Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies
Abstract
:1. Introduction
1.1. Polyphenols and Gut Microbiota
1.2. Polyphenols in Regulating Swine Microbiota
1.3. The Purpose of This Study
2. Materials and Methods
2.1. Consulting the Specialized Literature
2.2. Inclusion and Exclusion Criteria
3. Results
3.1. Impact of Polyphenols on Gut Microbiota and Health in Pigs
3.1.1. Types of Polyphenols
- Tannins
- Phenolic Acids
- Polyphenol Mixtures
3.1.2. Plants
- Grapes
- Apples
- Aronia
- Other plants
3.2. Therapeutic Effects of Polyphenols on Mice, Rabbits, Rats, and Humans
3.2.1. Types of Polyphenols
- Isoflavones
- Flavan-3-ols
- Flavones and Flavanones
- Lignans
- Ellagitannins and Ellagic Acid
- Resveratrol
3.2.2. Beneficial Properties of Polyphenols
- General Positive Effects of Polyphenols
- Polyphenols and Cancer
- Polyphenols and Neurological Diseases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zeb, F.; Naqeeb, H.; Osaili, T.; Faris, M.E.; Ismail, L.C.; Obaid, R.S.; Naja, F.; Radwan, H.; Hasan, H.; Hashim, M. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr. Res. 2024, 124, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Cantos, E.; Tudela, J.A.; Gil, M.I.; Espín, J.C. Phenolic Compounds and Related Enzymes Are Not Rate-Limiting in Browning Development of Fresh-Cut Potatoes. J. Agric. Food Chem. 2002, 50, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaur, I.; Kariyat, R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Le Sayec, M.; Cheok, A. Dietary (poly)phenols and cardiometabolic health: From antioxidants to modulators of the gut microbiota. In Proceedings of the Nutrition Society, Proceedings of The Nutrition Society Summer Conference, Liverpool, UK, 3–6 July 2023; Cambridge University Press: Cambridge, UK, 2024; pp. 1–11. [Google Scholar]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Huang, Y.; Yu, H.; Yuan, S.; Tang, B.; Wang, P.; He, Q. Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Mitjavila, M.T.; Moreno, J.J. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol. 2012, 84, 1113–1122. [Google Scholar] [CrossRef]
- Bonaccio, M.; Pounis, G.; Cerletti, C.; Donati, M.B.; Iacoviello, L.; Gaetano, G. Mediterranean diet, dietary polyphenols and low grade inflammation: Results from the MOLI-SANI study. Br. J. Clin. Pharmacol. 2016, 83, 107–113. [Google Scholar] [CrossRef]
- Hu, J.; Mesnage, R.; Tuohy, K.; Heiss, C.; Rodriguez-Mateos, A. Poly)phenol-related gut metabotypes and human health: An update. Food Funct. 2024, 15, 2814–2835. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, L.; Xia, B.; Tang, S.; Xie, J.; Zhang, H. Modulation of Pectin on Mucosal Innate Immune Function in Pigs Mediated by Gut Microbiota. Microorganisms 2020, 8, 535. [Google Scholar] [CrossRef] [PubMed]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: Recent challenges and future recommendations. Gut Microbes 2024, 16. [Google Scholar] [CrossRef]
- Dueñas, M.; Muñoz-González, I.; Cueva, C.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Res. Int. 2015, 2015, 850902. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Gasaly, N.; Gotteland, M. Interference of dietary polyphenols with potentially toxic amino acid metabolites derived from the colonic microbiota. Amino Acids 2021, 54, 311–324. [Google Scholar] [CrossRef]
- Ross, F.C.; Mayer, D.E.; Horn, J.; Cryan, J.F.; Del Rio, D.; Randolph, E.; Gill, C.I.R.; Gupta, A.; Ross, R.P.; Stanton, C. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: A role for gut microbiota? Nutr. Neurosci. 2024, 27, 1058–1076. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci. Technol. 2017, 69, 281–288. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Foods 2020, 66, 103829. [Google Scholar] [CrossRef]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyère, O. The Effects of Vitamin D on Skeletal Muscle Strength, Muscle Mass, and Muscle Power: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, T.A.F.; Rogero, M.M.; Hassimotto, N.M.A.; Lajolo, F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; Pietro, M.; Mastromarino, P.; Sessa, R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol. Ther. 2020, 214, 107613. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Pour, P.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Fabbrini, M.; D’Amico, F.; Barone, M.; Conti, G.; Mengoli, M.; Brigidi, P.; Turroni, S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022, 12, 875. [Google Scholar] [CrossRef]
- Speckmann, B.; Ehring, E.; Hu, J.; Rodriguez Mateos, A. Exploring substrate–microbe interactions: A metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024, 16. [Google Scholar] [CrossRef]
- Sehrawat, N.; Yadav, M.; Sharma, A.K.; Sharma, V.; Chandran, D.; Chakraborty, S.; Dey, A.; Chauhan, S.C.; Dhama, K. Dietary mung bean as promising food for human health: Gut microbiota modulation and insight into factors, regulation, mechanisms and therapeutics—An update. Food Sci. Biotechnol. 2024, 33, 2035–2045. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Chatterjee, A.; Kumar, S.; Roy Sarkar, S.; Halder, R.; Kumari, R.; Banerjee, S.; Sarkar, B. Dietary polyphenols represent a phytotherapeutic alternative for gut dysbiosis associated neurodegeneration: A systematic review. J. Nutr. Biochem. 2024, 129, 109622. [Google Scholar] [CrossRef]
- Hussain, T.; Wang, J.; Murtaza, G.; Metwally, E.; Yang, H.; Kalhoro, M.S.; Kalhoro, D.H.; Rahu, B.A.; Tan, B.; Sahito, R.G.A. The Role of Polyphenols in Regulation of Heat Shock Proteins and Gut Microbiota in Weaning Stress. Oxidative Med. Cell. Longev. 2021, 2021. [Google Scholar] [CrossRef]
- Takiishi, T.; Fenero, C.I.M.; Câmara, N.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.M.; Koliada, A.K.; Marotta, F. Gut microbiota: A player in aging and a target for anti-aging intervention. Ageing Res. Rev. 2017, 35, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. New Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Seong, C.N.; Kang, J.W.; Lee, J.H.; Seo, S.Y.; Woo, J.J.; Park, C.; Bae, K.S.; Kim, M.S. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. J. Microbiol. 2018, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, M.; Wang, Y.; Dorfman, R.G.; Liu, H.; Yu, T.; Chen, X.; Tang, D.; Xu, L.; Yin, Y. Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflamm. Bowel Dis. 2018, 24, 1926–1940. [Google Scholar] [CrossRef]
