨـﺪ ﺗﮑﺎﻣـﻞ‬ ‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻌﺎرﯾﻒ ﻓﻮق‪ ،‬اﮔـﺮ ‪ Rei‬اﻋﺘﻤﺎدﭘـﺬﯾﺮي‬ ‫ﺗﺪرﯾﺠﯽ‪ ،‬ﺑﺎ اﺳﺘﻔﺎده از ﻋﻤﻠﮕﺮﻫﺎي اﻧﺘﺨـﺎب‪ ،3‬ﺗـﺰوﯾﺞ‬ ‫ﺗﺎﻣﯿﻦ آب ﺷﺒﮑﻪ ‪ i‬در ﮐﻞ دوره ﺷﺒﯿﻪﺳﺎزي‪Re reqi ،‬‬ ‫و ﺟﻬﺶ‪ 5‬ﺑﻪ ﺗﻮﻟﯿﺪ ﻣﺠـﺪد ﻧـﺴﻞ ﭘﺮداﺧﺘـﻪ ﻣـﯽﺷـﻮد و‬ ‫اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣـﻮرد ﻧﯿـﺎز )ﻣﻄﻠـﻮب( ﺑـﺮاي ﺗـﺎﻣﯿﻦ آب‬ ‫ﺟﻤﻌﯿــﺖ ﺟﺪﯾــﺪي از ﮐﺮﻣــﻮزومﻫــﺎ ﺗﻮﻟﯿــﺪ ﻣــﯽﮔــﺮدد‪.‬‬ ‫ﺷﺒﮑﻪ ‪ Vreqi ، i‬ﻣﯿﺰان اﻧﺤﺮاف از اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻮرد‬ ‫ﺳﭙﺲ‪ ،‬دوﺑﺎره ﺑـﻪ ارزﯾـﺎﺑﯽ ﺗـﺎﺑﻊ ﻫـﺪف و اﻧﺤـﺮاف از‬ ‫ﻧﯿﺎز ﺷـﺒﮑﻪ ‪ i‬و ‪ Vreqtotal‬ﻣﺠﻤـﻮع اﻧﺤﺮاﻓـﺎت ﻫﻤـﻪ‬ ‫اﻋﺘﻤﺎدﭘﺬﯾﺮي ﭘﺮداﺧﺘﻪ ﻣﯽﺷﻮد‪ .‬اﯾـﻦ ﻓﺮآﯾﻨـﺪ ﭼﺮﺧـﺸﯽ‬ ‫ﺷﺒﮑﻪﻫﺎ ﺑﺎﺷﺪ‪ ،‬ﺧﻮاﻫﯿﻢ داﺷﺖ‪:‬‬ ‫)‪(8‬‬ ‫‪Re i  Re req i ‬‬ ‫‪‬‬ ‫‪Re i  Re req i ‬‬ ‫‪4‬‬ ‫ﺗﺎ رﺳﯿﺪن ﺑﻪ ﻫﻤﮕﺮاﯾﯽ اداﻣﻪ ﻣـﯽﯾﺎﺑـﺪ‪ .‬اﻟﮕـﻮرﯾﺘﻢ اﯾـﻦ‬ ‫ﻣﺪل ﺗﺮﮐﯿﺒﯽ و ﻓﺮآﯾﻨﺪ ﭼﺮﺧﺸﯽ در ﺷﮑﻞ ‪ 3‬ﻧـﺸﺎن داده‬ ‫‪0‬‬ ‫‪‬‬ ‫‪Vreq i  ‬‬ ‫‪Re req i  Re i‬‬ ‫ﺷﺪه اﺳﺖ‪.‬‬ ‫ﻋﻤﻠﮕﺮﻫــﺎي ﻣﻨﺘﺨــﺐ اﻟﮕــﻮرﯾﺘﻢ ژﻧﺘﯿــﮏ در اﯾــﻦ‬ ‫)‪(9‬‬ ‫ﻣﻄﺎﻟﻌﺎت ﺷﺎﻣﻞ اﻧﺪازه ﺟﻤﻌﯿـﺖ=‪ ،40‬اﺣﺘﻤـﺎل ﺗـﺰوﯾﺞ‬ ‫‪Vreqtotal  Vreqi‬‬ ‫‪ ،0/5‬اﺣﺘﻤﺎل ﺟﻬﺶ از ‪ 0/05‬در اﺑﺘﺪاي ﺗﻮﻟﯿﺪ ﻧـﺴﻞ ﺗـﺎ‬ ‫در اﯾﻦ ﻣﻄﺎﻟﻌﺎت ﺑﺮاي ﺑﻪ ﺣـﺪاﻗﻞ رﺳـﺎﻧﺪن ﻣﯿـﺰان‬ ‫‪ 0/005‬در زﻣﺎن ﻫﻤﮕﺮاﯾﯽ ﻣﺘﻐﯿﺮ ﺑﻮده اﺳﺖ‪ .‬ﺑـﻪﻣﻨﻈـﻮر‬ ‫اﻧﺤﺮاﻓــﺎت از اﻋﺘﻤــﺎدﭘــﺬﯾﺮي ﻣﻄﻠــﻮب‪ ،‬از روش ﺗــﺎﺑﻊ‬ ‫ﭘﯿﺎدهﺳﺎزي اﯾﻦ ﻣﺪل از ﮐﺪ ﻧﻮﯾﺴﯽ در ﻧﺮماﻓـﺰار ﻣﺘﻠـﺐ‬ ‫ﺟﺮﯾﻤﻪ‪ 2‬اﺳﺘﻔﺎده ﮔﺮدﯾﺪ ﮐﻪ در ﺑﺨﺶ ﺑﻌﺪي ﺑـﻪ ﺗﻔـﺼﯿﻞ‬ ‫‪6‬‬ ‫اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ‪.‬‬ ‫ﻣﻮرد ﺑﺮرﺳﯽ ﻗﺮار ﺧﻮاﻫﺪ ﮔﺮﻓﺖ‪.‬‬ ‫ﺷﺮح روشﻫـﺎي ﻣـﻮرد اﺳـﺘﻔﺎده‪ :‬در اﯾـﻦ ﻣﻄﺎﻟﻌـﺎت‬ ‫ﺑﻪﻣﻨﻈﻮر ﺑﯿﺸﯿﻨﻪﺳﺎزي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ ﺿﻤﻦ ﺣﻔـﻆ‬ ‫اﻋﺘﻤﺎدﭘﺬﯾﺮي ﺗﺄﻣﯿﻦ ﻧﯿﺎزﻫﺎ‪ ،‬از ﯾﮏ ﻣـﺪل ﺷـﺒﯿﻪﺳـﺎزي‪-‬‬ ‫ﺑﻬﯿﻨﻪﺳﺎزي اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ‪ .‬در اﯾـﻦ ﻣـﺪل ﺗﺮﮐﯿﺒـﯽ‪،‬‬ ‫ﻣﺪل ﺷﺒﯿﻪﺳﺎزي ﺑﺮ ﻣﺒﻨﺎي ﻣﻌﺎدﻻت ﺑـﯿﻼن آب و ﺳـﺎﯾﺮ‬ ‫ﻣﺤﺪودﯾﺖﻫﺎ ﮐﻪ در ﺑﺨﺶ ﻣﻮاد و روشﻫـﺎ ﺑـﻪ ﮐﻠﯿـﺖ‬ ‫‪3- Elitism‬‬ ‫‪4- Crossover‬‬ ‫‪5- Mutation‬‬ ‫‪6- Matlab‬‬ ‫‪1- Failure‬‬ ‫‪2- Penalty Function‬‬ ‫‪308‬‬ ‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫ﺷﮑﻞ ‪ -3‬ﻓﺮآﯾﻨﺪ ﮐﻠﯽ ﺷﺒﯿﻪﺳﺎزي و ﺑﻬﯿﻨﻪﺳﺎزي در ﻣﺪل ﺗﺮﮐﯿﺒﯽ‪.‬‬ ‫‪Figure 3. General process of the simulation and optimization in the combined model.‬‬ ‫در ﺣﺎﻟــﺖ ﮐﻠــﯽ‪ ،‬ﻣــﻮﻗﻌﯽ ﮐــﻪ از اﻟﮕــﻮرﯾﺘﻢﻫــﺎي‬ ‫‪Z ‬‬ ‫‪Aim  Maximize  ‬‬ ‫‪s ‬‬ ‫)‪(12‬‬ ‫ﻓﺮاﮐﺎوﺷﯽ ﻣﺎﻧﻨﺪ اﻟﮕـﻮرﯾﺘﻢ ژﻧﺘﯿـﮏ ﺑـﺮاي ﺑﻬﯿﻨـﻪﺳـﺎزي‬ ‫اﺳﺘﻔﺎده ﻣﯽﺷﻮد‪ ،‬ﺟﻬـﺖ اﻋﻤـﺎل ﻣﺤـﺪودﯾﺖﻫـﺎ ﻣﺎﻧﻨـﺪ‬ ‫در اﯾﻦ راﺑﻄـﻪ ‪ ‬ﺗﺤـﺖ ﻋﻨـﻮان ﺿـﺮﯾﺐ اﻫﻤﯿـﺖ‬ ‫ﮐﻨﺘﺮل اﻋﺘﻤﺎدﭘﺬﯾﺮي‪ ،‬ﻧﯿﺎز ﺑﻪ ﯾﺎﻓﺘﻦ راهﺣﻠﯽ ﻣﺘﻨﺎﺳـﺐ ﺑـﺎ‬ ‫ﺷﻨﺎوري‪ 1‬ﻧﺎمﮔﺬاري ﻣﯽﺷﻮد ﮐـﻪ در ﺣﻘﯿﻘـﺖ ﺿـﺮﯾﺒﯽ‬ ‫ﻧﻮع ﻣﺴﺄﻟﻪ دارﯾﻢ‪ .