This paper describes a sensing-actuation coupling of a robotic trout that detects changes of the laminar flow speed using an on-board pressure sensor and adjusts its tail-beat frequency for steady swimming. The caudal fin actuator closely... more
This paper describes a sensing-actuation coupling of a robotic trout that detects changes of the laminar flow speed using an on-board pressure sensor and adjusts its tail-beat frequency for steady swimming. The caudal fin actuator closely mimics the morphology of a real trout, in particular the geometry, stiffness and stiffness distribution of the body and the caudal fin. We hypothesize that the linear relationship between the tail-beat frequency and speed, well-known and proven to hold for all fish studied so far, also holds for an artificial fish. We validate the hypothesis and use the results to derive a linear control law to adjust the tail- beat frequency to the swimming speed. We use an onboard pressure sensor to detect the flow speed and test the actuation in a controlled hydrodynamic environment in a flow pipe.
Internal impedance is one of the key factors determining the quality of embodied perception and action in biological organisms and robots. Though the role of impedance control in robotic actuation has been well studied, its significance... more
Internal impedance is one of the key factors determining the quality of embodied perception and action in biological organisms and robots. Though the role of impedance control in robotic actuation has been well studied, its significance in the accuracy of proprioception with embodied sensors is not well known yet. Therefore, it is important to characterize the relationship between the entropy of sensor information and the impedance of their physical embodiment, through which sensors feel the internal state of the body and the environment. In this paper, we address the role of internal impedance in the accuracy of embodied perception. To investigate this, we pose the problem of using only torque data measured at the stationary base of a two link planar manipulator, to estimate the deflection caused by an external torque in the McKibben type pivot joint with variable stiffness. Based on analytical modelling and experimental validation, this paper presents, for the first time, that non-linear static memory primitives relating internal impedance, internal kinematic variables, and forces felt at the base of the manipulator - similar to the functionality of tendon organs of biological counterparts - can be used to tune optimal internal impedance parameters to maximize the accuracy of internal state estimation during external perturbations.
The Core-Snake aims to bridge the gap between rigid laparoscopes and flexible endoscopes. The Core-Snake
is a 10 mm diameter robot which can alter its body stiffness
from being flexible to rigid via granular jamming.