Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Analytic solution of one-dimensional problem for partial integro-differential equations which have partial continuous coefficients in thermoviscoelasticity theory

The Journal Of Mathematics, Physics and Astronomy, 1999
In this paper, a non-stationary problem on thermomechanic wave propagation is solved in environent, which is, consists of a finite thick plate connected with a semiinfinite space. Materials of the plate and the space are in confirmity with linear viscoelasticity and heat transfer for each environment independently, initial conditions and on the connection surface of environment conditions of increasing temperature and normal stress, depending only on time which are given as known functions. it is assumed that temperature and mechanical fields depend on each other. as a system, parabolic type partial integro-differential equation of temperature and  hyperpolic type partial integro-differential equation of wave are solved. it is assumed that kernels of integral operators are difference kernels. Depending on boundary conditions, functions onf temperature and mechanical magnitudes become only functions of time and a space axis which is perpendiicular to free surface. In this case the pr......Read more
•ıbul Üniv. Fen Fak. Mat. Dergisi 57-58 (1998-1999), 113-161  ANALYTIC SOLUTION OF ONE-DIMENSIONAL  PROBLEM FOR PARTIAL INTEGRO-DIFFERANTIAL  EQUATIONS WHICH HAVE PARTIAL CONTINUOUS  COEFFICIENTS IN THERMOVISCOELASTIC1TY  THEORY Mustafa Kul  Su miliary: in this paper, a non-stationary problem on thermomechanic wave propagation is solved  in an environment, which is, consists of a finite thick plate connected with a semiinfinile space.  Materials of the plate and the space are in conformity with linear viscoelaslicity laws. Mathematical  model of (he problem consists of: linear equations of viscoelasticity and heat transfer for each  environment independently, initial conditions and on the connection surface of environments  conditions of increasing temperature and normal stress, depending only on time which are given as  known functions, it is assumed that temperature and mechanical fields depend on each other. As a  system, parabolic type partial inlegro-differential equation of temperature and hyperbolic type partial  integro-differential equation of wave are solved, it is assumed that kernels of integral operators are  difference kernels. Depending on boundary conditions, functions of temperature and mechanical  magnitudes become only functions of time and a space axis, which is perpendicular to free surface. In  this case the problem turns out to be a one-dimensional one.  1.INTRODUCTION  Determination of the reaction of the bodies changing from to dynamical forces is one of  important problems in the field of mechanical science. We face to these problems in daily practice  frequently. •  Although pioneering works of Euler, Bernoulli, Sofi-.lerman and others were initialized in  18 lh  century, in the field , it is gained scientific form almost in 20 th  century. Dynamics of elastic  bodies has important application in seismology and in other branches of technology. Path breaking  research accelerated alter 40\s of 20 th  century, reached important results many articles and book were  published. We will mention some of the published materials that are concerned with our research.  Heal is one of the important magnitude which effects waves in bodies changing forms. Effect  of heat is high in Composite and Polymer materials. Solution of the thermoelastic wave propagation  problem in homogenous bar became classical and exists in many books. These problems may be  classified into two; one is dependent and the other is 'independent. In the first, heat and stress- 1. This paper is an English translation of the substance of a doctoral dissertation accepted by the  Institute of Science of Karadeniz Technical University İn February 1995. I am grateful to Prof. Dr.  M.Sait EROĞLU and Prof. Dr. Musa İLYASOV for their valuable help and  encouragement in all stages of this work. 
deformation fields are mutually effected and can not be determined independently. Mathematically,  in this case, motion and heat equations constitute an interdependent system and solved commonly. In  independent dynamical problems field of temperature is determined initially then temperature is  added to motion equation as a defined function. It is clear that, in this case, the effect of stress- deformation field is neglected. As it is seen, in second type solution of the problem became easier,  mathematically is reduced to the one of one dimensional problem which is finding solution of non- homogenous hyperbolic type equation with initial and boundary conditions. The most widely known  of analytical solution methods of linear problems is integral transform method. Interesting and  difficult part of this method is calculation of inverse transforms. Evens in the most simple dependent  problem inverse Laplace transforms can not be find. Owing to this fact in the solution of similar  problems, we consider asymptotically situations, that is very large and small values of Laplace  transform parameter, or initially solution of independent problem is taken and perturbation method is  applied.  In this paper we research one dependent problem of propagation of mechanical waves in an  environment which consist of viscoelastical plate and semiinfmite space. Considering partial constant  coefficient in addition to what explained above makes even more complex. Problem is solved by  Laplace integral transform, and system which is obtained by substation of boundary conditions is  solved analytically in Computer by using software "Mathematica 2.0". Inverse Laplace transforms  are calculated for very large and small values of Laplace parameter.  