- Choy, Y.Y.; Quifer-Rada, P.; Holstege, D.M.; Frese, S.A.; Calvert, C.C.; Mills, D.A.; Lamuela-Raventos, R.M.; Waterhouse, A.L. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct 2014, 5, 2298–2308. [Google Scholar] [CrossRef]
- Payen, C.; Kerouanton, A.; Novoa, J.; Pazos, F.; Benito, C.; Denis, M.; Guyard, M.; Moreno, F.J.; Chemaly, M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023, 11, 1464. [Google Scholar] [CrossRef]
- Zorraquín, I.; Sánchez-Hernández, E.; Ayuda-Durán, B.; Silva, M.; González-Paramás, A.M.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. J. Sci. Food Agric. 2020, 100, 3789–3802. [Google Scholar] [CrossRef]
- Williams, A.R.; Krych, L.; Fauzan Ahmad, H.; Nejsum, P.; Skovgaard, K.; Nielsen, D.S.; Thamsborg, S.M. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS ONE 2017, 12, e0186546. [Google Scholar] [CrossRef]
- Christaki, E.; Giannenas, I.; Bonos, E.; Florou-Paneri, P. Innovative uses of aromatic plants as natural supplements in nutrition. In Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 19–34. [Google Scholar] [CrossRef]
- Hu, R.; Wu, S.; Li, B.; Tan, J.; Yan, J.; Wang, Y.; Tang, Z.; Liu, M.; Fu, C.; Zhang, H. Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Anim. Nutr. 2022, 8, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: A review. J. Anim. Sci. Biotechnol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Diao, H.; Zheng, P.; Yu, B.; He, J.; Mao, X.; Yu, J.; Chen, D. Effects of Benzoic Acid and Thymol on Growth Performance and Gut Characteristics of Weaned Piglets. Asian-Australas. J. Anim. Sci. 2015, 28, 827–839. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Hossain, M.E.; Kim, G.M.; Hwang, J.A.; Ji, H.; Yang, C.J. Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets. Asian-Australas. J. Anim. Sci. 2013, 26, 683–690. [Google Scholar] [CrossRef]
- Meale, S.J.; Li, S.C.; Azevedo, P.; Derakhshani, H.; DeVries, T.J.; Plaizier, J.C.; Steele, M.A.; Khafipour, E. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Peng, J.; Tang, Y.; Huang, Y. Gut health: The results of microbial and mucosal immune interactions in pigs. Anim. Nutr. 2021, 7, 282–294. [Google Scholar] [CrossRef]
- Ming, D.; Wang, J.; Yin, C.; Chen, Y.; Li, Y.; Sun, W.; Pi, Y.; Monteiro, A.; Li, X.; Jiang, X. Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence. Intest. Morphol. Microb. Divers. Weaned Piglets. Anim. 2024, 14, 523. [Google Scholar] [CrossRef]
- Galassi, G.; Battelli, M.; Verdile, N.; Rapetti, L.; Zanchi, R.; Arcuri, S.; Petrera, F.; Abeni, F.; Crovetto, G.M. Effect of a Polyphenol-Based Additive in Pig Diets in the Early Stages of Growth. Animals 2021, 11, 3241. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Reggi, S.; Caprarulo, V.; Hejna, M.; Sgoifo Rossi, C.; Callegari, M.; Baldi, A.; Rossi, L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals 2021, 11, 1693. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, J.; Wang, J.; Yan, Y.; Huang, Y.; Chen, C.; Sun, L.; Liu, M. Tannic acid extracted from gallnut improves intestinal health with regulation of redox homeostasis and gut microbiota of weaned piglets. Anim. Res. One Health 2024, 2, 16–27. [Google Scholar] [CrossRef]
- Sun, J.; Wang, K.; Xu, B.; Peng, X.; Chai, B.; Nong, S.; Li, Z.; Shen, S.; Si, H. Use of Hydrolyzed Chinese Gallnut Tannic Acid in Weaned Piglets as an Alternative to Zinc Oxide: Overview on the Gut Microbiota. Animals 2021, 11, 2000. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, H.; Hu, Y.; Huang, J.; Yang, H.; Wang, L.; Chen, S.; Chen, C.; He, S. Effects of dietary microencapsulated tannic acid supplementation on the growth performance, intestinal morphology, and intestinal microbiota in weaning piglets. J. Anim. Sci. 2020, 98. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Xu, B.; Chen, Y.; Yang, W.; Xu, Y.; Huang, J.; Duo, T.; Mao, Y.; Zhou, G.; Yan, X. Dietary ellagic acid supplementation attenuates intestinal damage and oxidative stress by regulating gut microbiota in weanling piglets. Anim. Nutr. 2022, 11, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhao, M.; Mo, J.; Lan, G.; Liang, J. Dietary supplementation ellagic acid on the growth, intestinal immune response, microbiota, and inflammation in weaned piglets. Front. Vet. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Wen, X.; Wan, F.; Wu, Y.; Liu, L.; Liu, Y.; Zhong, R.; Chen, L.; Zhang, H. Caffeic acid supplementation ameliorates intestinal injury by modulating intestinal microbiota in LPS-challenged piglets. Food Funct. 2023, 14, 7705–7717. [Google Scholar] [CrossRef]
- Chen, J.; Yu, B.; Chen, D.; Zheng, P.; Luo, Y.; Huang, Z.; Luo, J.; Mao, X.; Yu, J.; He, J. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Appl. Microbiol. Biotechnol. 2019, 103, 8157–8168. [Google Scholar] [CrossRef]
- Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef]
- Hu, R.; He, Z.; Liu, M.; Tan, J.; Zhang, H.; Hou, D.X.; He, J.; Wu, S. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J. Anim. Sci. Biotechnol. 2020, 11. [Google Scholar] [CrossRef]
- Noten, N.; Degroote, J.; Liefferinge, E.; Taminiau, B.; Smet, S.; Desmet, T.; Michiels, J. Effects of Thymol and Thymol α-D-Glucopyranoside on Intestinal Function and Microbiota of Weaned Pigs. Animals 2020, 10, 329. [Google Scholar] [CrossRef]
- Grosu, I.A.; Pistol, G.C.; Marin, D.E.; Cişmileanu, A.; Palade, L.M.; Ţăranu, I. Effects of Dietary Grape Seed Meal Bioactive Compounds on the Colonic Microbiota of Weaned Piglets With Dextran Sodium Sulfate-Induced Colitis Used as an Inflammatory Model. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Lencina, C.; Painteaux, L.; Viémon-Desplanque, J.; Phornlaphat, O.; Lambert, W.; Chalvon-Demersay, T. A mix of functional amino acids and grape polyphenols promotes the growth of piglets, modulates the gut microbiota in vivo and regulates epithelial homeostasis in intestinal organoids. Amino Acids 2021, 54, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Fraga, A.Z.; Campos, P.H.R.F.; Hauschild, L.; Chalvon-Demersay, T.; Beaumont, M.; Le Floc’h, N. A blend of functional amino acids and grape polyphenols improves the pig capacity to cope with an inflammatory challenge caused by poor hygiene of housing conditions. BMC Vet. Res. 2023, 19. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Sun, J.; Chen, P.; Lakshman, S.; Molokin, A.; Harnly, J.M.; Vinyard, B.T.; Urban, J.F.; Davis, C.D.; Solano-Aguilar, G. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs. J. Nutr. 2016, 146, 673–680. [Google Scholar] [CrossRef]