‬در اﯾﻦ ﻣﻄﺎﻟﻌﻪ‪ ،‬از روش ﺗﺎﺑﻊ ﺟﺮﯾﻤﻪ‬ ‫ﺑﺮاي ﺗﻨﻈﯿﻢ اﻫﻤﯿﺖ ﺗﺄﻣﯿﻦ ﻗﻄﻌﯽ ﻧﯿﺎزﻫﺎ ﺑﺎ اﻋﺘﻤﺎدﭘﺬﯾﺮي‬ ‫اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ ﮐﻪ ﺑﻪﺻﻮرت زﯾﺮ ﻣﺤﺎﺳﺒﻪ و اﻋﻤـﺎل‬ ‫ﻣﻄﻠﻮب در ﻣﻘﺎﺑﻞ ﺣﺪاﮐﺜﺮﺳﺎزي اﻧﺮژي اﺳـﺖ‪ .‬ﺿـﺮﯾﺐ‬ ‫ﻣﯽﮔﺮدد‪.‬‬ ‫‪ ‬ﺷﺎﻣﻞ ﻣﻘﺎدﯾﺮ ﺑﺰرگﺗﺮ از ﺻﻔﺮ ﻣﯽﺑﺎﺷﺪ ﮐﻪ ﺑﺎ ﺗﻮﺟـﻪ‬ ‫)‪(10‬‬ ‫‪1‬‬ ‫‪Rei  Re req  i ‬‬ ‫‪‬‬ ‫‪i  ‬‬ ‫‪‬‬ ‫‪(Re‬‬ ‫‪Re‬‬ ‫)‬ ‫‪Rei  Re req  i ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪i‬‬ ‫‪ req  i‬‬ ‫)‪(11‬‬ ‫‪ s   i‬‬ ‫ﺑﻪ ﺷﮑﻞ ﺗﺎﺑﻊ ﻫﺪف و اﻋﻤﺎل ﺟﺮﯾﻤﻪ در اﯾﻦ ﻣﻄﺎﻟﻌـﺎت‪،‬‬ ‫ﻋﺪد ﯾﮏ )‪ (  =1‬در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ‪ .‬اﯾﻦ ﺗﮑﻨﯿﮏ‬ ‫ﺑﺮﻧﺎﻣﻪرﯾﺰي ﻋﻼوه ﺑﺮ آنﮐﻪ ﺳﺒﺐ ﺳﺎدهﺳـﺎزي ﻣـﺴﺄﻟﻪ و‬ ‫دﺳﺖﯾﺎﺑﯽ ﺑﻪ ﯾﮏ ﻣﺴﺄﻟﻪ ﺑﺮﻧﺎﻣﻪرﯾﺰي ﻏﯿﺮﺧﻄﯽ ﻧﺎﻣﻘﯿـﺪ‬ ‫ﺑﻨﺎ ﺑـﺮ ﺗﻮﺿـﯿﺤﺎت ﻓـﻮق‪ ،‬اﮔـﺮ ‪ Aim‬ﺗـﺎﺑﻊ ﻫـﺪف‬ ‫‪2‬‬ ‫ﺷﺪه اﺳﺖ‪ ،‬ﻓﻀﺎي ﺟﺴﺘﺠﻮي روش ﺣﻞ ﺑﻬﯿﻨﻪﺳﺎزي را‬ ‫اﺻﻼح ﺷﺪه ﺑﻬﯿﻨﻪﺳﺎزي ﺑﺎﺷﺪ ﮐﻪ ﺑﺎﯾﺴﺘﯽ ﺿـﻤﻦ ﺗـﺎﻣﯿﻦ‬ ‫ﻧﯿﺰ ﺑﺎرزﺗﺮ و ﻣﻨﻌﻄﻒﺗﺮ ﺳﺎﺧﺘﻪ ﮐﻪ ﺑﻪ اﯾﻦ ﺗﺮﺗﯿﺐ اﻣﮑـﺎن‬ ‫ﻗﯿﺪﻫﺎي ﻣﺴﺄﻟﻪ )اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻄﻠﻮب در ﺗﺎﻣﯿﻦ ﻧﯿﺎزﻫﺎ(‬ ‫ﯾﺎﻓﺘﻦ ﭘﺎﺳﺦ ﺑﻬﯿﻨﻪ ﻣﻄﻠـﻖ‪ 3‬در ﻣﺠـﺎورت ﻣﺮزﻫـﺎ ﺑـﺴﯿﺎر‬ ‫ﺑﺮاي ﮐﻞ دوره ﺑﯿﺸﯿﻨﻪﺳﺎزي ﺷﻮد‪ ،‬ﺑﻪ ﺷﮑﻞ راﺑﻄـﻪ زﯾـﺮ‬ ‫ﻣﺤﺘﻤﻞﺗﺮ ﺧﻮاﻫﺪ ﺑﻮد‪.‬‬ ‫در ﻣﺪل اﻋﻤﺎل ﻣﯽﮔﺮدد‪.‬‬ ‫‪1- Floating Importance Coefficient‬‬ ‫‪2- Unconstraint Nonlinear Programming‬‬ ‫‪3- Global Optimum‬‬ ‫‪309‬‬ ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ )‪ ،(23‬ﺷﻤﺎره )‪1395 (3‬‬ ‫ﻧﺘﺎﯾﺞ و ﺑﺤﺚ‬ ‫ﭘﺲ از ﭘﯿﺎدهﺳﺎزي و اﺟﺮاي ﻣﺪل‪ ،‬ﻣﻘﺪار ﺗﺎﺑﻊ ﻫﺪف‬ ‫ﺑﯿﺶﺗﺮﯾﻦ ﺳﻬﻢ را در ﺗﻮﻟﯿﺪ ﻧﯿـﺮو داراﺳـﺖ و ﺳـﺪﻫﺎي‬ ‫ﮔﺪارﻟﻨﺪر‪ ،‬ﮐﺎرون ‪ 3‬و ﮔﺘﻮﻧﺪ ﻋﻠﯿﺎ ﺑﺎ ﻓﺎﺻﻠﻪ اﻧﺪﮐﯽ از آن‬ ‫ﺑﻬﯿﻨﻪﺳﺎزي )‪ (Z‬ﮐﻪ ﺑﯿﺸﯿﻨﻪﺳﺎزي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺑﺮﻗﺎﺑﯽ در‬ ‫ﻗﺮار دارد‪ .‬ﺑﻪ ﻫﻤﯿﻦ ﺗﺮﺗﯿﺐ‪ ،‬ﺳﺪﻫﺎي دز و ﮐـﺎرون ‪ 4‬در‬ ‫ﮐﻞ دوره آﻣﺎري ‪ 41‬ﺳﺎﻟﻪ را ﻣﺪ ﻧﻈﺮ ﻗﺮار داﺷﺘﻪ اﺳـﺖ‪،‬‬ ‫رﺗﺒﻪﻫﺎي ﺑﻌﺪي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺳﯿﺴﺘﻢ ﻗﺮار ﻣﯽﮔﯿﺮﻧﺪ‪.‬‬ ‫‪ 745913‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ ﺑﺮآورد ﺷﺪه اﺳـﺖ‪ .‬ﻧﺘـﺎﯾﺞ‬ ‫ﺑﻪﻣﻨﻈﻮر اراﺋﻪ ﺟﺰﺋﯿﺎت ﺑﯿﺶﺗـﺮ از ﻧﺘـﺎﯾﺞ ﺧﺮوﺟـﯽ‬ ‫اﻧﺮژي ﺑﺮﻗﺎﺑﯽ‪ ،‬دﺑﯽ ﻋﺒﻮري از ﻧﯿﺮوﮔﺎهﻫﺎ و ﺗﺮاز ﺣـﺪاﻗﻞ‬ ‫ﻣﺪل‪ ،‬ﻣﻨﺤﻨﯽ ﺗﺪاوم اﻧﺮژي ﺗﻮﻟﯿﺪي ﺳﺎﻻﻧﻪ در ﮐـﻞ دوره‬ ‫ﺑﻬﺮهﺑﺮداري در ﻫﺮ ﯾﮏ از ﺳـﺪﻫﺎي ﻣﺨﺰﻧـﯽ ﺑـﻪ ﺷـﺮح‬ ‫ﻣﺪلﺳﺎزي و ﻣﯿـﺎﻧﮕﯿﻦ ﻣﺎﻫﺎﻧـﻪ اﻧـﺮژي ﺗﻮﻟﯿـﺪي ﻣﻄـﺎﺑﻖ‬ ‫ﺟﺪول ‪ 2‬ﺑﺮآورد ﺷﺪه اﺳﺖ‪ .‬ﺑﺮ اﯾـﻦ اﺳـﺎس‪ ،‬ﻣﯿـﺎﻧﮕﯿﻦ‬ ‫ﻧﻤﻮدارﻫﺎي ‪ 4‬ﺗﺎ ‪ 7‬ﺑﻪ ﺗﺼﻮﯾﺮ ﮐﺸﯿﺪه اﺳﺖ‪.‬‬ ‫ﺳﺎﻻﻧﻪ اﻧﺮژي ﺗﻮﻟﯿـﺪي در ﺳﯿـﺴﺘﻢ ‪ 18193‬ﮔﯿﮕـﺎ وات‬ ‫ﺳﺎﻋﺖ در ﺳﺎل ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ ﺳﺪ ﺷﻬﯿﺪ ﻋﺒﺎﺳﭙﻮر‬ ‫ﺟﺪول ‪ -2‬ﻧﺘﺎﯾﺞ ﮐﻠﯽ ﺧﺮوﺟﯽ از ﻣﺪل ﺗﻮﺳﻌﻪﯾﺎﻓﺘﻪ‪.