Classical solutions of thermodynamically problems for elastic and viscoclastie materials are  in [9] and in several books.  In [31] perturbation method is developed to investigate nonstationary temperature field and  stress field in viscoelastic bodies of properties depend on temperature. In solutions of thermoelastic  wave propagation in cylinder of infinite length and in sphere, and viscoelastic plates are given as  infinite series and determined convergence conditions for these series.  In [21] termoviscoelastic problem is approached in a general form by using perturbation  method with temperature-time analog, and same problems are investigated which are emphasizing  effects of temperature field on properties of viscoelastic bodies.  In [10] nonstationary oscillations of viscoelastic bar are investigated under the pressure of  periodical variable force considering.temperature effect on properties of materials. In addition under  the effect of harmonic load, lengthwise oscillations are studied for viscoelastic bars. Mechanical  properties of bar depend on temperature. Because of continuos transformation of mechanical energy  to heat, temperature of bar is increased and this in turn changes speed of the propagation of waves.  This problem is solved numerically.  In articles [12,13,14,15] and[23,24] effects of temperature and stress fields on propagation of  waves in homogenous half-space are studied.  In articles [1,2,3,5,6,7,16,17,18,19,20,22,25,26,27,28,29,30,32,33,34] related studies are  performed.  2.FORMULATION OF PROBLEM  Let us consider a non-stationary problem that resulted from mechanical and temperature  strokes in a semiinfmite stratified environment.  Let us take origin point on free surface and let us take x-axis perpendicular to the free surface  downward. Let us assume termomechanical effect, which is in the boundary (x=0) uniform for other  coordinates, only depends on the time. In this situation determination of stress, deformation and  temperature fields is reduced to solution of one-dimensional problem. Magnitudes which belong to 
•ıbul Üniv. Fen Fak. Mat. Dergisi 57­58 (1998­1999), 113­161 ANALYTIC SOLUTION OF ONE­DIMENSIONAL PROBLEM FOR PARTIAL INTEGRO­DIFFERANTIAL EQUATIONS WHICH HAVE PARTIAL CONTINUOUS C O E F F I C I E N T S IN T H E R M O V I S C O E L A S T I C 1 T Y THEORY 1 Mustafa Kul Su miliary: in this paper, a non­stationary problem on thermomechanic wave propagation is solved in an environment, which is, consists o f a finite thick plate connected with a semiinfinile space. Materials o f the plate and the space are in conformity with linear viscoelaslicity laws. Mathematical model o f (he problem consists of: linear equations o f viscoelasticity and heat transfer for each environment independently, initial conditions and on the connection surface o f environments conditions o f increasing temperature and normal stress, depending only on time which are given as known functions, it is assumed that temperature and mechanical fields depend on each other. As a system, parabolic type partial inlegro­differential equation o f temperature and hyperbolic type partial integro­differential equation o f wave are solved, it is assumed that kernels o f integral operators are difference kernels. Depending on boundary conditions, functions o f temperature and mechanical magnitudes become only functions o f time and a space axis, which is perpendicular to free surface. In this case the problem turns out to be a one­dimensional one. 1.INTRODUCTION Determination o f the reaction of the bodies changing from to dynamical forces is one o f important problems in the field o f mechanical science. We face to these problems in daily practice frequently. • Although pioneering works o f Euler, Bernoulli, Sofi­.lerman and others were initialized in 18 century, in the field , it is gained scientific form almost in 2 0 century. Dynamics o f elastic bodies has important application in seismology and in other branches o f technology. Path breaking research accelerated alter 40\s o f 2 0 century, reached important results many articles and book were published. We w i l l mention some o f the published materials that are concerned with our research. Heal is one o f the important magnitude which effects waves in bodies changing forms. Effect of heat is high in Composite and Polymer materials. Solution o f the thermoelastic wave propagation problem in homogenous bar became classical and exists in many books. These problems may be classified into two; one is dependent and the other is 'independent. In the first, heat and stress­ lh th th 1. This paper is an English translation o f the substance o f a doctoral dissertation accepted by the Institute o f Science o f Karadeniz Technical University İn February 1995. I am grateful to Prof. Dr. M.Sait EROĞLU and Prof. Dr. Musa İLYASOV for their valuable help and encouragement in all stages o f this work. deformation fields are mutually effected and can not be determined independently. Mathematically, in this case, motion and heat equations constitute an interdependent system and solved commonly. In independent dynamical problems field o f temperature is determined initially then temperature is added to motion equation as a defined function. It is clear that, in this case, the effect o f stress­ deformation field is neglected. As it is seen, in second type solution o f the problem became easier, mathematically is reduced to the one o f one dimensional problem which is finding solution o f non­ homogenous hyperbolic type equation with initial and boundary conditions. The most widely known of analytical solution methods o f linear problems is integral transform method. Interesting and difficult part o f this method is calculation