- Fiesel, A.; Gessner, D.K.; Most, E.; Eder, K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet. Res. 2014, 10. [Google Scholar] [CrossRef]
- Dufourny, S.; Antoine, N.; Pitchugina, E.; Delcenserie, V.; Godbout, S.; Douny, C.; Scippo, M.L.; Froidmont, E.; Rondia, P.; Wavreille, J. Apple Pomace and Performance, Intestinal Morphology and Microbiota of Weaned Piglets—A Weaning Strategy for Gut Health? Microorganisms 2021, 9, 572. [Google Scholar] [CrossRef]
- Ren, Z.; Fang, H.; Zhang, J.; Wang, R.; Xiao, W.; Zheng, K.; Yu, H.; Zhao, Y. Dietary Aronia melanocarpa Pomace Supplementation Enhances the Expression of ZO-1 and Occludin and Promotes Intestinal Development in Pigs. Front. Vet. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Liu, X.Z.; Ju, Y.; Bao, N.; Luo, Y.L.; Huang, L.L.; Cao, N.X.; Liu, M.Z.; Bo, J.N.; Zhang, S.; Yan, Y. Effects of polyphenol-rich Aronia melanocarpa pomace feeding on growth performance, biochemical profile, and meat quality in pigs at weaned and finishing stages. Livest. Sci. 2021, 252, 104674. [Google Scholar] [CrossRef]
- Papakonstantinou, G.I.; Meletis, E.; Petrotos, K.; Kostoulas, P.; Tsekouras, N.; Kantere, M.C.; Voulgarakis, N.; Gougoulis, D.; Filippopoulos, L.; Christodoulopoulos, G. Effects of a Natural Polyphenolic Product from Olive Mill Wastewater on Oxidative Stress and Post-Weaning Diarrhea in Piglets. Agriculture 2023, 13, 1356. [Google Scholar] [CrossRef]
- Yang, M.; Yin, Y.; Wang, F.; Bao, X.; Long, L.; Tan, B.; Yin, Y.; Chen, J. Effects of dietary rosemary extract supplementation on growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning pigs. J. Anim. Sci. 2021, 99. [Google Scholar] [CrossRef]
- Kilua, A.; Nomata, R.; Nagata, R.; Fukuma, N.; Shimada, K.; Han, K.H.; Fukushima, M. Purple Sweet Potato Polyphenols Differentially Influence the Microbial Composition Depending on the Fermentability of Dietary Fiber in a Mixed Culture of Swine Fecal Bacteria. Nutrients 2019, 11, 1495. [Google Scholar] [CrossRef] [PubMed]
- Magistrelli, D.; Zanchi, R.; Malagutti, L.; Galassi, G.; Canzi, E.; Rosi, F. Effects of Cocoa Husk Feeding on the Composition of Swine Intestinal Microbiota. J. Agric. Food Chem. 2016, 64, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Song, J.; Qin, X.; Yang, K.; Liu, M.; Yang, C.; Nyachoti, C.M. Dietary supplementation of red-osier dogwood polyphenol extract changes the ileal microbiota structure and increases Lactobacillus in a pig model. AMB Express 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Men, X.; Lin, T.; Deng, B.; Zhong, S.; Huo, J.; Qin, K.; Lv, Z.; Xu, Z.; Li, Y. Mulberry leaf supplementation inhibits skatole deposition by regulating gut microbiota and upregulating liver cytochrome P450 1A1 expression in finishing pigs. Anim. Nutr. 2024, 16, 34–44. [Google Scholar] [CrossRef]
- Loo, Y.T.; Howell, K.; Suleria, H.; Zhang, P.; Gu, C.; Ng, K. Sugarcane polyphenol and fiber to affect production of short-chain fatty acids and microbiota composition using in vitro digestion and pig faecal fermentation model. Food Chem. 2022, 385, 132665. [Google Scholar] [CrossRef]
- Bai, M.; Liu, H.; Wang, S.; Shu, Q.; Xu, K.; Zhou, J.; Xiong, X.; Huang, R.; Deng, J.; Yin, Y. Dietary Moutan Cortex Radicis Improves Serum Antioxidant Capacity and Intestinal Immunity and Alters Colonic Microbiota in Weaned Piglets. Front. Nutr. 2021, 8. [Google Scholar] [CrossRef]
- Xu, Q.; Cheng, M.; Jiang, R.; Zhao, X.; Zhu, J.; Liu, M.; Chao, X.; Zhang, C.; Zhou, B. Effects of dietary supplement with a Chinese herbal mixture on growth performance, antioxidant capacity, and gut microbiota in weaned pigs. Front. Vet. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Wang, M.; Huang, H.; Wang, L.; Yang, H.; He, S.; Liu, F.; Tu, Q.; He, S. Herbal Extract Mixture Modulates Intestinal Antioxidative Capacity and Microbiota in Weaning Piglets. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Rajković, E.; Schwarz, C.; Tischler, D.; Schedle, K.; Reisinger, N.; Emsenhuber, C.; Ocelova, V.; Roth, N.; Frieten, D.; Dusel, G. Potential of Grape Extract in Comparison with Therapeutic Dosage of Antibiotics in Weaning Piglets: Effects on Performance, Digestibility and Microbial Metabolites of the Ileum and Colon. Animals 2021, 11, 2771. [Google Scholar] [CrossRef]
- Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A. Grape by-products as feedstuff for pig and poultry production. Animals 2022, 12, 2239. [Google Scholar] [CrossRef]
- Bolca, S.; Wiele, T.; Possemiers, S. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 2013, 24, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Aguirre, C.E.; Cortés-Martín, A.; Ávila-Gálvez, M.Á.; Giménez-Bastida, J.A.; Selma, M.V.; González-Sarrías, A.; Espín, J.C. Main drivers of (poly)phenol effects on human health: Metabolite production and/or gut microbiota-associated metabotypes? Food Funct. 2021, 12, 10324–10355. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, P.; Tomas, M.; Rivera-Pérez, A.; Patrone, V.; Giuberti, G.; Cervini, M.; Capanoglu, E.; Lucini, L. Pectin conformation influences the bioaccessibility of cherry laurel polyphenols and gut microbiota distribution following in vitro gastrointestinal digestion and fermentation. Food Chem. 2024, 430, 137054. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.; García-Pérez, P.; Rivera-Pérez, A.; Patrone, V.; Giuberti, G.; Lucini, L.; Capanoglu, E. The addition of polysaccharide gums to Aronia melanocarpa purees modulates the bioaccessibility of phenolic compounds and gut microbiota: A multiomics data fusion approach following in vitro digestion and fermentation. Food Chem. 2024, 439, 138231. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Macia, A.; Motilva, M.J. Impact of Various Factors on Pharmacokinetics of Bioactive Polyphenols: An Overview. Curr. Drug Metab. 2014, 15, 62–76. [Google Scholar] [CrossRef]