‬‬ ‫‪Table 2. General results of developed model.‬‬ ‫ﺗﺮاز ﺣﺪاﻗﻞ ﺑﻬﯿﻨﻪ‬ ‫ﺳﺪ ﻣﺨﺰﻧﯽ‬ ‫‪Reservoir dam‬‬ ‫ﮐﺎرون ‪4‬‬ ‫)‪(Karun 4‬‬ ‫ﮐﺎرون ‪3‬‬ ‫)‪(Karun 3‬‬ ‫ﮐﺎرون ‪1‬‬ ‫)‪(Karun 1‬‬ ‫ﮔﺪارﻟﻨﺪر‬ ‫)‪(Godarlandar‬‬ ‫ﮔﺘﻮﻧﺪ ﻋﻠﯿﺎ‬ ‫)‪(Up Gotvand‬‬ ‫دز‬ ‫)‪(Dez‬‬ ‫اﻧﺮژي ﺑﯿﺸﯿﻨﻪ ﺳﺎﻻﻧﻪ‬ ‫دﺑﯽ ﻋﺒﻮري از ﻧﯿﺮوﮔﺎه‬ ‫‪Optimal minimum level‬‬ ‫)‪(M‬‬ ‫‪Maximum annual energy‬‬ ‫)‪(GWH‬‬ ‫‪Flow through power plant‬‬ ‫)‪(CMS‬‬ ‫‪993.8‬‬ ‫‪2007.5‬‬ ‫‪153.99‬‬ ‫‪806.14‬‬ ‫‪3382.9‬‬ ‫‪256.43‬‬ ‫‪502.1‬‬ ‫‪3483.1‬‬ ‫‪307.58‬‬ ‫‪366.6‬‬ ‫‪3477.1‬‬ ‫‪332.79‬‬ ‫‪185.3‬‬ ‫‪3273.5‬‬ ‫‪365.69‬‬ ‫‪307.6‬‬ ‫‪2568.9‬‬ ‫‪204.23‬‬ ‫ﺷﮑﻞ ‪ -4‬ﻣﻨﺤﻨﯽ ﺗﺪاوم اﻧﺮژي ﺳﺎﻻﻧﻪ در رودﺧﺎﻧﻪ ﮐﺎرون‪ -‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﺳﺎل‪.‬‬ ‫‪Figure 4. Flow duration curve of annual energy in Karun river (GWH per year).‬‬ ‫‪310‬‬ ‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫ﺷﮑﻞ ‪ -5‬ﻣﻘﺎدﯾﺮ اﻧﺮژي ﻣﺎﻫﺎﻧﻪ در رودﺧﺎﻧﻪ ﮐﺎرون‪ -‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﻣﺎه‪.‬‬ ‫‪Figure 5. Monthly energy values in Karun river (GWH per month).‬‬ ‫ﻻزم ﺑﻪ ﺗﻮﺿﯿﺢ اﺳﺖ از آنﺟﺎ ﮐـﻪ روﻧـﺪ ﺗﻐﯿﯿـﺮات‬ ‫ﻣﺮﺑﻮط ﺑﻪ ﺷﺎﺧﻪ دز ﺷﺎﻣﻞ ﺳﺪ ﻣﺨﺰﻧﯽ دز در ﺷﮑﻞﻫﺎي‬ ‫ﻣﺎﻫﺎﻧﻪ و ﺳﺎﻻﻧﻪ ﺗﻮﻟﯿﺪ اﻧﺮژي در ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ ﺷـﺎﺧﻪ‬ ‫‪ 6‬و ‪ 7‬اراﺋﻪ ﺷﺪه اﺳﺖ‪ .‬ﻃﺒﻖ ﺷﮑﻞ ‪ 4‬ﺣﺪود ‪ 80‬درﺻﺪ‬ ‫ﮐﺎرون ﺗﻘﺮﯾﺒﺎً ﯾﮑـﺴﺎن ﺑـﻮده و ﺟﻬـﺖ ﺧﻼﺻـﻪﺳـﺎزي‪،‬‬ ‫اﻧﺮژي ﺗﻮﻟﯿﺪ ﺷـﺪه ﮐـﺎرون در ﺣـﺪ ﻓﺎﺻـﻞ ‪ 10000‬ﺗـﺎ‬ ‫ﻣﻮارد ﻣﺮﺑﻮﻃﻪ ﺑﻪ ﺷﺎﺧﻪ ﮐﺎرون ﺷﺎﻣﻞ ﺳﺪﻫﺎي ﮐﺎرون ‪،4‬‬ ‫‪ 25000‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﺳﺎل ﻗﺮار دارد و در ‪50‬‬ ‫ﮐـﺎرون ‪ ،3‬ﺷــﻬﯿﺪ ﻋﺒﺎﺳـﭙﻮر‪ ،‬ﮔﺪارﻟﻨــﺪر و ﮔﺘﻮﻧـﺪ ﻋﻠﯿــﺎ‬ ‫درﺻﺪ ﻣﻮاﻗﻊ ﺣﺪود ‪ 15000‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﺳﺎل‬ ‫ﺑﻪﺻـﻮرت ﺗﺠﻤﻌـﯽ و در ﺷـﮑﻞﻫـﺎي ‪ 4‬و ‪ 5‬و ﻣـﻮارد‬ ‫اﺳﺖ ﮐﻪ ﺗﻮزﯾﻊ ﻣﺎﻫﺎﻧﻪ آن ﻣﻄﺎﺑﻖ ﺷﮑﻞ ‪ 5‬اﺳﺖ‪.‬‬ ‫ﺷﮑﻞ ‪ -6‬ﻣﻨﺤﻨﯽ ﺗﺪاوم اﻧﺮژي ﺳﺎﻻﻧﻪ در رودﺧﺎﻧﻪ دز‪ -‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﺳﺎل‪.‬‬ ‫‪Figure 6. Flow duration curve of annual energy in Dez river (GWH per year).‬‬ ‫‪311‬‬ ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ )‪ ،(23‬ﺷﻤﺎره )‪1395 (3‬‬ ‫ﺷﮑﻞ ‪ -7‬ﻣﻘﺎدﯾﺮ اﻧﺮژي ﻣﺎﻫﺎﻧﻪ در رودﺧﺎﻧﻪ دز‪ -‬ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ در ﻣﺎه‪.‬‬ ‫‪Figure 7. Monthly energy values in Dez river (GWH per month).‬‬ ‫ﻫﻤﺎنﻃﻮر ﮐﻪ اﺷﺎره ﮔﺮدﯾﺪ ﻣﺪل ﺗﻮﺳـﻌﻪ داده ﺷـﺪه‬ ‫ﻣﺪﯾﺮﯾﺖ و ﺑﺮﻧﺎﻣﻪرﯾﺰي ﮐﺸﻮر و وزارت ﻧﯿـﺮو )ﻧـﺸﺮﯾﻪ‬ ‫ﻗﺎدر ﺑﻪ ﺣﻔﻆ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻄﻠﻮب ﺑﺮاي ﺗﺎﻣﯿﻦ ﻧﯿﺎزﻫـﺎ‬ ‫ﺷﻤﺎره ‪ (2004 ،272‬ﻣﻌﻤﻮﻻً ‪ 75‬درﺻﺪ اﺳـﺖ‪ .