Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
This paper introduces a new stochastic process, a collection of U-statis-tics indexed by a family of symmetric kemels. Conditions are found for the uniform almost-sure convergence of a sequence of such processes. Rates of convergence are... more
    • by 
    •   15  
      MathematicsStochastic ProcessEconometricsStatistics
Nous établissons un majorant de la vitesse de convergence presque sûre de l'estimateur à noyau du mode, en utilisant des résultats de type loi du logarithme itéré.We obtain rate of almost sure convergence of kernel estimators of the mode,... more
    • by 
    •   2  
      Pure MathematicsAlmost Sure Convergence
    • by 
    •   12  
      StatisticsConvergenceOrder StatisticsApproximation
    • by 
    •   8  
      StatisticsParameter estimationConvergence RateBootstrap
    • by 
    •   4  
      MathematicsConvergence RateLaplace TransformAlmost Sure Convergence
    • by 
    •   3  
      Pure MathematicsRenewal ProcessAlmost Sure Convergence
    • by 
    •   10  
      Applied MathematicsMathematical ProgrammingLevel SetNumerical Analysis and Computational Mathematics
In (Ordóñez Cabrera and Volodin, J. Math. Anal. Appl. 305:644–658, 2005), the authors introduce the notion of h-integrability of an array of random variables with respect to an array of constants, and obtained some mean convergence... more
    • by 
    •   7  
      MathematicsStatisticsTestConvergence theorem
    • by 
    •   10  
      MathematicsApplied MathematicsProbability TheoryPure Mathematics
    • by 
    •   9  
      StatisticsDensity-functional theoryFast Fourier TransformCharacteristic Function
A probabilistic normed space (PN space) is a natural generalization of an ordinary normed linear space. In PN space, the norms of the vectors are represented by prob-ability distribution functions rather than a positive number. Such... more
    • by 
    •   4  
      Statistical ConvergenceDiscrete random variableConvergence in ProbabilityAlmost Sure Convergence
    • by 
    •   15  
      StatisticsSurvival AnalysisEstimationCensored data
We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated. Such programs can... more
    • by 
    •   9  
      Model averagingVariational Inequality ProblemsStochastic OptimizationPath Analysis
    • by 
    •   3  
      Pure MathematicsConditional ExpectationAlmost Sure Convergence
Motivated in part by various sequences of graphs growing under random rules (like internet models), convergent sequences of dense graphs and their limits were introduced by Borgs, Chayes, Lov\'asz, S\'os and Vesztergombi and by Lov\'asz... more
    • by  and +1
    •   2  
      Pure MathematicsAlmost Sure Convergence
    • by 
    •   7  
      StatisticsMultivariate AnalysisEmpirical ProcessCentral Limit Theorem
    • by  and +1
    •   12  
      Applied MathematicsConvergencePure MathematicsFourier Analysis
    • by 
    •   8  
      MathematicsEconometricsStatisticsLeast squares estimation
Using the explicit representations of the Brownian motions on the hyperbolic spaces, we show that their almost sure convergence and the central limit theorems for the radial components as time tends to infinity are easily obtained. We... more
    • by 
    •   5  
      MathematicsPure MathematicsBrownian MotionCentral Limit Theorem
We consider a random variable X satisfying almost-sure conditions involving G: = ˙ DX, −DL −1 X ¸ where DX is X’s Malliavin derivative and L −1 is the inverse Ornstein-Uhlenbeck operator. A lower-(resp. upper-) bound condition on G is... more
    • by 
    •   18  
      Stochastic ProcessStatisticsPrimaryPolymer
    • by 
    •   6  
      StatisticsSample SizeWeibull distributionConvergence in Probability
    • by 
    •   19  
      MathematicsApplied MathematicsProbability TheoryEconometrics
    • by 
    •   11  
      Distributed AlgorithmsWireless Sensor NetworksConvergenceStochastic processes
    • by 
    •   12  
      Computational ComplexityMarkov Decision ProcessNeural NetworkStochastic Approximation