- Iglesias-Aguirre, C.E.; Vallejo, F.; Beltrán, D.; Aguilar-Aguilar, E.; Puigcerver, J.; Alajarín, M.; Berná, J.; Selma, M.V.; Espín, J.C. Lunularin Producers versus Non-producers: Novel Human Metabotypes Associated with the Metabolism of Resveratrol by the Gut Microbiota. J. Agric. Food Chem. 2022, 70, 10521–10531. [Google Scholar] [CrossRef]
- Frankenfeld, C.L. Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Mol. Nutr. Food Res. 2016, 61. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef]
- Miller, L.M.; Lampe, J.W.; Newton, K.M.; Gundersen, G.; Fuller, S.; Reed, S.D.; Frankenfeld, C.L. Being overweight or obese is associated with harboring a gut microbial community not capable of metabolizing the soy isoflavone daidzein to O- desmethylangolensin in peri- and post-menopausal women. Maturitas 2017, 99, 37–42. [Google Scholar] [CrossRef]
- Clerici, C.; Setchell, K.D.R.; Battezzati, P.M.; Pirro, M.; Giuliano, V.; Asciutti, S.; Castellani, D.; Nardi, E.; Sabatino, G.; Orlandi, S. Pasta Naturally Enriched with Isoflavone Aglycons from Soy Germ Reduces Serum Lipids and Improves Markers of Cardiovascular Risk. J. Nutr. 2007, 137, 2270–2278. [Google Scholar] [CrossRef]
- Hazim, S.; Curtis, P.J.; Schär, M.Y.; Ostertag, L.M.; Kay, C.D.; Minihane, A.M.; Cassidy, A. Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Reverri, E.J.; Slupsky, C.M.; Mishchuk, D.O.; Steinberg, F.M. Metabolomics reveals differences between three daidzein metabolizing phenotypes in adults with cardiometabolic risk factors. Mol. Nutr. Food Res. 2016, 61. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, A.; Ihara, M.; Lopez, O.; Kakuta, C.; Lopresti, B.; Higashiyama, A.; Aizenstein, H.; Chang, Y.F.; Mathis, C.; Miyamoto, Y. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr. Cardiol. Rev. 2019, 15, 114–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chang, R.; Zhang, X.; Wang, Z.; Wen, J.; Zhou, T. Non-isoflavones Diet Incurred Metabolic Modifications Induced by Constipation in Rats via Targeting Gut Microbiota. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose–Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65. [Google Scholar] [CrossRef]
- Ruotolo, R.; Minato, I.; Vitola, P.; Artioli, L.; Curti, C.; Franceschi, V.; Brindani, N.; Amidani, D.; Colombo, L.; Salmona, M. Flavonoid-Derived Human Phenyl-γ-Valerolactone Metabolites Selectively Detoxify Amyloid-β Oligomers and Prevent Memory Impairment in a Mouse Model of Alzheimer’s Disease. Mol. Nutr. Food Res. 2020, 64. [Google Scholar] [CrossRef]
- Shishtar, E.; Rogers, G.T.; Blumberg, J.B.; Au, R.; Jacques, P.F. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2020, 112, 343–353. [Google Scholar] [CrossRef]
- Shishtar, E.; Rogers, G.T.; Blumberg, J.B.; Au, R.; DeCarli, C.; Jacques, P.F. Flavonoid Intake and MRI Markers of Brain Health in the Framingham Offspring Cohort. J. Nutr. 2020, 150, 1545–1553. [Google Scholar] [CrossRef]
- Stanisławska, I.; Granica, S.; Piwowarski, J.; Szawkało, J.; Wiązecki, K.; Czarnocki, Z.; Kiss, A. The activity of urolithin A and M4 valerolactone, colonic microbiota metabolites of polyphenols, in a prostate cancer in vitro model. Planta Medica 2019, 85, 118–125. [Google Scholar] [CrossRef]
- Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 2011, 93, 62–72. [Google Scholar] [CrossRef]
- Kilua, A.; Han, K.H.; Fukushima, M. Effect of polyphenols isolated from purple sweet potato (Ipomoea batatascv. Ayamurasaki) on the microbiota and the biomarker of colonic fermentation in rats fed with cellulose or inulin. Food Funct. 2020, 11, 10182–10192. [Google Scholar] [CrossRef] [PubMed]
- Arreaza-Gil, V.; Escobar-Martínez, I.; Mulero, M.; Muguerza, B.; Suárez, M.; Arola-Arnal, A.; Torres-Fuentes, C. Gut Microbiota Influences the Photoperiod Effects on Proanthocyanidins Bioavailability in Diet-Induced Obese Rats. Mol. Nutr. Food Res. 2023, 67. [Google Scholar] [CrossRef] [PubMed]
- Hanske, L.; Loh, G.; Sczesny, S.; Blaut, M.; Braune, A. The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J. Nutr. 2009, 139, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, C.P.; Bondonno, N.P.; Dalgaard, F.; Murray, K.; Gardener, S.L.; Martins, R.N.; Rainey-Smith, S.R.; Cassidy, A.; Lewis, J.R.; Croft, K.D. Flavonoid intake and incident dementia in the Danish Diet, Cancer, and Health cohort. Alzheimer’s Dement.: Transl. Res. Clin. Interv. 2021, 7, 12175. [Google Scholar] [CrossRef]
- Eid, N.; Enani, S.; Walton, G.; Corona, G.; Costabile, A.; Gibson, G.; Rowland, I.; Spencer, J.P.E. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 2014, 3. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Najmanová, I.; Vopršalová, M.; Saso, L.; Mladěnka, P. The pharmacokinetics of flavanones. Crit. Rev. Food Sci. Nutr. 2019, 60, 3155–3171. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Oliver, C.M.; Weerakkody, R.; Singh, T.; Conlon, M.; Borges, G.; Sanguansri, L.; Lockett, T.; Roberts, S.A.; Crozier, A. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radic. Biol. Med. 2015, 84, 206–214. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Joshi, V.; Mishra, R.; Upadhyay, A.; Amanullah, A.; Poluri, K.M.; Singh, S.; Kumar, A.; Mishra, A. Polyphenolic flavonoid (Myricetin) upregulated proteasomal degradation mechanisms: Eliminates neurodegenerative proteins aggregation. J. Cell. Physiol. 2019, 234, 20900–20914. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.R.; Zhan, S.; Hu, X.T.; Yuan, W.M.; Wu, L.J.; Cui, S.X.; Qu, X.J. Myricetin and M10, a myricetin-3-O-β-d-lactose sodium salt, modify composition of gut microbiota in mice with ulcerative colitis. Toxicol. Lett. 2021, 346, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Clavel, T.; Henderson, G.; Engst, W.; Doré, J.; Blaut, M. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol. Ecol. 2006, 55, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Hullar, M.A.J.; Lancaster, S.M.; Li, F.; Tseng, E.; Beer, K.; Atkinson, C.; Wähälä, K.; Copeland, W.K.; Randolph, T.W.; Newton, K.M. Enterolignan-Producing Phenotypes Are Associated with Increased Gut Microbial Diversity and Altered Composition in Premenopausal Women in the United States. Cancer Epidemiol. Biomark. Prev. 2015, 24, 546–554. [Google Scholar] [CrossRef]
- Kiyama, R. Biological effects induced by estrogenic activity of lignans. Trends Food Sci. Technol. 2016, 54, 186–196. [Google Scholar] [CrossRef]