‬در اﯾـﻦ‬ ‫ﺧﻮاﻫﺪ ﺑﻮد‪ .‬ﺑﺮ اﯾﻦ اﺳﺎس‪ ،‬اﻋﺘﻤـﺎدﭘـﺬﯾﺮي ﻣـﻮرد ﻧﯿـﺎز‬ ‫ﻣﻄﺎﻟﻌﺎت ﺗﺎﺑﻊ ﺟﺮﯾﻤﻪ ﺑﻪ ﮔﻮﻧﻪاي ﺗﻌﺮﯾﻒ ﺷﺪه اﺳﺖ ﮐﻪ‬ ‫ﺑـــﺮاي ﺗـــﺎﻣﯿﻦ ﻧﯿﺎزﻫـــﺎي ﮐـــﺸﺎورزي در ﻣﻄﺎﻟﻌـــﺎت‬ ‫اﻋﺘﻤﺎدﭘﺬﯾﺮي ﺗﺎﻣﯿﻦ ﻧﯿﺎزﻫﺎ در ﻫﻤﻪ ﻣﺎهﻫﺎ و ﺷﺒﮑﻪﻫﺎ ﺑﺎﻟﻎ‬ ‫ﺑﻬﺮهﺑﺮداري از ﺳـﺪﻫﺎ‪ ،‬ﺑـﺎ ﺗﻮﺟـﻪ ﺑـﻪ ﺗﻮﺻـﯿﻪ ﺳـﺎزﻣﺎن‬ ‫ﺑﺮ ‪ 75‬درﺻﺪ ﮔﺮدد )ﺟﺪول ‪.(3‬‬ ‫ﺟﺪول ‪ -3‬ﻣﻘﺎدﯾﺮ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﺎﻫﺎﻧﻪ ﺗﺄﻣﯿﻦ ﻧﯿﺎز ﺷﺒﮑﻪﻫﺎي ﮐﺸﺎورزي‪ -‬ﺑﺮ ﺣﺴﺐ درﺻﺪ‪.‬‬ ‫‪Table 3. Monthly reliability values for satisfying demand of the agricultural networks- in percent.‬‬ ‫ﮔﺮه‬ ‫ﻣﻬﺮ‬ ‫آﺑﺎن‬ ‫آذر‬ ‫دي‬ ‫ﺑﻬﻤﻦ‬ ‫اﺳﻔﻨﺪ‬ ‫ﻓﺮوردﯾﻦ‬ ‫اردﯾﺒﻬﺸﺖ‬ ‫ﺧﺮداد‬ ‫ﺗﯿﺮ‬ ‫ﻣﺮداد‬ ‫ﺷﻬﺮﯾﻮر‬ ‫‪Node‬‬ ‫‪Oct‬‬ ‫‪Nov‬‬ ‫‪Dec‬‬ ‫‪Jan‬‬ ‫‪Feb‬‬ ‫‪Mar‬‬ ‫‪Apr‬‬ ‫‪May‬‬ ‫‪Jun‬‬ ‫‪Jul‬‬ ‫‪Aug‬‬ ‫‪Sep‬‬ ‫‪22‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪23‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪24‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪75.6‬‬ ‫‪80.5‬‬ ‫‪82.9‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪25‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪26‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪27‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪28‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪29‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪90.2‬‬ ‫‪30‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪31‬‬ ‫‪90.2‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪92.7‬‬ ‫‪32‬‬ ‫‪75.6‬‬ ‫‪82.9‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪90.2‬‬ ‫‪90.2‬‬ ‫‪33‬‬ ‫‪75.6‬‬ ‫‪82.9‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪85.4‬‬ ‫‪34‬‬ ‫‪75.6‬‬ ‫‪82.9‬‬ ‫‪92.7‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫‪92.7‬‬ ‫‪90.2‬‬ ‫‪312‬‬ ‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ ‫در ﺟﺪول ‪ ،3‬ﻣﻘﺎدﯾﺮ اﻋﺘﻤﺎد ﭘﺬﯾﺮي ﻣﺎﻫﺎﻧﻪ در ﻫﻤـﻪ‬ ‫ﻫــﺴﺘﻨﺪ و ﺑــﻪﻋﻨــﻮان ﺷــﺒﮑﻪﻫــﺎي ﺑﺤﺮاﻧــﯽ ﺗــﺎﻣﯿﻦ آب‬ ‫ﺷﺒﮑﻪ ﮐﺸﺎورزي ﺳﯿﺴﺘﻢ ﺑﺮ اﺳﺎس ﭘﯿﮑﺮﺑﻨﺪي )ﺷﮑﻞ ‪(2‬‬ ‫ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪﻧﺪ‪ .‬ﻻزم ﺑﻪ ﺗﻮﺿﯿﺢ اﺳﺖ ﺗـﺎﻣﯿﻦ ﻧﯿﺎزﻫـﺎي‬ ‫اراﺋﻪ ﺷﺪه اﺳﺖ‪ .‬ﻧﻘـﺎط ﺑﺤﺮاﻧـﯽ در ﺳﯿـﺴﺘﻢ ﮐـﻪ داراي‬ ‫ﺷﺮب و ﺻﻨﻌﺖ و زﯾﺴﺖﻣﺤﯿﻄﯽ ﺑﻪﺗﺮﺗﯿﺐ در اوﻟﻮﯾـﺖ‬ ‫ﺣــﺪاﻗﻞ اﻋﺘﻤﺎدﭘــﺬﯾﺮي ﺑــﻮده اﺳــﺖ در اﯾــﻦ ﺟــﺪول‬ ‫اول و دوم ﻗﺮار ﮔﺮﻓﺘﻪاﻧﺪ و ﺑﺎ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻧﺰدﯾﮏ ﺑـﻪ‬ ‫ﻣــﺸﺨﺺ ﺷــﺪه اﺳــﺖ‪ .‬ﺑــﺮ اﯾــﻦ اﺳــﺎس‪ ،‬ﺷــﺒﮑﻪﻫــﺎي‬ ‫‪ 100‬درﺻﺪ ﺗﺎﻣﯿﻦ ﺷﺪهاﻧﺪ‪.