Abstract
The celebrated result by Gentry and Wichs established a theoretical barrier for succinct non-interactive arguments (SNARGs), showing that for (expressive enough) hard-on-average languages, we must assume non-falsifiable assumptions. We further investigate those barriers by showing new negative and positive results related to the proof size.
-
1.
We start by formalizing a folklore lower bound for the proof size of black-box extractable arguments based on the hardness of the language. This separates knowledge-sound SNARGs (SNARKs) in the random oracle model (that can have black-box extraction) and those in the standard model.
-
2.
We find a positive result in the non-adaptive setting. Under the existence of non-adaptively sound SNARGs (without extractability) and from standard assumptions, it is possible to build SNARKs with black-box extractability for a non-trivial subset of \({\textbf {NP}}\).
-
3.
On the other hand, we show that (under some mild assumptions) all \({\textbf {NP}}\) languages cannot have SNARKs with black-box extractability even in the non-adaptive setting.
-
4.
The Gentry-Wichs result does not account for the preprocessing model, under which fall several efficient constructions. We show that also, in the preprocessing model, it is impossible to construct SNARGs that rely on falsifiable assumptions in a black-box way.
Along the way, we identify a class of non-trivial languages, which we dub “trapdoor languages”, that can bypass these impossibility results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
For example, DLOG is a falsifiable assumption since the challenger can efficiently test if the adversary has found the correct discrete logarithm.
- 3.
- 4.
For example, in pairing-based constructions such as [23] it consists of at least one group element per wire in the circuit to be proven.
- 5.
Contrast this with the adaptive case, where the prover is stateless and rewinding is not useful.
- 6.
This class should include FHE encryption and CRHF and should be closed under conjunction. In our theorem statement, we simply require a SNARG for \({\textbf {NP}}\).
- 7.
More generally, if poly-to-one one-way functions exist then \({\textbf {P}}\ne {\textbf {FewP}}\) [2].
- 8.
A slightly simpler construction for the case of \({\textbf {UP}}\) (\({\textbf {NP}}\) statements with a unique witness) can be seen in the full version.
- 9.
- 10.
Here, \(\mathbb {G}_1\) is an additive pairing group and \([x]_{1}\) denotes a group element with a discrete logarithm x.
References
Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_21
Allender, E.W.: The complexity of sparse sets in P. In: Selman, A.L. (ed.) Structure in Complexity Theory. LNCS, vol. 223, pp. 1–11. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16486-3_85
Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_3
Badrinarayanan, S., Kalai, Y.T., Khurana, D., Sahai, A., Wichs, D.: Succinct delegation for low-space non-deterministic computation. In: 50th ACM STOC. ACM Press (2018)
Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and randomization of Groth’s zk-SNARK. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 457–475. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8_22
Baghery, K., Sedaghat, M.: Tiramisu: Black-box simulation extractable NIZKs in the updatable CRS model. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 531–551. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92548-2_28
Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy. IEEE Computer Society Press (2014)
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von neumann architecture. In: USENIX Security 2014. USENIX Association (2014)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: 45th ACM STOC. ACM Press (2013)
Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press (2018)
Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. Cryptology ePrint Archive, Report 2020/1069 (2020)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS. IEEE Computer Society Press (2001)
Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable NIZKs and an application to compact shuffles. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 100–119. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_6
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th FOCS. IEEE Computer Society Press (1995)
Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_27
Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fortnow, L.: The complexity of perfect zero-knowledge (extended abstract). In: 19th ACM STOC. ACM Press (1987)
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: 43rd ACM STOC. ACM Press (2011)
Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: 27th FOCS. IEEE Computer Society Press (1986)
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055744
HÅstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://doi.org/10.1137/S0097539793244708
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 60–73. STOC 2021, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3406325.3451093
Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1
Kerber, T., Kiayias, A., Kohlweiss, M.: Composition with knowledge assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 364–393. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_13
Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–732 (1992)
Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4
Kosba, A., et al.: C\(\emptyset \)C\(\emptyset \): a framework for building composable zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1093 (2015)
Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from Malleability: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_29
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Lipmaa, H., Pavlyk, K.: Gentry-Wichs is tight: a falsifiable non-adaptively sound SNARG. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 34–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_2
Micali, S.: CS proofs. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 436–453. IEEE (1994)
Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press (2013)
Pass, R.: Unprovable security of perfect NIZK and non-interactive non-malleable commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_19
Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 774–804. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_27
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: 46th ACM STOC. ACM Press (2014)
Waters, B., Wu, D.J.: Batch arguments for np and more from standard bilinear group assumptions. Cryptology ePrint Archive, Paper 2022/336 (2022)
Wee, H.: On round-efficient argument systems. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 140–152. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_12
Acknowledgement
We thank the reviewers of CRYPTO 2022 for constructive feedback, in particular, for pointing out the connection between black-box extractability and leakage-resilient cryptography. We thank Helger Lipmaa for comments on the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Campanelli, M., Ganesh, C., Khoshakhlagh, H., Siim, J. (2023). Impossibilities in Succinct Arguments: Black-Box Extraction and More. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds) Progress in Cryptology - AFRICACRYPT 2023. AFRICACRYPT 2023. Lecture Notes in Computer Science, vol 14064. Springer, Cham. https://doi.org/10.1007/978-3-031-37679-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-37679-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37678-8
Online ISBN: 978-3-031-37679-5
eBook Packages: Computer ScienceComputer Science (R0)