o f inverse transforms. Evens in the most simple dependent problem inverse Laplace transforms can not be find. Owing to this fact in the solution o f similar problems, we consider asymptotically situations, that is very large and small values o f Laplace transform parameter, or initially solution o f independent problem is taken and perturbation method is applied. In this paper we research one dependent problem o f propagation o f mechanical waves in an environment which consist o f viscoelastical plate and semiinfmite space. Considering partial constant coefficient in addition to what explained above makes even more complex. Problem is solved by Laplace integral transform, and system which is obtained by substation o f boundary conditions is solved analytically in Computer by using software "Mathematica 2.0". Inverse Laplace transforms are calculated for very large and small values o f Laplace parameter. Classical solutions o f thermodynamically problems for elastic and viscoclastie materials are in [9] and in several books. In [31] perturbation method is developed to investigate nonstationary temperature field and stress field in viscoelastic bodies o f properties depend on temperature. In solutions o f thermoelastic wave propagation in cylinder o f infinite length and in sphere, and viscoelastic plates are given as infinite series and determined convergence conditions for these series. In [21] termoviscoelastic problem is approached in a general form by using perturbation method with temperature­time analog, and same problems are investigated which are emphasizing effects o f temperature field on properties o f viscoelastic bodies. In [10] nonstationary oscillations o f viscoelastic bar are investigated under the pressure o f periodical variable force considering.temperature effect on properties o f materials. In addition under the effect o f harmonic load, lengthwise oscillations are studied for viscoelastic bars. Mechanical properties o f bar depend on temperature. Because o f continuos transformation o f mechanical energy to heat, temperature o f bar is increased and this in turn changes speed o f the propagation o f waves. This problem is solved numerically. In articles [12,13,14,15] and[23,24] effects o f temperature and stress fields on propagation o f waves in homogenous half­space are studied. In articles [1,2,3,5,6,7,16,17,18,19,20,22,25,26,27,28,29,30,32,33,34] related studies are performed. 2.FORMULATION OF P R O B L E M Let us consider a non­stationary problem that resulted from mechanical and temperature strokes in a semiinfmite stratified environment. Let us take origin point on free surface and let us take x­axis perpendicular to the free surface downward. Let us assume termomechanical effect, which is in the boundary (x=0) uniform for other coordinates, only depends on the time. In this situation determination o f stress, deformation and temperature fields is reduced to solution o f one­dimensional problem. Magnitudes which belong to plate are indexed by " 1 " and those which belong to semiinfinite space are indexed by "2", Thickness of the plate is shown by " h " . Let us consider the linear problem o f the related thcrmoviscoelasticity theory and assume that conditions o f the environment are not depend on temperature . In this situation we obtain following displacement, heal conduction and state equations. d a , ( x j ) d = dx p 2 i f i dt > ( x j ) 1 (1) y d 0 ( xj) ô V ~ ~ T ^ ­ T T dxdi J dV ? Ôi 0 ' r cy,(.v.t)­J R V­T) "* i + ~Q ((­i) l tie, i fa(t-T)c/O +~\y,0-r)^ l J (2) ! ' ­ Ji// (/­r)J0, (3; ; Above, i = l , 2 . o, (x.t) is stress, u, (x,t) is displacement, p, is density, Tj (x,t) is temperature, To is initial temperature, %, is temperature diffusion coefficient, nij (t­x), v|/(t­T),Rj(t­T) and Qj(t­x) are functions which denote mechanical properties o f materials. R, ( t ­ i ) is called volume­relaxation function, Qi(t­T) is called slide­relaxation function. Integrations in (2) and {3) are Stiljes type and i k , = •"'•'­"</:.,/„ =^ i > i / r , O.fx.D­F, (x,t)­T„ ÔT and is deformation. du Ax J) ,,<*,/) = — ^ Ox (4) Q When we examine the linear problem we assume that e, and —­ are infinitesimal and the T same order. Beside let us assume following relation between extension resulting from temperature and mechanical properties o f materials. MM/)=E,Ri(0 (5) where c, is coefficient of extension resulting from temperature which is independent o f the time. Firstly using (1) and (3) then (4) and then (2) and (4) we obtain V d u,(x,T) K',</ ­ r ) '\ , ,, dWX~ J , V a 0,(x,r) di - W,(t ~ r ) ­ ih = p, ,f ÔTÔX 2 } } / J d u(xj) ' V of 2 (6) T 0 = — \m,{t­T) df < cfcr — ­ i/r + — J ^ ( / ­ r ) — dx dt * dxdx ( c/r (7) where G,(/)­Ri(/)+|^(/) and there is no summation according to repeating index. (6) and (7) are partial integro­diiTercntial equations. u (x,t) and 0j(x,l) w i l l be solved from this equations. I f viscoelasticity properties o f materials have instantaneous elasticity property then (6) is hyperbolic and (7) is parabolic. Relaxation function above are continuos functions o f the variable x>0 and when T < 0 } R,(T>sO, Qi(T)^0, mfapQ V|/i(TH) Initial conditions are, u,(x,0)=0 (8) du,(x,() = 0 ej(x,o)=o (9) (io) In case x=Q <T|(0,t)=f(t) G,(0,t)=q>(t) (II) (12) In case jr=h, U!(h,t)­u (h,t) (13) a,(h,t)=cT2(h,t) (14) (15) 2 e,(h,t)­e (h,t) 2 dû, = 1: Dx dû. dx .V rl, and for x —» co lima,(.v,/)<+co (17) \ —> > limÖ,(.v,/)<+co (18) Conditions <13).( 14),( 15),(16) show displacement, stress, temperature and temperature diffusion values are equal on the boundary o f the space and the plate. 