‬‬ ‫ﮐﺸﺎورزي رودﺧﺎﻧﻪ دز و ﺷﺒﮑﻪ ﮔﺮﮔﺮ ﺑﺮ روي رودﺧﺎﻧﻪ‬ ‫در اداﻣﻪ دﺑﯽﻫﺎي ﺧﺮوﺟﯽ از ﺳﺪ ﮔﺘﻮﻧﺪ ﺑـﻪﻋﻨـﻮان‬ ‫ﮔﺮﮔــﺮ از اﻧــﺸﻌﺎﺑﺎت رودﺧﺎﻧــﻪ ﮐــﺎرون‪ ،‬ﻧﻘــﺎط ﻣــﺮزي‬ ‫آﺧﺮﯾﻦ ﺳﺪ از ﺳﯿﺴﺘﻢ ﻣﻨـﺎﺑﻊ آب ﮐـﺎرون و دﺑـﯽﻫـﺎي‬ ‫ﺑﻬﯿﻨﻪﺳﺎزي ﺑﺮاي ﺗﺄﻣﯿﻦ ﺣﺪاﻗﻞ اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻗﺎﺑﻞﻗﺒـﻮل‬ ‫ﺧﺮوﺟﯽ از ﺳﺪ دز در ﺷﮑﻞ ‪ 8‬اراﺋﻪ ﺷﺪه اﺳﺖ‪.‬‬ ‫ﺷﮑﻞ ‪ -8‬دﺑﯽﻫﺎي ﺧﺮوﺟﯽ از ﺳﺪ ﮔﺘﻮﻧﺪ و دز‪ -‬ﻣﺘﺮﻣﮑﻌﺐ در ﺛﺎﻧﯿﻪ‪.‬‬ ‫‪Figure 8. Output discharges of Gotvand and Dez dams (CMS).‬‬ ‫ﻧﺘﯿﺠﻪﮔﯿﺮي‬ ‫در اﯾﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺗﻮﺳـﻌﻪ ﯾـﮏ ﻣـﺪل ﺷـﺒﯿﻪﺳـﺎزي‪-‬‬ ‫ﻣﯿﺰان اﻧﺤﺮاف از اﻋﺘﻤﺎدﭘﺬﯾﺮي ﻣﻄﻠﻮب اﺳﺘﻔﺎده ﮔﺮدﯾﺪ‪.‬‬ ‫در اﯾﻦ ﺣﺎﻟﺖ‪ ،‬ﺗﺮاز ﺣﺪاﻗﻞ ﺑﻬﺮهﺑﺮداري ﺳﺪﻫﺎي ﻣﺨﺰﻧﯽ‬ ‫ﺑﻬﯿﻨـﻪﺳــﺎزي ﻣﺒﺘﻨــﯽ ﺑــﺮ اﻟﮕــﻮرﯾﺘﻢ ژﻧﺘﯿــﮏ در ﺳﯿــﺴﺘﻢ‬ ‫ﺑﻪﻋﻨﻮان ﻣﺘﻐﯿﺮ ﺗﺼﻤﯿﻢﮔﯿﺮي ﻣﺪل ﻗﺮار داده ﺷﺪه اﺳـﺖ‪.‬‬ ‫ﭼﻨﺪﻣﺨﺰﻧـــﻪ و ﭼﻨـــﺪﻣﻨﻈﻮره ﮐـــﺎرون و دز ﺷـــﺎﻣﻞ ‪6‬‬ ‫ﺑﺎﻻ ﻧﮕﻪ داﺷﺘﻦ ﺗﺮاز ﺣﺪاﻗﻞ ﺑﻬـﺮهﺑـﺮداري‪ ،‬از ﯾـﮏﺳـﻮ‬ ‫ﺳﺪ ﮐﺎرون ‪ ،3‬ﮐـﺎرون ‪ ،4‬ﺷـﻬﯿﺪ ﻋﺒﺎﺳـﭙﻮر‪ ،‬ﮔﺪارﻟﻨـﺪر‪،‬‬ ‫ﻣﯿﺰان اﻧﺮژي ﺑﺮﻗﺎﺑﯽ را اﻓﺰاﯾﺶ ﻣﯽدﻫﺪ و از ﺳﻮي دﯾﮕﺮ‬ ‫ﮔﺘﻮﻧﺪ ﻋﻠﯿﺎ و دز ﭘﺮداﺧﺘﻪ ﺷﺪه اﺳﺖ‪ .‬ﺗـﺎﺑﻊ ﻫـﺪف اﯾـﻦ‬ ‫ﺑﺎ ﮐﺎﻫﺶ دﺧﯿﺮه ﻣﻔﯿﺪ و ﻧﻮﺳﺎﻧﺎت ﻣﺨﺰن‪ ،‬اﻋﺘﻤﺎدﭘﺬﯾﺮي‬ ‫ﻣﺪل ﺗﺮﮐﯿﺒﯽ‪ ،‬ﺑﯿﺸﯿﻨﻪﺳﺎزي ﺗﻮﻟﯿﺪ اﻧـﺮژي ﺑﺮﻗـﺎﺑﯽ اﺳـﺖ‬ ‫ﺗﺄﻣﯿﻦ ﻧﯿﺎزﻫﺎ را ﮐﺎﻫﺶ ﻣﯽدﻫﺪ‪ .‬ﺑﻨـﺎﺑﺮاﯾﻦ ﻣﻘـﺎدﯾﺮ ﺑﻬﯿﻨـﻪ‬ ‫ﻣﺸﺮوط ﺑﺮ آنﮐﻪ اﻋﺘﻤﺎدﭘـﺬﯾﺮي ﻣﻄﻠـﻮب ﺑـﺮاي ﺗـﺎﻣﯿﻦ‬ ‫آن‪ ،‬در ﻣﺪل ﺗﺮﮐﯿﺒﯽ ﺑﺮآورد ﮔﺮدﯾﺪه اﺳﺖ‪ .‬ﻋﻼوه ﺑﺮ آن‪،‬‬ ‫ﻧﯿﺎزﻫﺎ ﻧﯿﺰ ﻓﺮاﻫﻢ ﮔﺮدد و ﻣﻘﺎدﯾﺮ ﻣﺎﻫﺎﻧﻪ اﻋﺘﻤﺎدﭘﺬﯾﺮي در‬ ‫اﺳﺘﻔﺎده از ﻣﺪل ﺗﺮﮐﯿﺒﯽ ﺷﺒﯿﻪﺳﺎزي‪ -‬ﺑﻬﯿﻨﻪﺳﺎزي ﮐﻤـﮏ‬ ‫ﮐﻞ ﺷﺒﮑﻪﻫﺎ ﻫﻤﻮاره ﺑﺎﻟﻎ ﺑﺮ ‪ 75‬درﺻﺪ ﮔﺮدد‪ .‬ﺑـﺎ ﺗﻮﺟـﻪ‬ ‫ﻗﺎﺑﻞﻣﻼﺣﻈﻪاي ﺑﻪ وارد ﮐﺮدن ﺟﺰﺋﯿـﺎت ﺳﯿـﺴﺘﻢ ﻣﻨـﺎﺑﻊ‬ ‫ﺑﻪ اﯾﻦﮐﻪ اﻟﮕﻮرﯾﺘﻢﻫﺎي ﻓﺮاﮐﺎوﺷـﯽ در ﺣﺎﻟـﺖ ﻣﻌﻤـﻮل‪،‬‬ ‫آب در ﻣﺪل ﺷﺒﯿﻪﺳﺎزي ﻧﻤـﻮده اﺳـﺖ‪ .‬اﯾـﻦ در ﺣـﺎﻟﯽ‬ ‫ﻗﺎدر ﺑﻪ ﭘﺬﯾﺮش ﻗﯿﺪﻫﺎي ﻣﺴﺄﻟﻪ ﻧﯿﺴﺘﻨﺪ و ﺑﺎﯾـﺴﺘﯽ ﺑـﺮاي‬ ‫اﺳــﺖ ﮐــﻪ در ﺷــﺮاﯾﻂ اﺳــﺘﻔﺎده ﻣﻌﻤــﻮل از ﻣــﺪلﻫــﺎي‬ ‫اﻋﻤﺎل اﯾﻦ ﻣﺤﺪودﯾﺖﻫﺎ ﭼﺎرهﺟﻮﯾﯽ ﮔﺮدد‪ ،‬در ﻣﻄﺎﻟﻌﺎت‬ ‫ﺑﻬﯿﻨﻪﺳﺎزي‪ ،‬ﻧﯿﺎز ﺑﻪ ﺳﺎدهﺳﺎزي زﯾﺎد ﻣﺴﺄﻟﻪ اﺳﺖ‪.‬‬ ‫ﭘﯿﺶرو از اﻋﻤﺎل ﺟﺮﯾﻤﻪ در ﺗـﺎﺑﻊ ﻫـﺪف ﻣﺘﻨﺎﺳـﺐ ﺑـﺎ‬ ‫‪313‬‬ 1395 (3) ‫ ﺷﻤﺎره‬،(23) ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ‬ ‫ ﺑـﺮ اﯾـﻦ‬.‫ ﮔﯿﮕﺎ وات ﺳﺎﻋﺖ ﺑﻮده اﺳـﺖ‬18193 ‫ﺳﺎﻻﻧﻪ‬ ‫ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ از ﺷﺒﯿﻪﺳﺎزي و ﺑﻬﯿﻨﻪﺳﺎزي ﻫـﻢزﻣـﺎن‬ ‫ ﺷـﺒﮑﻪﻫـﺎي ﮐـﺸﺎورزي رودﺧﺎﻧـﻪ دز و ﺷـﺒﮑﻪ‬،‫اﺳﺎس‬ ‫ ﺳﺪي ﮐﺎرون و دز ﻧـﺸﺎن داد ﮐـﻪ ﺳﯿـﺴﺘﻢ‬6 ‫ﻣﻨﺎﺑﻊ آب‬ ‫ﮔﺮﮔﺮ ﺑﺮ روي رودﺧﺎﻧﻪ ﮐـﺎرون ﺑـﻪﻋﻨـﻮان ﺷـﺒﮑﻪﻫـﺎي‬ ‫ﺿـﻤﻦ ﺗــﺄﻣﯿﻦ آب ﻧﯿﺎزﻫــﺎ ﺑـﺎ اﻋﺘﻤــﺎدﭘــﺬﯾﺮي ﻣﻄﻠــﻮب‬ .‫ﺑﺤﺮاﻧﯽ ﺗﺎﻣﯿﻦ آب ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪﻧﺪ‬ ‫ ﻗﺎدر ﺑﻪ ﺗﻮﻟﯿـﺪ اﻧـﺮژي ﺑﺮﻗـﺎﺑﯽ ﺑـﺎ ﻣﯿـﺎﻧﮕﯿﻦ‬،‫ درﺻﺪ‬75 ‫ﻣﻨﺎﺑﻊ‬ 1.Ahmadi, M., Bozorg Hadad, O., and Marino, M.A. 2014. Extraction of flexible multiobjective real time reservoir operation rules. Water Resource Management. 