- Koemel, N.A.; Senior, A.M.; Benmarhnia, T.; Holmes, A.; Okada, M.; Oulhote, Y.; Parker, H.M.; Shah, S.; Simpson, S.J.; Raubenheimer, D. Diet Quality, Microbial Lignan Metabolites, and Cardiometabolic Health among US Adults. Nutrients 2023, 15, 1412. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Li, J.; Ivey, K.L.; Wilkinson, J.E.; Wang, D.D.; Li, R.; Liu, G.; Eliassen, H.A.; Chan, A.T. Dietary lignans, plasma enterolactone levels, and metabolic risk in men: Exploring the role of the gut microbiome. BMC Microbiol. 2022, 22. [Google Scholar] [CrossRef]
- Mullens, D.A.; Ivanov, I.; Hullar, M.A.J.; Randolph, T.W.; Lampe, J.W.; Chapkin, R.S. Personalized Nutrition Using Microbial Metabolite Phenotype to Stratify Participants and Non-Invasive Host Exfoliomics Reveal the Effects of Flaxseed Lignan Supplementation in a Placebo-Controlled Crossover Trial. Nutrients 2022, 14, 2377. [Google Scholar] [CrossRef]
- Peirotén, Á.; Gaya, P.; Álvarez, I.; Bravo, D.; Landete, J.M. Influence of different lignan compounds on enterolignan production by Bifidobacterium and Lactobacillus strains. Int. J. Food Microbiol. 2019, 289, 17–23. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Q.; Zhang, Q.; Gu, A.; Jiang, Z.Y. Urinary enterolactone is associated with obesity and metabolic alteration in men in the US National Health and Nutrition Examination Survey 2001–10. Br. J. Nutr. 2015, 113, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Turchi, B.; Mancini, S.; Pastorelli, R.; Viti, C.; Tronconi, L.; Bertelloni, F.; Felicioli, A.; Cerri, D.; Fratini, F.; Paci, G. Dietary supplementation of chestnut and quebracho tannins mix: Effect on caecal microbial communities and live performance of growing rabbits. Res. Vet. Sci. 2019, 124, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Martín, A.; Colmenarejo, G.; Selma, M.V.; Espín, J.C. Genetic Polymorphisms, Mediterranean Diet and Microbiota-Associated Urolithin Metabotypes can Predict Obesity in Childhood-Adolescence. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Martín, A.; García-Villalba, R.; González-Sarrías, A.; Romo-Vaquero, M.; Loria-Kohen, V.; Ramírez-de-Molina, A.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. The gut microbiota urolithin metabotypes revisited: The human metabolism of ellagic acid is mainly determined by aging. Food Funct. 2018, 9, 4100–4106. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; Romo-Vaquero, M.; García-Mantrana, I.; Rodríguez-Varela, A.; Collado, M.C.; Espín, J.C.; Selma, M.V. Urolithin Metabotypes can Anticipate the Different Restoration of the Gut Microbiota and Anthropometric Profiles during the First Year Postpartum. Nutrients 2019, 11, 2079. [Google Scholar] [CrossRef]
- Fitzgerald, E.; Lambert, K.; Stanford, J.; Neale, E.P. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: A systematic review. Br. J. Nutr. 2020, 125, 508–520. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila-Gálvez, M.Á.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A Comprehensive Update on their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol. Nutr. Food Res. 2022, 66. [Google Scholar] [CrossRef]
- González-Sarrías, A.; García-Villalba, R.; Romo-Vaquero, M.; Alasalvar, C.; Örem, A.; Zafrilla, P.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Li, Z.; Henning, S.M.; Lee, R.P.; Lu, Q.Y.; Summanen, P.H.; Thames, G.; Corbett, K.; Downes, J.; Tseng, C.H.; Finegold, S.M. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct. 2015, 6, 2487–2495. [Google Scholar] [CrossRef]
- Meroño, T.; Peron, G.; Gargari, G.; González-Domínguez, R.; Miñarro, A.; Vegas-Lozano, E.; Hidalgo-Liberona, N.; Del Bo, C.; Bernardi, S.; Kroon, P.A. The relevance of urolithins-based metabotyping for assessing the effects of a polyphenol-rich dietary intervention on intestinal permeability: A post-hoc analysis of the MaPLE trial. Food Res. Int. 2022, 159, 111632. [Google Scholar] [CrossRef]
- Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A.G. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes 2015, 6, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; Cortés-Martín, A.; Loria-Kohen, V.; Ramírez-de-Molina, A.; García-Mantrana, I.; Collado, M.C.; Espín, J.C.; Selma, M.V. Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications. Mol. Nutr. Food Res. 2018, 63. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; Fernández-Villalba, E.; Gil-Martinez, A.L.; Cuenca-Bermejo, L.; Espín, J.C.; Herrero, M.T.; Selma, M.V. Urolithins: Potential biomarkers of gut dysbiosis and disease stage in Parkinson’s patients. Food Funct. 2022, 13, 6306–6316. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Romo-Vaquero, M.; García-Villalba, R.; González-Sarrías, A.; Tomás-Barberán, F.A.; Espín, J.C. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct. 2016, 7, 1769–1774. [Google Scholar] [CrossRef]
- Selma, M.V.; Beltrán, D.; Luna, M.C.; Romo-Vaquero, M.; García-Villalba, R.; Mira, A.; Espín, J.C.; Tomás-Barberán, F.A. Isolation of Human Intestinal Bacteria Capable of Producing the Bioactive Metabolite Isourolithin A from Ellagic Acid. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Selma, M.V.; González-Sarrías, A.; Salas-Salvadó, J.; Andrés-Lacueva, C.; Alasalvar, C.; Örem, A.; Tomás-Barberán, F.A.; Espín, J.C. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clin. Nutr. 2018, 37, 897–905. [Google Scholar] [CrossRef]
- Stolarczyk, M.; Piwowarski, J.P.; Granica, S.; Stefańska, J.; Naruszewicz, M.; Kiss, A.K. Extracts from Epilobium sp. Herbs, Their Components and Gut Microbiota Metabolites of Epilobium Ellagitannins, Urolithins, Inhibit Hormone-Dependent Prostate Cancer Cells-(LNCaP) Proliferation and PSA Secretion. Phytother. Res. 2013, 27, 1842–1848. [Google Scholar] [CrossRef]
- Xue, S.; Shi, W.; Shi, T.; Tuerxuntayi, A.; Abulaiti, P.; Liu, Z.; Remutula, N.; Nuermaimaiti, K.; Xing, Y.; Abdukelimu, K. Resveratrol attenuates non-steroidal anti-inflammatory drug-induced intestinal injury in rats in a high-altitude hypoxic environment by modulating the TLR4/NFκB/IκB pathway and gut microbiota composition. PLoS ONE 2024, 19, e0305233. [Google Scholar] [CrossRef]
- Tain, Y.L.; Chang, C.I.; Hou, C.Y.; Chang-Chien, G.P.; Lin, S.F.; Hsu, C.N. Resveratrol Propionate Ester Supplement Exerts Antihypertensive Effect in Juvenile Rats Exposed to an Adenine Diet via Gut Microbiota Modulation. Nutrients 2024, 16, 2131. [Google Scholar] [CrossRef]