3.SOLUTION O F T H E P R O B L E M B Y L A P L A C E TRANSFORM We will solve the problem (6)­(l8) by Laplace integral transform according to lime. I f we apply Laplace integral transform, with the initial conditions (8),(9),(10),lo the equations (6),(7) we obtain following differential equation system. (19) £ j L - M 7 - ^ =o dx a, a, dx 2 d'O, T p m, 2 n dx x, 2 ~ du, ' = ( ) { 2 ( ) ) X, where u is the Laplace transform o f u. (21) f{p)=[f\t)e'"d( (I (21 ) is the Laplace transform o f f(t) function, p is the parameter f the transform.. In order to determine u (x,p) and 0, (x,p) functions, a system o f equations is found which is second t order and have constant coefficients. Characteristic equation o f the system is K ­A,K +BrO 4 2 (22) where. Solutions o f the equation (22): (23) (24) (25) (26) where, i ­ 1,2. Since the numbers K,, p i . 2 . 3 , 4 , arc' functions o f the Laplace parameter p, they are complex numbers. But for real p: Re<K| Kn)<0 Re(K;„l<U)>0 (27) (28) l4 Following properties exist among K„ solutions. KiiKijK.ijlC^B, (29) K K (30) h Y ^ ^ J b , 2 l Ki,­­K , Kir­It­i, K|,+K r­(K ­H<4i) (31) (32) (33) 2 3 2| General solution o f the system (I9).(20) is as follows. u~ {.wp) = t Q,{x,p) = +£ 2 / v + + /%/'" + / s / v + E e^ (34) x 4l v + /V' ' " A 4 T (35) When this values.are replaced to (19) or (20), following relations among F,, and E„ are obtained. F,,=^-^-E j a i 1.2,3,4, i-1.2 (36) P i P i = =? ¥, where a. ­^=r- h % From <17).(18).(27) and <28) . and in thai way solutions of the system (19),(20) which are limited in infinity as follows: wjU, p) = E e k,,ï n M A ' , / ? ) Ô^p) - +Ee' +Ee" K 2,x K 2l Eey K i2 M x (38) +E e" K x Al (39) +E e" K x %2 =^ p - E n e ^ K + f - ^ E 2 ] e ^ + (40) 7 As shown solution depends on six constants ( E n . E i i . H i i . L ^ . L i i ­ H ^ ) and these constants w i l l be calculated from (12),(13),(14),(15),(16). When we apply Laplace transform to (3) a, (*,/>) = / G ^ ­ / ; < / / , 0, ax­ (42) ? is obtained. Using (42) from(38),(39).(40).(41) A { X ^ P ) = RIILE A ll U e ^ + ^ E K ll + E^'»* + ^ E 4 l e ^ (43) PlP' K„v , P2P <r (.v,/7) = ­ ! ­ ^ A > " + A',, " A',, h (44) v 1 are obtained. When we apply (38),(39),(40).(41 ) and (43).(44) equations to Laplace transforms o f conditions (11 ),( 12).( 13).( 14),( 15),( 16) we obtain following system o f linear equations, which consist of six equations. ^ A ^ + ll K ^ + 2\ -a, ­ii—_L/ K + M ^ m ( A',,"-a, , _iL_L£ r i > | + î | + A , , /V""" +AV A',, A V A , , A' ) „ . — L t ^ ^ , , ^ (46) A V (47) p,A,, 4I A\, M '=° Pi A,, LA/7^M' Aj! ­ g.,,^'­'* = ( ) (49) ( A , , ­ ­ ^ ) / ^ , ^ " " + ( A ­ ­ / ) £ V * " + ( * V ~ « , ) / * : „ t ^ ' + (A'.„­ ­<#, : i : | — 5 A.,, ­ A\, M _Li_L K..~-a, ^lL_ ' + AV*"'' + A\, 4 P\P' K-,, -a. ,, _J­ L/ i l | + A. , , A = * l l £ v ( A f '• —— p ^l"2 b^e =0 , ­ (50) Zl*>2 When this system is solved by Cramer method; Eu=-r A, (51) A, (52) Eu = ~^­ A A, £jr=— A A, £ii=— A (53) (54) £ 1 2 = ­ ^ (55) A A, ¿ 3 2 = — (56) are obtained. Here , A is the determinant o f coefficients o f system A , /=! ,2,3,4,5,6 are determinant which are obtained by deleting i' column replacing right side values instead. Right side: ; h /(/>) f ,<?(/>)/), ,0,0.0,0 Pi/ (57) 7 Let us show the coefficient matrix o f the system (45).(46),(47),<48),(49),(50) by a \\^~7^­ \2 = —;—.a = — ­ , a A\, " A\, a l 3 A A a., = ™ M J J " „ . .ct„ = — L e .\\ '~~.— - v A ' a = „ , | = ,c£| = a , = 0 5 = a M «, ­—­ c ; A,,­£/, ^ i| e e ~ — -n = ~ — A A \ , = .«„. = ( ­ u A ^21 " I I a N M 2.3,4,5,6 where A' c " = A'j, P^ =—e Pi A , , — <7, A , , " A , A',," ­ i / , A ­ ' ­ i / 1 A a ft>A' / > , A n «„, = ( A V ­ « , ) / ' " \ a ««,.»= (K\f ( , =(AV­f,)­ h : k' "\a ^ U V ­«1)** A M Zl 2 *l^2 / ? Coefficients determinant o f the system and the other determinants are calculated by the formula A=S(­l) i , ) Aj, M,j (58) where Ay are subdeterminant o f 2 x 2 which are subdeterminants o f the matrix o f 2 x 6 which is obtained from first two rows. While M , | are respecting 4 x 4 minor determinats. Minus sing in front o f summation stems from calculation o f determinant with respect to first two row. When we express A and Aj determinants by help o f Mj,"s A, ( g V / - F , M , +t\M ). | ; A, = ­ | : r ^ L _ e ' ^ ' ^ ' V / • i A/ + A A i2 A , =-J^e '-''"' ' (F M lK -F M i >l, i lx t ­ /•",A/ ), (61) ). (62) 2) - F \l yt v 2( A , ^ ­ ^ U ^ ^ ^ ' ­ ' ^ i / v V / , , -F,M +h\M 14 A , =­hj^e ^iF M, x A' ­ ), M ­ F , M » + F M^ K s < (60) n (63) ­ F, A / ), J S y , A , = ­ 7 = ^ ' " ­ ( ­ F M „ + / v W , ­ / ' ' A / , + F A/ , ) . ( T 1 2( ) ; i( x l( (64) (65) arc obtained, where / • > ­ i T ( ^ ­ < , , , ­ f . ^ ^ ( g ­ 2 : " ­ ) ­ f Solution ol' so slated problem by the help o f Laplace transform, considering consist of (51).(52).(53).(54),(55),(56) and (59).(60),(61 ),(62),(63).(64).(65) only (38),(39).(40),(4I }.(43),(44). Lssenlial solution is obtained by calculation o f inverse Laplace transforms. Since calculation o f inverse Laplace transform are very difficult we will find approximate solutions are asymptotic solutions. These are solutions, for very small and large values o f Laplace transform parameter p. firstly, let us assume materials o f semi infinite space and the plate are elastic. In that case Laplace transforms o f material functions verify following conditions, nij Gj. R, i = l , 2 are constants and pm =m t t (66) p(T - O, (67) P~R,=R, (68) t 4.SOLUTIONS FOR V E R Y S M A L L V A L U E S OF L A P L A C E P A R A M E T E R By using (66), (67), (68) and (22) /?­ r„/>/;;, t ! £ /g,7;,/j f x> fl P%m^ = t>,x, where £ ~ = —­ P, ^ -4B i = PL+ « >P~ T ' k •5, E m + , R 2 I X ,­,2 2 P o, X, 2 _ ^ L ^ > <~ X ^ y- 2 1 ^ 2 , R + 2 s, x, 1 • s, T m,E, R, 2 . o,*, y I 2 z b <>x 2 I Since /? and jr are very small can be neglected and 4 A, ~4B =:p 1 2 i v is obtained. When we replaced this value in (23),(24),(25).