28: 131-147. 2.Allen, R.B., and Bridgeman, S.G. 1986. Dynamic programming in hydropower scheduling. Water Resource Planning and Management. 112: 3. 339-353. 3.Chen, L., Mcphee, J., and Yeh, G.W.W. 2007. A diversified multi-objective GA for optimizing reservoir rule curves. Advance in Water Resources. 30: 1082-1093. 4.Chang, J.X., Bai, T., Huang, Q., and Yang, D.W. 2013. Optimization of Water Resource Utilization by PSO-GA. Water Resource Management. 27: 3525-3540. 5.Dariane, A.B., and Momtahen, Sh. 2009. Optimization of multi-reservoir system operation using modified direct search genetic algorithm. Water Resource Planning and Management. 135: 3. 141-148. 6.Erlon, C., and Edson, L. 2005. Solving the commitment problem of hydropower plants via Lagrangnian relaxation and sequential quadratic programming. Computational and Applied Mathematics. 24: 3. 317-341. 7.Fallah-Mehdipour, E., Bozorg Hadad, O., and Marino, M.A. 2011. MOPSO algorithm and its application in multipurpose multi-reservoir operation. Hydro informatics. 13: 4. 794-811. 8.Guo, X., Hu T., Wu, C., Zhang, T., and Lv, Y. 2013. Multi-objective optimization of the proposed multi-reservoir operating policy using improved NSPSO. Water Resource Management. 27: 2137-2153. 9.Hincal, O., Altan-Sakarya, A.B., and Metin Ger, A. 2011. Optimization of multi-reservoir systems by genetic algorithms. Water Resource Management. 25: 1465-1487. 10.Oliveira, R., and Loucks, D. 1997. Operating rules for multi-reservoir systems. Water Resource Research. 33: 4. 839-852. 11.Ostadrahimi, L., Marino, M.A., and Afshar, A. 2012. Multi-reservoir operation rule: multiswarm PSO based optimization approach. Water Resources Management. 26: 407-427. 12.Palmer, R.N., and Holmes, K.J. 1988. Operational guidance during drought: Expert system approach. Water Resource Planning and Management. 114: 6. 647-666. 13.Randall, D., Houck, M.H., and Wright, J.R. 1990. Drought management of existing water supply system. Water Resource Planning and Management. 116: 1. 1-20. 14.Reis, L.F.R., Walter, G.A., Savic, D., and Chaudry, F.H. 2005. Multi-reservoir operation planning using hybrid genetic algorithm and linear programming (GA-LP): an alternative stochastic approach, Water Resource Management. 19: 831-848. 15.Shourian, M., Mousavi, S.J., and Tahershamsi A. 2008. Basin-wide water resource planning by integrated PSO algorithm and Modsim. Water Resource Management. 