    • by 
    •   12  
      Computational ComplexityMarkov Decision ProcessNeural NetworkStochastic Approximation
    • by 
    •   14  
      Mechanical EngineeringApplied MathematicsMarkov ProcessesConvex Optimization
    • by 
    •   32  
      AlgorithmsArtificial IntelligenceMachine LearningActive Learning
    • by 
    •   12  
      MathematicsDistributed AlgorithmsWireless Sensor NetworksConvergence
ABSTRACT
    • by 
    •   6  
      Applied MathematicsStochastic ProcessEconometricsStatistics
Abstract-We consider the problem of reconstructing a de-terministic data field from binary quantized noisy observations of sensors randomly deployed over the field domain. Our focus is on the extremes of lack of control in the sensor... more
    • by 
    •   19  
      MathematicsComputer ScienceInformation TheoryManufacturing
    • by 
    •   11  
      MathematicsStatisticsTime SeriesMartingales
    • by 
    •   6  
      Applied MathematicsApplied Mathematics and Computational ScienceCross ValidationNumerical Analysis and Computational Mathematics
In this work, we study the optimal discretization error of stochastic integrals, in the context of the hedging error in a multidimensional It\^{o} model when the discrete rebalancing dates are stopping times. We investigate the... more
    • by 
    •   3  
      Applied MathematicsStatisticsAlmost Sure Convergence
    • by 
    •   9  
      StatisticsMultivariate AnalysisRandom Matrix TheoryLimit Distribution
    • by 
    •   4  
      EconometricsStatisticsStochastic ApproximationAlmost Sure Convergence
    • by 
    •   6  
      EconometricsStatisticsNonlinear RegressionStochastic Approximation
In this article, a new framework for evolutionary algorithms for approximating the efficient set of a multiobjective optimization (MOO) problem with continuous variables is presented. The algorithm is based on populations of variable size... more
    • by 
    •   15  
      Evolutionary algorithmsEvolutionary ComputationOptimization (Mathematics)Genetic Algorithms
    • by 
    •   14  
      Applied MathematicsProbability TheoryEconometricsStatistics
    • by  and +1
    •   6  
      Applied MathematicsEconometricsStatisticsMaximum Likelihood Estimation
    • by 
    •   8  
      StatisticsParameter estimationConvergence RateBootstrap
We obtain complete convergence results for arrays of rowwise independent Banach space valued random elements. In the main result no assumptions are made concerning the geometry of the underlying Banach space. As corollaries we obtain a... more
    • by  and +2
    •   6  
      Applied MathematicsEconometricsStatisticsMoving average
    • by  and +1
    •   10  
      EngineeringTechnologyComputer NetworksComparative Study
    • by 
    •   15  
      MathematicsEconometricsStatisticsStochastic Volatility
We investigate sample average approximation of a general class of onestage stochastic mathematical programs with equilibrium constraints. By using graphical convergence of unbounded set-valued mappings, we demonstrate almost sure... more
    • by 
    •   5  
      MathematicsPure MathematicsSample SizeMathematical Program With Equilibrium Constraints
    • by 
    •   9  
      MathematicsStatisticsData AnalysisStatistical Inference for Stochastic Processes
    • by 
    •   18  
      Mechanical EngineeringApplied MathematicsArtificial IntelligenceReinforcement Learning
By applying a recent result of Hu et al. [Stochastic Anal. Appl., 17 (1999), pp. 963--992], we extend and generalize the complete convergence results of Pruitt [ J. Math. Mech., 15 (1966), pp. 769--776] and Rohatgi [Proc. Cambridge... more
    • by 
    •   3  
      StatisticsAlmost Sure ConvergenceRate of Convergence
    • by 
    •   6  
      Applied MathematicsStatisticsStochastic dominanceAlmost Sure Convergence
    • by 
    •   2  
      Pure MathematicsAlmost Sure Convergence
    • by 
    •   6  
      Information SystemsQ LearningStochastic ApproximationAlmost Sure Convergence