(26) and (36) p- T„m,p ^ £, R, T„p 2 | 24, 2 /; T„m, f | x, 2X, eRT 2 t 2 {) ^ o,x, and by neglecting / / since it is very small; in. + X, a and 7oP X, 7 oP X, 2 \ m. + m. + G G (69) 1 } (70) ' J are obtained. From which A.' P =­ p are obtained. (71) (72) h.K, ' «p r X, o, m. + i x, <<V*. G. e.-R m. + G. 2 \ E, neglecting p"\ G. F, 7' in. + (73) G. • J I G. m. + F,_, = (74) G. (75) I,,— E F­u (76) arc obtained. Replacing these values in (38).(39),(40).(41 ),(43),{44) ~^(x.p) =e ''^E +e''^E +e^E +e^'E, n 2l M (77) (78) (3,,, ­r L 0,U./>) I £,R, t 41 U^p) =^ e ^ E „ + - R M - e ^ E ^ (79) (80) (81) where ( 1 D 7 ^ L. a = Xi In thai case by necessary simplification in coefficient matrix 1 a,, = M M pa pa 22 a ( a ) /,/'=!,2,3.4,5,6: tl 2£, a,, = p ~4p<i^ i =cc .\ 2 2 =« V 2 Si i 2 i p =0 a,, = e a „. = -c «„ = ­ />// /— V /'"' p c 2 P e ,a, Pi pat­ «52 = V / PiP a S i JpA 7 £ / t = a,, = 0 , ­ , V / ' "' ' 1 X\ 2 h are obtained. So simplifications o f solutions (51),(52),(53).(54),(55),(56) as follows. ­ ­p+2itlij p : = ­X2 (s.^P, " i , P 2 > W " + (S V P, (83) \(Xi + £ X ) \<P R (84) 2 ^ pM^2 \ 2XlPl^ + ^ ^ 2 £ G 2 2 £ G a i P 2 R l ) ^ + l 2xX^ Pl ifAG G Jp ] + Z2 P 2)^" V2/? (85) ^ 4» = V P e R (pe 2 2 (86) (87) AG,4P • (88) feiSiPi ~ ^ | P . 2 " i 2 2 P 2 ­ § i i 2 P 2 )P 5 , C A L C U L A T I O N S O F I N V E R S E TRANSFORMS By using these let us obtain inverse transform. I f uu{x,p)=E e-"^ u p.X Uu(x,p)=E^e ^' _ _£L M4l(*,p)=£ 4 | i^' are defined accordingly then 4 _ f= l 4 _ 1=1 Inverse Laplace transforms o f w,i (*,/?) are 2fG Xi\s,i p ­||"P| ­C 1 „, . .,) i ( v 2 l £ i A ( ^ ) . = > — ,/ . J „ ( , _ r ) * v — |/(.­Vr — jy^­ j r ­ r ­ 7 | v2p,is,s2Pi ­ 4 V P , • Vr 2 ft^H l.vjJ­———r~ t l p ­ ^ i S ^ P : o 2 ­<5>"P 2 ­^s P2 2 / ( r ) £ / + r j <T I f we define ^2(­V,/)^^^'' l / , ^' ) then // 2 (v. p ) = //12 p ) + z/12 (.v, p ) (A \ //•,(x,/)=// (j:,/)+i/ (jr,/) 12 12 Inverse Laplace transforms o f u {xj) =- t2 ; r ­ f ­ p g 2 AO^ K 4 ^ r Sl^Pi­Sl l ( , / ? ) = ^ p) and io (.v, p ) functions are 2 ­ ^ ( / ­ r ) i / r t , * | / ( T V I S P|­^2"P2­S|S P2 2 If we define 2 1 V r «.(.v,/) = 0 r 1 / 2 ( JC , £ 2 i 0 then M * ^ ) p) Z M . Y . = /­ ­ I 0,(.v,/) = £ ( > „ ( * . , ) Inverse Laplace transforms o f 0,\(\\ p ) / = ! ,2,3.4 are ^ i W , i P i ­4,"Pi 2 ~ 2 M * - ' ^ ^ 1 r ^ ' 2i,£|^iP \s 4 Pi 1 l ­== 1 l *«•(*./)= l l / ( p ^ (£ G x >j2jiE R aG xM^2P\ ] l 2 1 / \ AG T[P ; i ( s ' p ^ , A iy £,R, 0*(x,p)= ° V24V *2 i P r e~&>E„ 2 then O (x,p)^0u(x, p)+0n(x, 0 (xj) 0 (xj)±0, (xj) 2 1 = l2 e , P ! 2 !</> U v/to > P I ­ 4 Y P G _ rj 2 / s + 2 \X\ ?) ~^P\ "sSV: 2 ] ­ii&Pl 2 £ R 2 ­ £ , ' p , ­&<5 p> j , i If we define - ,/(,)+ ; 24\ I \PA$£2P\ -%\ i : l ; £ R 2 ­iii,P ) ; ­ " SI'PI ~ s Y P 2 V2^4 £ /i £//i6\^ ^ ^p 2 P ^ / 1 / < / > (< ) » „ M = l S p) R 2 ­ ^ ^ p j 'r , ^ ­£i4%pj > i \2\jx u ) 2 where :re, Lrf(x)=/­erf(x) ; e r f ( x ) = ­ = \e " ds 1 l ^ ' M s i ^ P , ^ s V P t ­ S "P2 2 ­4il:P 3 If we define an <r«i{.v./i) = ­V2 ; p />c' l l A ' , 1 a„(A­.p) = V 2 c p / ^ ' " l / ( v l ­ F, l l then _ i _ a , (v. />)=•­£<T |(.V. p ) ( < ­I I CT,(A­./)=^0­ ,(A­./) f Inverse Laplace transforms o f a,i i= 1.2,3,4. are ^ o ' ^ f o ^ p , ­5, p, ­S1S2P:) 2 : i ( , i ) = w k ± i A i ? 1 / ) ­«"('1^1 + S2P2) S,(s,P, s,C Pi 2 ^ O C'iX\ SiS:P X O" • (.v./) t " S i "Pi 4 M S IPI S1S2P1 ­4YP ^ s T P i "sVPl ~ S Y P 2 /(/)• 2 ­S1S2P2 "S ~ S i P : ) ~4Vp2 ­ S , S P 2 /<<)+ 2 2 p p ^ , ^ , ( ^ | G \ ^ ^ + £,G,^,^ ) l Jx \ '\xM\$iP\ aCj C i f we define : ­Si'Pi l 2 ­ ^ ' P : ­S1S2P2) A ou(x<p)=-<j21; p pe 2 E 2 %2 then g 2 (.v, p)-c7\2 (.v, p )+<y n (A\ p ) C7 (x,/ ) = 0 ­ 2 | 2 ( . Y, / ) + CT (.V,/ ) I 2 Inverse Laplace transforms o f <T\i(x,p) ­ l i ( ^ . ' ) = A 0 CT 1 2 V functions are (105) ^ H ^ r V " ( ' ­ ^ £ \ 2V TT J i 2 and o^(x,p) (106) / ­ Y, / ) = ­ 4l&Pl ­ g i V , "£,4^2 ­^2 P2 2 ' I V2<g 2 6.SOLUTIONS F O R V E R Y L A R G E V A L U E S OF L A P L A C E P A R A M E T E R A1 1 * .P AR-P" 1 T ­4tS,­­~j+ M 2 1 *, *X P 2 A £ 2 2T m, ­3 2 0 +—­y—5 2 X, < G 4\ X, , , 2e RXP 2 /? + X, £ — , IT^m^Rrp , 1 + G,xi, G,x, neglecting p 1 - m. 1 Ç, x, m. 2Z, V K 2 " = P 1 ° ' T 24, 2 M P 2*, 1 >~ ' »P £ 1 R T 1 2G,* 2Ç, 2 ( neglecting / ; P A " So ~ 7 T + — 7 ; = , e,KU, X, ­m. + 2*. / Î7. /7 A.' (107) (108) Again by (25) - : A' P , >,P 2 J •+ , £,R, vP 1 T + PU; 0" X, / , 2, \ + 2 neglecting /?" 2 x, and so A' i7>,/? (109) x, % ,p m (UO) arc obtained. . >x> I 4V (j G. J XiP e, R, T £, 2G. 2 + s, X, Since for very large values o f p / • ; , = ­ ^ ^ Z ( ­ i ) Taking first two terms o f the series 2 0 \ + 2^,X,P <1 (un S , ' * , T ; S V X, (112) sV P . (113) 7 > , P V x, (114) '/ 7 Replacing this values in the solutions (38),(39).(40).(41 ).(43).<44) /<f­'­ Y (115) A* ­Il (116) ^l^l'AiSi l\\ \P P m sY ­ i»»>\i' f si Xi r V c,R T Ç 2 a r C l7>,/> c,/?, 0, (*/>) = p X, P Xx e' I * 2 2 /•;„­ (117) P X: PlP" PiP II p /" c * J (118) / Y v " \ s g . P.P­ % \P m Xi e p Si \ C Î J 2I 7 >iP y (119) P?P~ _ P:P (7 p>7p x^ P (120) * <* p where. £,­/? ­7;,g 3 2 2<',X, Making necessary simplifications in coefficient matrix ( a „ ) . / , / C Si P + ^S Si öp =0 , a.. = ­ 7>iP =a '/'()'»|P P a „ = 2A ^ ­ 1 P o:^ 1.2.3.4.5.6. for large values o f > . : V =0 2(l , X ^i a, i = 0 f «35 7 7 " P? t' a,, = p I''' Hh P, /> İ V, I.V "L'' p f a„ 2 Pi s V Ko'^P V P x\ 7>,P_ P" _ > i P 7 Si X| 7 "Si ct , = 2A =0 <l'"' 2 Sı «SM = /7 p t .V [?>iP Xl X I £|/i,C/ s^^Ji RJ\ „IL * \P l 2 m s/ , Xi { P X2 a, «64 = (),a, = — <'|X| 2 = e < 7>'iP P \ c ­ # 2 sı y e,RJ\,c^R,p a = — <^X| I '"'V. I „in, i' \ Cf, Y X\ 2 2 \ £ R G * 1. \.11 2 In thai case let us calculate solutions "of (51 ),(52),{53),(54).