- Li, Z.; Lei, L.; Ling, L.; Liu, Y.; Xiong, Z.; Shao, Y. Resveratrol modulates the gut microbiota of cholestasis in pregnant rats. J. OF PHYSIOLOGY AND PHARMACOLOGY 2022, 73, 261–268. [Google Scholar]
- Alrafas, H.R.; Busbee, P.B.; Chitrala, K.N.; Nagarkatti, M.; Nagarkatti, P. Alterations in the Gut Microbiome and Suppression of Histone Deacetylases by Resveratrol Are Associated with Attenuation of Colonic Inflammation and Protection Against Colorectal Cancer. J. Clin. Med. 2020, 9, 1796. [Google Scholar] [CrossRef] [PubMed]
- Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G.S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.; Kulling, S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013, 97, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, A.; Carpéné, C.; Mercader, J.R. Metabolic Syndrome, and Gut Microbiota. Nutrients 2018, 10, 1651. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Bastida, J.A.; Ávila-Gálvez, M.Á.; Espín, J.C.; González-Sarrías, A. The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells. Food Chem. Toxicol. 2020, 139, 111260. [Google Scholar] [CrossRef]
- Islam, M.; Islam, F.; Nafady, M.H.; Akter, M.; Mitra, S.; Das, R.; Urmee, H.; Shohag, S.; Akter, A.; Chidambaram, K. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022, 27, 2165. [Google Scholar] [CrossRef]
- Stokes, J., III. Optimum health and inhibition of cancer progression by microbiome and resveratrol. Front. Biosci. 2021, 26, 496–517. [Google Scholar] [CrossRef]
- Etxeberria, U.; Hijona, E.; Aguirre, L.; Milagro, F.I.; Bujanda, L.; Rimando, A.M.; Martínez, J.A.; Portillo, M.P. Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol. Nutr. Food Res. 2016, 61. [Google Scholar] [CrossRef]
- Zhang, Z.; Hamada, H.; Gerk, P.M. Selectivity of Dietary Phenolics for Inhibition of Human Monoamine Oxidases A and B. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef]
- Bonnechère, B.; Amin, N.; Duijn, C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Syst. Review. Int. J. Mol. Sci. 2022, 23, 13665. [Google Scholar] [CrossRef]
- Kumar, N.B.; Hogue, S.; Pow-Sang, J.; Poch, M.; Manley, B.J.; Li, R.; Dhillon, J.; Yu, A.; Byrd, D.A. Effects of Green Tea Catechins on Prostate Cancer Chemoprevention: The Role of the Gut Microbiome. Cancers 2022, 14, 3988. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, R.; Xue, B.; Luo, J.; Gao, L.; Wang, Y.; Ou, S.; Li, S.; Peng, X. Impact and consequences of polyphenols and fructooligosaccharide interplay on gut microbiota in rats. Food Funct. 2017, 8, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Yan, T.; Tong, Y.; Deng, H.; Tan, C.; Wan, M.; Wang, M.; Meng, X.; Wang, Y. Gut Microbiota Modulation by Polyphenols from Aronia melanocarpa of LPS-Induced Liver Diseases in Rats. J. Agric. Food Chem. 2021, 69, 3312–3325. [Google Scholar] [CrossRef] [PubMed]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Le Sayec, M.; Xu, Y.; Laiola, M.; Gallego, F.A.; Katsikioti, D.; Durbidge, C.; Kivisild, U.; Armes, S.; Lecomte, M.; Fança-Berthon, P. The effects of Aronia berry (poly)phenol supplementation on arterial function and the gut microbiome in middle aged men and women: Results from a randomized controlled trial. Clin. Nutr. 2022, 41, 2549–2561. [Google Scholar] [CrossRef]
- Engelhardt, U.; Winterhalter, P. COUNTERCURRENT CHROMATOGRAPHY | Flavonoids. In Encyclopedia of Separation Science; Wilson, I.D., Ed.; Elsevier Science Ltd.: Oxford, UK, 2007; pp. 1–9. [Google Scholar] [CrossRef]
- Zheng, W.; Ma, Y.; Zhao, A.; He, T.; Lyu, N.; Pan, Z.; Mao, G.; Liu, Y.; Li, J.; Wang, P. Compositional and functional differences in human gut microbiome with respect to equol production and its association with blood lipid level: A cross-sectional study. Gut Pathog. 2019, 11. [Google Scholar] [CrossRef]
- Lacourt-Ventura, M.Y.; Vilanova-Cuevas, B.; Rivera-Rodríguez, D.; Rosario-Acevedo, R.; Miranda, C.; Maldonado-Martínez, G.; Maysonet, J.; Vargas, D.; Ruiz, Y.; Hunter-Mellado, R. Soy and Frequent Dairy Consumption with Subsequent Equol Production Reveals Decreased Gut Health in a Cohort of Healthy Puerto Rican Women. Int. J. Environ. Res. Public Health 2021, 18, 8254. [Google Scholar] [CrossRef]
- Zhang, X.; Fujiyoshi, A.; Ahuja, V.; Vishnu, A.; Barinas-Mitchell, E.; Kadota, A.; Miura, K.; Edmundowicz, D.; Ueshima, H.; Sekikawa, A. Association of equol producing status with aortic calcification in middle-aged Japanese men: The ERA JUMP study. Int. J. Cardiol. 2022, 352, 158–164. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman fingerprints of flavonoids—A review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Joshi, R.; Kulkarni, Y.A.; Wairkar, S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci. 2018, 215, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, S.; Ying, J.; Wei, W.; Gao, K. Chemical Structures of Lignans and Neolignans Isolated from Lauraceae. Molecules 2018, 23, 3164. [Google Scholar] [CrossRef] [PubMed]
- Senizza, A.; Rocchetti, G.; Mosele, J.I.; Patrone, V.; Callegari, M.L.; Morelli, L.; Lucini, L. Lignans and Gut Microbiota: An Interplay Revealing Potential Health Implications. Molecules 2020, 25, 5709. [Google Scholar] [CrossRef]
- Hu, Y.; Song, Y.; Franke, A.A.; Hu, F.B.; Dam, R.M.; Sun, Q. A Prospective Investigation of the Association Between Urinary Excretion of Dietary Lignan Metabolites and Weight Change in US Women. Am. J. Epidemiol. 2015, 182, 503–511. [Google Scholar] [CrossRef]
- Bakkalbaşi, E.; Menteş, Ö.; Artik, N.F.E.O. Effects of Processing and Storage. Crit. Rev. Food Sci. Nutr. 2008, 49, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; García-Villalba, R.; González-Sarrías, A.; Selma, M.V.; Espín, J.C. Ellagic Acid Metabolism by Human Gut Microbiota: Consistent Observation of Three Urolithin Phenotypes in Intervention Trials, Independent of Food Source, Age, and Health Status. J. Agric. Food Chem. 2014, 62, 6535–6538. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Bansal, M.; Singh, N.; Pal, S.; Dev, I.; Ansari, K.M. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; pp. 69–121. [Google Scholar] [CrossRef]
- Krawczyk, M.; Burzynska-Pedziwiatr, I.; Wozniak, L.A.; Bukowiecka-Matusiak, M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023, 13, 1402. [Google Scholar] [CrossRef]