22: 1347-1366. 16.Siminovic, S.P., and Marino, M.A. 1980. Reliability programming in reservoir management: 1.single multiple reservoir. Water Resource Research. 16: 5. 844-848. 17.Jalali, M.R., Afshar, A., and Marino, M.A. 2007. Multi-colony ant algorithm for continuous multi-reservoir operation optimization problem. Water Resource Management. 21: 9. 1429-1447. 18.Jothiprakash, V., Shanthi, G., and Arunkumar, R. 2011. Development of operational policy for a multi-reservoir system in India using genetic algorithm. Water Resource Management. 25: 2405-2423. 314 ‫ﻣﻬﺮداد ﺗﻘﯿﺎن و ﻋﻈﯿﻢ ﺷﯿﺮدﻟﯽ‬ 19.Karamouz, M., and Houck, M.H. 1987. Comparison of stochastic and deterministic dynamic programming for reservoir operating rule generation, Water Resource Bulletin. 23: 1. 1-9. 20.Louati, M.H., Benabdalesh, S., Lebadi, F., and Milutin, D. 2011. Application of a genetic algorithm for the optimization of a complex reservoir system in Tunisia. Water Resource Management. 25: 2387-2404. 21.Madadgar, S., and Afshar, A. 2009. An improved continuous ant algorithm for optimization of water resources problems. Water Resource Management. 23: 2119-2139. 22.Taghian, M., Rosbjerg, D., Haghighi, A., and Madsen, H. 2014. Optimization of conventional rule curve coupled with hedging rule for reservoir operation. Water Resource Planning and Management. 140: 3. 365-374. 23.Water Resource Development and Iran Power Company 2010. Water resource management and planning report, Karun 2 dam. (In Persian) 315 1395 (3) ‫ ﺷﻤﺎره‬،(23) ‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك ﺟﻠﺪ‬ J. of Water and Soil Conservation, Vol. 23(3), 2016 http://jwsc.gau.ac.ir Maximizing the hydropower generation in multi-objective reservoir system (The 6 dams system of Karun) 1 2 *M. Taghian1 and A. Shirdeli2 Member of Khuzestan Water and Power Authority, Assistant Prof., Dept. of Water Engineering, University of Zanjan Received: 11/22/2014; Accepted: 04/24/2016 Abstract1 Background and Objectives: The multi-objective water resource reservoir systems are generally composed of conflict purposes. In this study, keeping the minimum water level at above elevations increases hydropower generation through the water effective head. However, this operating policy results in decreasing the potential of storage variation and active storage capacity, which may be caused some deficits for meeting downstream demands. Accordingly, one of the