(55),(56). I f we expend A , Aj , A ? . A Î , A 4 . As. A determinants with respect to first two rows (l .A A, = ­ -a , -(pb a 2 { ]{ PiP" / tt i/>/>, A, ~ 2\ a M PiP A, = PiP A t = P\P a <pA, ­ a , , A/, u PiP A­/, PiP are obtained. Since exponents are the same in each column .of the matrix 4x6 which consists o f last four rows o f the matrix (a ) i,j= 1,2,3,4,5.6, using properties o f determinant n 1*'-p7 V X\ -1 í*­W/­A ( & p Ji»'"><> M ]2 => £ V If *¿ V * / I V j'jf'lP I 'z? /''' I'/ JI" ' -I V­ *• 1/' • M =e ltt are obtained. If we define 16 — *J M M XA t ,­a,, a <pb,~ u z = p / r ­«,,of| aa, n | 2 3 after same simplifications, we obtain X,(2/)^ Z 2 7G ­2bJ'G p­ I i x +^,c p /f,<p/? ) 1 1 l So, f —­ a , -W^v- 2 ~ h\X\P 4\V\P\fo*S*Xi E Z 2b J i U e ~X\P* 2 +s, ^i'/'o/^) 2 ^ A / '•II A / A/13 E = Ze * n Xl v *' -— A/ 13 After calculating Mi,,y­2,3,4,5,6, & 4% h E = ^2Xi M\Pj o iX £ R T irt and making some simplifications we have 2 \Pi 2 oylXiX2 \ i (r R 7 m m +^iPiX \X\ m l +£iPi^T m x 0 2 2 + ^ 2 ^ ^ 2 X 2 ) + 4; ''»ıPı V > ı * ı + 4ı '»'iPiXiJ^ Sib?i'»iP\>¡Í>\X\ x 7 x + 1 x p + A/ = ı: 4, "Î;,(V »,/ -> , / / ; x¿¡ , I where /'ı V >ıXı £ V >ı*ı 7 =hı~ \<­ :X;P\Rı ! 7 V -Ş\~ \ ıXıPAJI\>MıX t: (1 XiX.. V X I Z Ï 1/ y;, m , Px=-4 ^z^('2 "?Pi i ^ n"hX , R r 'Z¡V;<¡;XiX2PiR*. +4, T i ­1 i / ' ' A J + 4i"4 .2 r­\ hX{ ( + İ\ $: Zı \Pı ı ı>4» \"hX\Xı 2 1 G R r i where A l = "Sl^l^'lXlXW ,^! ­4,'.­,^x,x^^J^— + 1 Í T X V V X: y n V X: y P\ \ R Yi =­si * : -^ 'ZI ^ -IX,PA £ X: " V { X\ Xt v Xi ) and 2xM^ ^ + A</i ­ tf f ^ ­P + 4, »' P 7» t V; 4 V ' V" 1 ( /,,'»is, P — /~ V P 7 V Moreover. 1 4/''lPi + P — IL ' '' 7 (\21) X \ P ' 1 ­ihu£\x*j / 7 7 lib — +$\~£\PAX2<PP \ i' tx, N> c i'.Pi/TiSi^i 2/>(;,c / + 4r>­ Pi V/ > P 1 ! ! < ' I P I X, /;/ 7' t ! 1 1 //,f 1 r Pi + " i " P ^ + — ( P , + " ­ ­ P" />'­ P 0i si"'",?,, + />'" XlP (1 ^ 'iVi/ ^ i''i> '| 1 '/ ' | | i + 4 A, f Yi<t> p" (131) pY P E» = 4W>',Si(siP, + S : P : ) / + 2 4 | ^ I P I ^ , ( S I P , 2 + C­P: B : Pi4Y0i 02 p» p'!\ 7> '| S j ^ t 0i Zl ^ 7.CALCULATIONS O F IN I N V E R S E T R A N S F O R M By using above formulas, let us obtain inverse Laplace transforms o f solutions. uu(\\p) =e U2\(\\p) =e E V b, ' H . I( . Y. / > ) = C ~ £\, } '» * < (•v./>) = f 7 £.„ £. arc defined accordingly then _ w ­i „ , ( . r , p) = £ i / , i ( . r , />) i­I I _ By using inverse Laplace transform theory and Convolution theory, inverse Lapl tt,\(.v, p) as follows. /'V „„(.v,,) /__ X , 2* 1^ sY'»|71t I I /(D /• x J 0 <PiT) J v t — T x /- — V si dx + x 4, ^ -x dx + ) \<p(x)ci X G, 4= f A" K ' 2 ^ Si >»I 2*. 2 P., { ' </><<­) / V + x 4, r * , P: rl / h-x r 'I A'i <p (r)c/r J + < ^ IXI0I 7 + P< + /7­ .Y 0i y s, • y 1 h-x P: S| 2/7 Si f Xl P I ' e j/(rX/­r>/r | "*M Si">»l n ' "Xl (1 7 + Sl'^l^t (I X| (l where I F(()*<p(!)=\F(l-s)<p(s)ds which is called convolution o f F(t) and (p (t) 2/) Si M ,(.V,/ ). A ,}/( ­X/­rVr + I 4 A , + Ml 0i P , J - H M,7„ . L \f(rli-r)\lr A , + A |02_ 0i I f we define / " A , |i/)(r)c/r + }<p(rX/­0^ ­til' then //j ( . V. p)=U\i(\\ U,(xj)­ p)+u n(x. p) U^(xj) / / | ?( . Y. / ) + Inverse I.aplacc transforms o f „, , ( . v . i ) = and // I ?( A \ p) u M(X. p) ­ = ^ ­ e Pis / has heen calculated as follows. /r + I0 I x 2 f M < — h - ­ civ r Y\<t>i + 0 I / )')/ ­ r \ [r\/ c/ r ( ip ''i0i r + hi " 1 9 * (137) (x / ' ) / II Pl4,0i J/ ( r X/ ­ r V r + V 2i;, /?, (c, p, + s:P ; 0i vi K h ^ X 2 ^ 4 m \ n h X \ X i 0, 1 \(p(v)t/T + 02 '0")4Y ' 0 1 y i V (138) If we define Ou(x,p) = M 2l X E, P X\ 0 ( .p) L = "si 1 X\ '^'.,"'1/' 0 „(*./>) = p ? Xi <S, X\ Si" 2 " / V 7 V x, then 0.(*./>)=X0,i(*/>) 0, ( * , / ) = X 0 „ ( x . / ) / - I Inverse Laplace transforms o f 0,i(x,p) /= 1,2,3,4, has been calculated as follows. x+ dr X\P\ 0 V S ! + (139) Xfo 0 (xj) 2i = X, ~2hx e R T 2 l ] 0 P\Xx fa 2 " "'% f, \ M J < - h—x o -x \ . dr + ,_C'~.v)/ { p, f w Si h-x ­ r 2 ^ 1+ — : — 0, A dx 4iPi 0 V Si + //­.V G l * I Vi 0 (140) \ 01 S, J T„m. _ / \ 0 3 i M = ­ 2bG, 1 Si T m dr + Jf(t­r)Erf 0 1 P|£|R|S, 24~r V J T m, (1 St^om, V Jf(T)k*Erf 2VT #1 v T m . 0 X 1 JV(t­r)­Erf y o ı m X 2VT X i (141) « 2V7 v T 2/>G, T •[A, o \ m X\ ¡f(t-v)-Erf 2r £|#|S|P|0| 2 y (2h­x)^| A. 7>, 1 Jf(r)dT*Erf 0i Zi V "(2h­x), T m, 0 Xi M«>(t­r).Erf 0. 0 dr­­L 2Vr~ (2h­x). 24r~ 0, A + ¿102 ¿i 7 0i Xi T m, fl X\ J<p(t­r)­Erf ) dx (142) If we define B§ 0, (x.p) = ­ '­HH k 2 2 X: •om,p_ p l„in p 2 0«(x,p) = ­ /T m>p t: R^ e ' V; ^ 0 2 « \ / then 12 (x. p)+M*< p) ^ ( x , l ) = O (x,t)+0, (x,t) i : J Inverse Laplace transforms o f 0 , , ( , p ) and 0 , ( x . p ) has been calculated as follows. x g , 1 ( j r , / ) = ­ 2 g ^ ^ n ^ , g ­ ^ ) . 2 h \ "f( x - h ­ r x­h! r t­ x­h dr+­ £2 « v t hi J M l 0, dr G i0i >M/ + ,.[x­M/ S2 (143) '$1 T . !b| m ( 0i T m^ 2 0 ^ 2 2 Xl X\ 2£,R,6 I Jf ( r ) d r * E r f 2 7> Z Erf 0 2 \, X, 2 I4~T T„m M l a 2Vr I f we define PlP 3 Jt H ­ JL, e\ E b+ 1 1 J ( X*P ) = b+^ PlP ' 31 X| P,P <J 41 2 7 v 4 i T | ( 'p) Z i=l x = < T i | J ( X i «"'i/ > Xl then p) + h 02 7>|5| 0i X\ T m, 0 X, j V( t ­ r ) E r f cTn(x,p)=­ \<f>(t­T) { 01 E 41 dr Inverse Laplace transforms o f <j,, (.v, p) has been calculated as follows. ( \ X a „ ( . v . / ) = <T" - I /____ Si ) / X A / Zi *1 , gr iPi*i G, g X s, c c ­/ ..v + Si J v. A" — X, %\ o V - X tlx (145) Si l)­\ CTI| h­x ( ),_^L ­i>0­ e XA r Xi0i ' Pi0> v ) Si , t } f ( r i t ­ i ^ ­ r k 0i i + / Si^Pi^iZ^ G lX|0, h ­x ,­ h ( h ­ x Si <r (x,l)=2b§ ill jf(t­r)Erf l h­x P + I * • x JY(r)dr*ErT + Srm,T () 0 2r G, j T ( 2r o m , / X i ~ 0i ^ dr 2r V 4\( < )= (2/f­x). r X x Jfl>(r)d­ / T ,m, (J 0 jT m, v Erf ^1 s, dr + 2r dr \f(t-x)Erf (147) ) 7>, 2r A, + V ¿102 ^ 0. , (146) (2h­x)^>i I Jf(r)dr*Erf Al <• + 2t ¿1 J ^ ( t ­ r ) 10i G (2h­x)^p^ Erf (2h­x)J dr + A 2r 2 + ^.