- Bian, K.; Murad, F. What is next in nitric oxide research? From cardiovascular system to cancer biology. Nitric Oxide 2014, 43, 3–7. [Google Scholar] [CrossRef]
- Ghimire, K.; Altmann, H.M.; Straub, A.C.; Isenberg, J.S. Nitric oxide: What’s new to NO? Am. J. Physiol.-Cell Physiol. 2017, 312, 254–262. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- Satta, S.; Mahmoud, A.M.; Wilkinson, F.L.; Yvonne Alexander, M.; White, S.J. The Role of Nrf2 in Cardiovascular Function and Disease. Oxidative Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Crispi, S.; Filosa, S.; Meo, F. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res. 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Boddy, S.L.; Giovannelli, I.; Sassani, M.; Cooper-Knock, J.; Snyder, M.P.; Segal, E.; Elinav, E.; Barker, L.A.; Shaw, P.J.; McDermott, C.J. The gut microbiome: A key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med. 2021, 19. [Google Scholar] [CrossRef]
- Wei, W.; Sun, W.; Yu, S.; Yang, Y.; Ai, L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk. Lymphoma 2016, 57, 2401–2408. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Bartolomé, B.; Peñalvo, J.L.; Pérez-Matute, P.; Motilva, M.J. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer’s Disease. Nutrients 2020, 12, 3082. [Google Scholar] [CrossRef]
- Gui, Q.; Li, H.; Wang, A.; Zhao, X.; Tan, Z.; Chen, L.; Xu, K.; Xiao, C. The association between gut butyrate-producing bacteria and non-small-cell lung cancer. J. Clin. Lab. Anal. 2020, 34. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Zhao, S.-K.; Luo, J.-W.; Dong, X.-P.; Hao, Y.-T.; Li, H.; Shan, L.; Zhou, Y.; Shi, H.-B.; Zhang, Z.-Y. Alterations of fecal bacterial communities in patients with lung cancer. Am. J. Transl. Res. 2018, 10, 3171. [Google Scholar]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef]
- Baldwin, C.; Millette, M.; Oth, D.; Ruiz, M.T.; Luquet, F.M.; Lacroix, M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer 2010, 62, 371–378. [Google Scholar] [CrossRef]
- Owens, J.A.; Saeedi, B.J.; Naudin, C.R.; Hunter-Chang, S.; Barbian, M.E.; Eboka, R.U.; Askew, L.; Darby, T.M.; Robinson, B.S.; Jones, R.M. Lactobacillus rhamnosus GG orchestrates an antitumor immune response. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1311–1327. [Google Scholar] [CrossRef] [PubMed]
- Nougayrède, J.P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.; Oswald, E. Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science 2006, 313, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Eid, N.; Osmanova, H.; Natchez, C.; Walton, G.; Costabile, A.; Gibson, G.; Rowland, I.; Spencer, J.P.E. Impact of palm date consumption on microbiota growth and large intestinal health: A randomised, controlled, cross-over, human intervention study. Br. J. Nutr. 2015, 114, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Steed, K.L.; Jordan, H.R.; Tollefsbol, T.O. SAHA and EGCG Promote Apoptosis in Triple-negative Breast Cancer Cells, Possibly Through the Modulation of cIAP2. Anticancer Res. 2019, 40, 9–26. [Google Scholar] [CrossRef]
- Salehi, M.; Movahedpour, A.; Tayarani, A.; Shabaninejad, Z.; Pourhanifeh, M.H.; Mortezapour, E.; Nickdasti, A.; Mottaghi, R.; Davoodabadi, A.; Khan, H. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother. Res. 2020, 34, 2557–2576. [Google Scholar] [CrossRef]
- McFadden, R.M.T.; Larmonier, C.B.; Shehab, K.W.; Midura-Kiela, M.; Ramalingam, R.; Harrison, C.A.; Besselsen, D.G.; Chase, J.H.; Caporaso, J.G.; Jobin, C. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention. Inflamm. Bowel Dis. 2015, 21, 2483–2494. [Google Scholar] [CrossRef]
- Mossad, O.; Erny, D. The microbiota–microglia axis in central nervous system disorders. Brain Pathol. 2020, 30, 1159–1177. [Google Scholar] [CrossRef]
- Quigley, E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017, 17. [Google Scholar] [CrossRef]
- Goyal, S.; Seth, B.; Chaturvedi, R.K. Polyphenols and Stem Cells for Neuroregeneration in Parkinson’s Disease and Amyotrophic Lateral Sclerosis. Curr. Pharm. Des. 2022, 28, 806–828. [Google Scholar] [CrossRef]
- Novak, V.; Rogelj, B.; Župunski, V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants 2021, 10, 1328. [Google Scholar] [CrossRef]
Parameters | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Humans, mice, rabbits, rats, and pigs | Other species |
Intervention | Ingested polyphenols | Non-oral treatments |
Comparisons | Physiological and pathological conditions | Studies without statistical analysis |
Outcomes | Modulation of the gastrointestinal microbiota | Non-gastrointestinal microbiota studies |
Study design | In vivo studies | In silico and in vitro studies |
No. Crt. | Origin/Type of Polyphenols | Related GI Microbiota | Therapeutic Effect | Ref. |
---|---|---|---|---|
1 | Mix of polyphenols, predominantly tannins | increase in Lactobacillus spp. | healthier gut microbiome | [50] |
2 | Mix of polyphenols, GreenFis | increase in Ruminococcus bromii | starch degradation | [51] |
3 | Polyphenolic extract | increase in Lactobacillus spp. | reduced incidence of diarrhea | [52] |
mixture | increase in Bacteroidetes spp. | positive modulation of lipid metabolism | ||
increase in Prevotellaceae spp. | ||||
increase in Fibrobacteraceae spp. | ||||
decrease in Coliform spp. | ||||
decrease in Firmicutes | ||||
decrease in Chlamydiaceae spp. | ||||
4 | Gallnut tannic acid | decrease in Proteobacteria spp. | increase in antioxidant capacity | [53] |
decrease in Firmicutes | reduction in intestinal inflammation | |||
decrease in Candidatus brocadia | enhancing the gut barrier function | |||
decrease in Escherichia-Shigella | ||||
5 | Hydrolyzed Chinese | increase in Lachnospiraceae spp. | decrease in the diarrhea rate | [54] |
gallnut tannic acid | increase in Prevotella spp. | improvements in antioxidant capacity | ||
increase in Lactobacillus amylovorus | improve nutrient digestion and absorption | |||
decrease in Alloprevotella spp. | ||||
6 | Encapsulated tannic acid | increase in Bacteroidetes spp. | improvement in the duodenal morphology | [55] |
decrease in Firmicutes | promote absorption of di- and tripeptides and neutral amino acids | |||
protect piglets against pathogenic bacteria | ||||
enhance gut barrier function | ||||