major aims in this research is to maximize the hydropower generation in complicated multiple and multi-objective reservoir systems in which the desired reliability is kept to meet downstream demands. To reach this aim, the optimal minimum water level is calculated. In this area of research, it can be pointed to the hybrid optimization model; classical mathematical models and evolutionary algorithms, hybrid evolutionary algorithms and the multi-objective optimization model. Materials and Methods: In this research, a simulation-optimization model is developed for the Karun basin included the 6 dams system of the current condition. In this hybrid model, maximizing of the total produced energy is defined as objective function constrained to water balance and reliability. This model is capable to investigate the water resource system in details with allocating priority to different demands. In this way, the hydropower generation is maximized using the genetic algorithm and via evolutionary process, in which desired reliability for meeting demands is kept using penalty in the objective function. Results: The results indicate that the system reliability for meeting demands is kept in the level of 75% in which the annual average of hydropower energy produced by the system is 18193 GWH. The most portions is related to Karun 1 reservoir with 3483GWH and the less one is related to Karun 4 with 2007 GWH per year. Additionally, agriculture networks of Dez river and Gargar network on Gargar river, that is one of the Karun branches, are the boundary area of the optimization for satisfying minimum acceptable reliability. In other words, these networks have been identified as critical networks for meeting demands. Conclusion: In the common states, evolutionary algorithms are unable to consider the constraint and should be found a remedy to impose constraints. However, this research showed that using penalty in objective function accordance with the violation values of target reliability makes desired performance in the complicated system. Moreover, applying of the simulationoptimization model helps significantly to input more details of the water resource systems in the simulation model. This is more efficient than applying the single optimization model made simplifying of the problems. Keywords: Hydropower, Genetic algorithm, Multi-objective, Optimization reservoirs * Corresponding Author; Email: mehrdad.taghian@gmail.com 316