|J (t.r)Erf V ? ri y<i T o m / 2r If we define B+­^ k CTi (x,p)= ­ 2 B ­ ­ P + CT.12 p p ];rn,p J (x,p) V XT' 2 E then (7 2 (x, p) = O­ 12 (x, p ) + <T M (x, p) 0­ (x,t)^(T (x,t)+CT, (x,t) 2 |2 3 Inverse Laplace transforms o f cr 12 and on has been calculated as follows. x­ l i h) r, PiS,0i Jf(r)|t­^­rdr 0 V Jf(rjt ' S2 x­h — «2 ' . V + Jf(r)d r + r 2 ¿,02 01 y ^ - ^ B y T dr G i0i x­h x­h r t~ + V s y [Xt<P dr 2 2 dr] + V 01 ^ , a 4 h ( i , n­, > \ , x i i (I ( x ­ h ) j ' ^ I Jr (t­r).;rf m, dr + 2V7 (x­h)fe­ h Xi V0i , + jY(r)dr*l­;rf V T ' m X, ; ' * 2VT X: 2^ dr + 0, X, (x­hl JV(t­r)Eii * 2 dr (150) 8.SOLUTIONS FOR VISCOELASTIC MATERIALS FOR LARGE VALUES OF TIME We mentioned before how difficult it was finding solutions o f problems for viscoelastic bodies. One o f difficulties stem from functions m, , i / / , , R, , G, which are included in solutions o f Laplace integral transforms. In order to reduce difficulties partially it is assumed that ratios o f these functions mutually do not depend Laplace transforms parameter. In that case for very smalt values o f p, and taking m,n constants, m.p = m ( l + pm) ; C i . p ^ O ' ^ l + pn) formulas are used. So using solutions in part 5 solutions in large values o f time for viscoelastic materials are found as follows. Again symbols in part 5 w i l l be used. u (x,l) = l X .i( ' 0 u i ­I x •s/P S ı S ^ P i + Sı~Pl 2 2 )«, + S1S2P2 dr J<p(t­r)­^­<p'(l­r) (151) 2i'^,X,ls,4SP u a ı ( x , t ) ^ ' R ­ < f : ^ j [ + dr ( t ­ r ) ­ H y ( t ­ r ) y (152) dr aAO^i.Xilsi^Pi ­Sı'Pı " S : P2­S1S2P2 j V / r „L 2 + (153) \ / u (xj) M = P2£ı4Sfeı°2#2P 7 "ÜlOzXté&Pl 11 +^2^1X1^2) , > / X X m I W ­ r ) ­ — <P ( t ­ r ) " İ Y P l ~h{ Pl ­ 5 l 5 l P 2 j VÎT „L, 2 2 "SVP, 2 u (x,t)= + (154) J/(rVr­f/­(/) V2plki4 Pl dr " « S I^PÍ ) " ^ P j u (x,t)+u,,(x,t) 2 1 3 u (x,t) = ­ 1 2 VI e,R, " A r r (155) <p(t­r)­™<p ( l ­ r ) | d r AG V^ or 2 u„(x,t) (156) t­ Sı^Pı ­4ı"Pı ­ 4 Y p ­S1S2P2 2 0 . ( ^ 0 ­ 1 0 , (x,t) 1=1 ft ( x ^ t fol ­ ^ ^ i f e P l = H 2^ (<5,<S P ­ ^ 2 1 | 2 2 P l ' ^ P ; + ^ ' ^ ^ ) "^2 P2 H ^ P ? p| 2 f p ( t ) (157) ) (158) 2*ı [f(t)­nf"(t)­nf(0)] ö.„(x,t) = 2 ^£| lPlfel^2Pl R ­^| P, ^ Pi(A^ ¿­ G ^ p R, 2 2 t 2 2 2 2 ­ S 2 V 2 +a^ £ G|XıP2^2) 2 2^^ £ R aAG p x ^ ^ Pı "S^Pı l 1 i 2 ! 1 1 3 "Él&pJ 2 ­ S 2 V 2 ­S1S2P2) J <p(t­r) + i/r (159) — ç ) (/­r) 'Jvr , ö„(x,l) = ° ^ : ^ 4 — [ r ( l ) . n r ­(t)] I t/r —<P l ' ­ r ) I <P (160) Ö (x,l) = ö„(x,t)+ö ,(x,t) i J 0 (x.t)=­flîrr ,f l UT (161) f(t­r)dr P ) ^ G 0 (x.l) = nf t­ , 3 2 (162) l­ Pl ~S2 P2 ~~h\blP- <M* -0 = I > i i M (163; a, 2a­G /,(| £ p, ­£,~p, ~ í 1 ¡ O", , ( x a ) = ' ^ ; ^ 2a "G p (7 E ) R 2 2 2 (164) ­k(t)­m ­(t)] y g,fe,P,+g P ) 2 „(x,t) = 4,S P. 2 ­S2 P ­Í1S2P2 2 ~­St"Pl 2 R ¡ 1 1 2 S1S2P1 V2p,p SıfeıP) ­S2P2) ­sTPı ­ İ Y P 2 £ G R 2 f(l) ­S1S2P2 £ G R + £ G •/ 9 ' n­m X t _ r ' + » / X t/r ^ r ~ ^ *'~ ' r R 2 <P ( l ­ r ) + ­ y ­ Ç ) ( / ­ T ) c/r (166) V / T a A G ^ ­ ^ ^ ^ p , ­S| P, ­S2 P "ÉiS^P:) 2 2 2 CT, (x, t ) = (T,, (x, t ) + C7 (x. t ) i 2 a 1 2 (M) = ­ ^ j E r f AG ¿ ' Ax^ <p ( t ­ r ) + (p ( / ­ r ) | d r (167) t­ (168) 2 hÁlPl 2 <x, (x,t)=­ 2 " S l ^ P l ­ < § ' P l " ^ f P i ­Sl^2P> t (165 + Sı 4 ( l >X2 l 2 i X l 2) 2 ; S2 2 |Xlp2 2) 'l ­S2 P2 ­S1S2P2) 0 a + V?TaAG , G X i ^ i ^ 2 P ı " 4 V P ı C7 . (x,t) = •f(t)­ 2 2^ ^P|(A^£ G X2P2 I u p ~íi^P: j V2^2 9.SOLUTIONS FOR VISCOELASTIC MATERIALS FOR SMALL VALUES OF TIME In this case for very large values o f p. and taking M . N constants mip=mj 1 + G,p = G' M/ Py N H \ PJ formulas are used. So using solutions in part 7 solutions in small values o f time for viscoelaslic materials are found as follows. Again symbols in part 7 will be used. u (x,t)=Xu„(x.l) l i I u,,(x.t) = ­ Jf(r)d S,Pi m, Si 2*. 7 ­ ^ ^ t ­ } f ( r i t ­ f ­ X; i '(ri t dr r £ { £,R SI^ -I dr + S, jv(r)d T + G 069) ill -V) A . /ï­ . Y c/r + Si (h­s J Pi0i ^ / V 01 h­x ) dr + o V P: Si f,R,^ G 2 lX,0| Pi J<p(r)dr + 1/ •Ut­ \ Sı 2b£, u„(x,t) = ­ Jr (rXl­r)J ^^|r(rXi­r) d 3 r + ^X\ 11 (1 m, J^(rXt­r)d J<p(r)d r + X, G u,,(x,t)=— 2b, A. + A, j f ( r X t ­ ) d r + • r |l(rXt­ ı / m, ı„n iıU i>­ \ ; ı + G I A J<p(r*i r + ( ı0ı A, + M 1 Xi Í T,, m, ı u (x,l) = u (x,l)+u, (x,t) 2 l 2 2 x- h ­ {y ­ M / iı hi J ri 2 42 ; 1 c/r + — 2 Y 3 + 2 + J X- h M- -(x-h)N/ D ti T G $2 \ h h)/ (v A, rifa 73 + 7r (173) Jf(rXl­r)d r u (xj) i 2 f'" 'J m i 2\ , ­ r I I I f'»"'l V 12 Jr ( r X t ­ 0 d r \ /A 2 01 2 g + /ri II ı ^ ( s ı P ı +S2P 2 ) n S 2 ^ " 2 2 A / ı : X ı 2 2 T R m + m r + ,| HI| ^02 T ..™ısı Xi 0i 2 V (174) 7 Trt 0,(x,l)=¿O (x,l) i I i­l fl„(x.l): XlPl -/M sV™l o T Jf(r)d r + o V Si dr + v;V Sl" j<p(r)ch + V. W Xi lô ? A , *S, 0 [rl / v £1 (175) r y J±Lİİ t PıX,~0, ı '< r | / î { + T / S ı VÍrVr + J ^ j . (/<­ v ) . V v/ı ­ ­ J p V(r)j/ O SI • 1 " rir (r P3 + ^ f ^ ­ ^ l P l 01 2bG, Pıtısı r — t GıZı 0ı /Si M ) P. ; ; 2' 03 i CİT + T Sı iz / S ı Pl — •­ ­ •>­ ,,, v sı h-x t CİT + — P , + ^ ­ ^ , P , 2\ . 0ı / / 7­ .Y ATl í Pl (176) + X\ X, 2Vr ÚT + |T m| 0 5| Xl O l jV(t­r)Erf Xi T m 2bG 0„(x,t) = £ ( R I s I 4 Í P I 0 I A, J f ( t ­ r ) E r f (177) Yx + Y (179) dr $ 2 .m, 0 (XA) X, Jf(t­r)nrf = - X2 dr + 2Vr PıSı0ı i O _l_ T 01 2£|R,G X2(siPl 2 + 2V7 X2 XI Xl X2 r * Rif m +b2P2V 0 lX| T m 01 (x­h) Xl X i j V (t­r)*Krf dr 7 02 'V 'i s Y 01 Xl 'h ihi m J(/)(/­r)A>/ V X2 V Xl X2 o"i(x,t)=X n(x.t) < 7 (T j i ( x , t)­ e X ( \ X r t — + l Si J 4ı'^ı o T ¡f(r)dr­ X, x¡ 0'»l b dx (180) f <p \ {</>(r)dr­ X Xl t —­ \ Xi Si ) J ^ r j t ­ f ­ ~ r dr V 0 a (xj)= Si t -e 2l . - 1 P. P X,0, (I c/r + si l­ ; 0i V (h­x SI M­ir ­ r dr G lX|0I i o­, (x.t)­2b^ i Xl Jl'(t­r)Erf l V\<P(f- 2r dr + h- Jf(r)dr* X I o ' <> I T Erl* m Xl 2t Si £i iP| R G i JV(t­r)Erf Xl 2r dr T x s. "m , ) m V x. 2r JV( l ­ r ) E r f XI « o dr V J (2h ­xX Ai < T | ( x,t ) = 4 ( 2h ­ x) V 1­rf (183) ÍT n i| 0 Xl JY (t­r)Eif d r + A? + + b1 £|P,R| G,0| (2h­ x)t i A, jV(t­r)Erf 0 I jV( t ­ r ) E r f + 0i V y ( 2h ­ x) J^ V X, 2r dr l2 12 x­h I f— —— Ci Í '"fır .V - « h p V ­ r i/ r + V 01 II irJ ?2 / É/ T —• V + J yin 42 , H F R y F n l iX2S2P>­ fc A G "i0i r_i02 ¡ (r)d r * ,' o i ^ Vr V 0i Vi 1 2r m Xl dr + (184) <y (x,t ) = e r ( x, l ) +<x ( x, t ) 2 J7 T ­lom.1 x\ 2t A, Ml A ¡02 -ix' ii 1 v 2Í, ­ 2 V­ /l j v ( (,­£Z*_ | r r (185) i / r CT V Jf ( / ­ r ) E r f T m, 0 dr + + h 2 + Xi • Xl , 0 >+ {«Pv ^) 1 7>, h \ ^02 X, 2Vr (x­h) m 0 i Sl 0, ^ ^ W ^ l Z l ^ ^ R * ' Q T T m, 2­s/t Tm 2 \ 02 I 01 Xi jf(r)dr*Erf Jp ( t ­ r ) E r f Xi 2V7 (x­h) Wit V I : ^'"liV V0I T m, n ; i olll, +h X2 X, N ) X, dr (186) 2V7 [1] A C H E N B A C H ,J.D.,SUN , C . T . and H E R R M A N , G . : On the of the a laminated body ,LAp\?