In this work, three new pharmaceutical salts of fenbendazole (FNB), a benzimidazole-based anthelmintic drug, with sulfonic acids have been obtained and thoroughly investigated by different analytical techniques, including thermal methods,... more
In this work, three new pharmaceutical salts of fenbendazole (FNB), a benzimidazole-based anthelmintic drug, with sulfonic acids have been obtained and thoroughly investigated by different analytical techniques, including thermal methods, infrared/Raman spectroscopy, and theoretical methods (periodic DFT computations and Bader analyses of the crystalline electronic density). Single-crystal and high-resolution synchrotron powder X-ray diffraction data for the first time made it possible to determine the crystal structures of mesylate and tosylate salts of the drug, which were further validated by dispersion-corrected density functional theory calculations. All the solid forms were stabilized by a robust R 2 2 (8) supramolecular motif formed by relatively strong N−H•••O hydrogen bonds. In the monohydrate of FNB tosylate, a considerable gain in the stabilization energy was due to the intermolecular interactions generated by the water molecules. A careful examination of the solubility−pH profile of the FNB salts revealed that, despite being thermodynamically unstable within the physiologically relevant pH range, the new solid forms demonstrated superior dissolution performance in terms of both the apparent solubility and the release rate in comparison to the parent drug. Since FNB has also been reported to possess anticancer activity, improving the drug's poor physicochemical properties through salt formation with the selected sulfonic acids is expected to promote further investigations toward repurposing of this potent compound.
The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of d-amino acids catalysed by this flavoenzyme. D-Alanine was the... more
The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of d-amino acids catalysed by this flavoenzyme. D-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the b-carboxylic group of the inhibitor.