\. Mech., 35 (1968), 467­475. [2] B A R K E R , L . M : :A model for stress wave propagation J.of Comp. Mater, 5 (1971), 140­162. vibration in composite materials , [3| B R I L L O I J I N , L . : Wave propagation 182(1952) in periodic [4j C A R S L A W ,H.S. and J A E G E R , J . C : structures .Dover publishing, Operational Methods in Applied Mechanics, Oxford University Press. 1941. |5j C H E EN, C.C. and C L I F T O N , R . J : Asymptotic bilaminates, Proc. 14th Midwestern Mechanics Conf. University o f Oklahoma , 1975,399­417 | 6 | C H E N , P . J . and G U R T 1 N , M . E . : On the propagation deceleration waves in laminated od one-dimensional composites. J.Appl.Mech. N40 {1973), 1055¬ 1060. |7| C H R I S T I N S E N , K.M.-.Wave Mech.42 (1975). propagation in layered elastic media, J.Appl. 153­158. |8] C H R I S T E N S E N , R . M . : T h e o r y of Viscoelasticiiy,Academic press. 1971. |9j C R I S T E S C U , N . : D y n a m i k ' p l a s t i c i t y , North­Holland Publishers, 1967. .JlOj C R A C H , S . '.Wave propagation in a viscoelastic material with properties and thermomechanical coupling. Transactions o f A S M E ,J temperature-dependent O f Appl . Mech ., 86 (1964) .423­429. fll| G U T E R M A N , M . M and N I T E C K I , : Z . H . : Differential Equations The Saunders Series,1984. 112] H E G E M I E R ,G.A. and N A Y F E H , A . H . : A Continuum propagation in laminated composites,J.Appl. 1 n j ^ H E T N A R S K S , R.B.: Solution of series of function. of Coupled theory for wave Mech.,40 (1973), 503­510..8 Thermae last ic Problem in the form Arch. Mech. Stos.,6, N4 (1964), 32­39. [ 1 4 | . . H E T N A R S K I , R.B.: Coupled Thermoelastic Problem for the halfspace^uW. Acad. Polan. ScuSer. Sci. Techn., 12, N l (1964)J20­128. 115] I G N A C Z A G , J . : Thermal displacement in a non-homogeneous elastic semifmite space, by sudden heating of the boundary, Arch.Meech. Stos.,10 N2 (1958), 152­159. [16| K A R M A N , T h . : ^/ 7 the propagation OSRDNo.365 (I942). of elastic deformation caused in solid, ­NDRC report No,A­29, [17] L E E , E . H . : D y n a m i c s of Composite Materials, A S M E Appl.Mech.Divisions Series, Book No.H0078(1972). [18] L E E , E . H . a n d KANTER^J.: Wave propagation o f Appl. Physics, 24, N9 (1953) 1115. in finite roads of Viscoelastic Materials, Journal [19] L E E , E . H . and ROGERS J".G.-.Solution of viscoelastic stress analysis problems using measured creep or relaxation functions. Brown University Technical Report D A ­ G ­ 5 4 / I , J. Appl. Mech, 30 Trans.ASME,85 (1963), 127­133,Series E. [20] M O R L A N D , L . W . a n d LEE,E.H .:Slress analysis for linear viscoelastic temperature variation, Transactions o f the Society o f Rheology, 4 (1960), 223. materials with [21] M U K I , R . and S T E R N B E R G ^ .-.On transient thermal stresses in viscoelastic materials with temperature dependent properties. Journal o f Applied Mechanics,28,Trans. A S M E ,83.( 1961). Scries E. [22] P E C K , J . C and G U R T M A N , G . A . \Dispertive pulse propagation laminated Composite, J.Appl. Mech., 36 (1969),479­484. [23] S N E D D O N , I . N . : The propagation Sec. A , 9,65 (1959), 115­121. parallel to the interfaces of a of thermal stresses in thin Metallic rods. Proc. Roy. Soe. [24] SOOS,E.:77;ii Green 'functions (for short time) in the linear theory of Coupled Arch. Mech. Stos.,18, N l , 12­18. thermoelastieitv. [25] S V E , C :Stress wave attenuation in Composite Materials, J.Appl. Mech., 39 (1972),1151­1153. [26] T A Y L O R , G . I . : Propagation o f earth waves from an explosion, British official Report .R.C5570. (1940)21. [27] T I N G , T . C . T . : Simple waves in an extensible String [28] T I N G , T , C . T . - . D y n a m i c a l response of Composites, J . Appl.Mech.,36 (1969),893­896. Applied. Mech. reviews, 33 ,NI2 (1980). [29] T I N G , T . C . T and M U K U N O K I , I :A theory of viscoelastic analogy for wave propagation normal to the layering of a layered medium, J. Appl. Mech. reviews, 46, N3 (1979),329­336. [30] T I N G , T . C . T and M U K U N O K I , I -.Transient wave propagation finite layered medium, Int. J. Solids Structures, 16 (1980), 239­251. normal to the layering of [31] V A L A N I S , K . C and L1AN1S, G.A.: Method of analysis of transient -thermal stresses in thermorheologically simple viscoelastic solids,Transactions o f the A S M E . J o f Appl. Mech.,86 (1964), 47­53. [32] V A L A N I S , K . C . : Method of analysis of transient thermal simple viscoelastic solids,Mechanical Engineering, 86 (1964), 64. stresses [33] V A L A N I S , K . C and L I A N I S , G.'.Error analysis of approximate viscoelastic stresses, Purdue University Report A and ES 62­13, (1962). H d l V A I . A N I S . K.C: in thermorheoiogiea/ly solutions of Studies in Stress Analvsis o f Viscoelastic Solids Under Non­Steadv thermal Temperature Gravitational and Inertial Loads, PhD thesis, Purdue University, 1963. Mustafa Kul Department of Mathematics, Faculty of Science, Istanbul University 34459 Vezneciler­istanbul TURKEY
Keep reading this paper — and 50 million others — with a free Academia account
Used by leading Academics
Nikos Mantzakouras
National & Kapodistrian University of Athens
Bissanga Gabriel
Marien Ngouabi Brazzaville
Florentin Smarandache
University of New Mexico
Nasreen Kausar
Yildiz Technical University