7 | Ellagic acid | increase in Ruminococcaceae spp. | enhancing intestinal barrier function | [56] |
increase in Clostridium ramosum | enhanced the antioxidant capacity | |||
decrease in Parabacteroides spp. | increased metabolites like short-chain fatty acids | |||
increase in Lactobacillus delbrueckii | with improved gut health and function | |||
increase in Lactobacillus reuteri | enhanced carbohydrate metabolism capabilities | |||
increase in Bifidobacterium spp. | lower diarrhea rate | [57] | ||
increase in Megasphaera spp. | improved intestinal barrier function | |||
increase in Prevotella spp. | stimulated immune response | |||
lower the intestinal pH | ||||
8 | Caffeic acid | increase in Alloprevotella spp. | improved the growth performance | |
increase in Prevotellaceae spp. | improved intestinal morphology and barrier function | [58] | ||
increase in Prevotellaceae | decreasing inflammatory cytokines | |||
coprostanoligenes | increasing anti-inflammatory cytokines | |||
decrease in Rikenellaceae spp. | decreased oxidative stress | |||
decreasing the expression of pro-apoptotic genes | ||||
increasing the expression of anti-apoptotic gene | ||||
improvement in metabolic homeostasis | ||||
9 | Feluric acid | increase in Firmicutes/Bacteroidetes ratio | decreased serum levels of inflammatory cytokines | [43] |
decrease in Prevotellaceae spp. | reduced oxidative stress | |||
improved gut barrier integrity | ||||
10 | Vanilic acid | increase in Firmicutes/Bacteroidetes ratio | decreased serum levels of inflammatory cytokines | [43] |
increase in Lachnospiraceae | reduced oxidative stress | |||
increase in Prevotellaceae eligens | improved gut barrier integrity | |||
increase in Prevotellaceae xylanophilum | ||||
decrease in Prevotellaceae spp. | ||||
11 | Chlorogenic acid | increase in Lactobacillus spp. | improved intestinal barrier integrity | |
increase in Prevotella spp. | enhanced fermentation | [59] | ||
increase in Alloprevotella spp. | ||||
increase in Anaerovibrio spp. | ||||
increase in Bifidobacterium spp. | ||||
suppressed inflammation | [60] | |||
enhanced antioxidant capacity | ||||
12 | Protocatechuic acid | increase in Firmicutes/Bacteroidetes ratio | reduction in oxidative stress and inflammationenhancement in intestinal barrier function | [61] |
increase in Roseburia spp. | ||||
increase in Desulfovibrio spp. | ||||
increase in Megasphaera spp. | ||||
increase in Fibrobacter spp. | ||||
decrease in Prevotella spp. | ||||
decrease in Holdemanella spp. | ||||
decrease in Ruminococcus torques | ||||
13 | Thymol | decrease in E. coli | reduced diarrhea incidence | [62] |
improved intestinal barrier function | ||||
14 | Grape seed meal | increase in Prevotella spp. | maintain gut barrier integrity | [63] |
increase in Megasphaera spp. | suppressed inflammation | |||
15 | Grape extract | increase in Lactobacillaceae spp. | anti-inflammatory effects | [64] |
polyphenols and amino | decrease in Proteobacteria spp. | [65] | ||
acids | reduced diarrhea incidence | |||
16 | Grape pomace | increase in Lactobacillus delbrueckii | a reduced inflammatory response | [66] |
increase in Olsenella umbonata | improvement in immune function | |||
increase in Selenomonas bovis | ||||
17 | Grape seed extract | increase in Lachnospiraceae spp. | enhanced gut barrier function | [38] |
increase in Clostridiales spp. | reduced inflammatory response | |||
increase in Lactobacillus spp. | ||||
increase in Ruminococcaceae spp. | ||||
18 | Grape seed and grape | decrease in Streptococcus spp. | potent anti-inflammatory properties | [67] |
marc meal extract | decrease in Clostridium spp. | decrease in volatile fatty acids | ||
19 | Apple pomace | increase in Bacteroidetes spp. | increased villus length | [68] |
increase in Clostridia spp. | ||||
increase in Firmicutes | ||||
increase in Ruminococcaceae spp. | ||||
20 | Aronia melanocarpa | increase in Lachnospira spp. | improved intestinal barrier function | [69] |
pomace | increase in Solobacterium spp. | reduced inflammation | ||
increase in Romboutsia spp. | ||||
increase in Robinsoniella spp. | ||||
increase in Prevotella spp. | ||||
decrease in Escherichia Shigella | ||||
decrease in Pseudoscardovia spp. | ||||
decrease in Proteobacteria spp. | ||||
improved antioxidant status | [70] | |||
21 | Olive mill wastewater | beneficial antioxidative effect | [71] | |
reduced diarrhea incidence | ||||
22 | Rosemary extract | increase in Bifidobacterium spp. | reduced diarrhea incidence | [72] |
increase in Bacteroidetes spp. | enhanced antioxidant capacity | |||
decrease in Escherichia coli | ||||
23 | Purple sweet potato | increase in Lactobacillus spp. | enhance fermentation | [73] |
polyphenols | increase in Bifidobacterium spp. | |||
increase in Prevotella spp. | ||||
increase in Collinsella stercoris | ||||
decrease in Clostridium spp. | ||||
decrease in Proteobacteria spp. | ||||
decrease in Acidaminococcus spp. | ||||
24 | Cocoa husk meal | increase in Bacteroidetes spp. | favorable intestinal microbial balance | [74] |
increase in Prevotella spp. | ||||
increase in Faecalibacterium prausnitzii | ||||
decrease in Firmicutes | ||||
decrease in Lactobacillus spp. | ||||
decrease in Enterococcus spp. | ||||
decrease in Clostridium histolyticum | ||||
25 | Flavanol-enriched cocoa | increase in Lactobacillus spp. | supporting the immune system | [66] |
increase in Bifidobacterium spp. | reducing oxidative stress in the body | |||
26 | Red oiser dogwood | increase in Lactobacillus delbrueckii | strengthening the gut barrier | [75] |
polyphenol extract | increase in Lactobacillus mucosae | enhancing immune function | ||
inhibiting pathogenic bacteria | ||||
27 | Mulberry leaves | decrease in Olsenella spp. | enhance fermentation | [76] |
decrease in Megasphaera spp. | ||||
28 | Phytolin-Sugarcane | increase in Lactobacillus spp. | improve fermentation | [77] |
polyphenol | increase in Catenibacterium spp. | integrity of the gut barrier | ||
decrease in Mohibacterium spp. | reduced inflammatory response | |||
decrease in Dialister spp. | ||||
decrease in Escherichia-Shigella | ||||
29 | Moutan Cortex Radicis | increase in Lactobacillus spp. | improved antioxidant status | [78] |
increase in Firmicutes | reduced inflammation | |||
decrease in Bacteroides spp. | ||||
decrease in Parabacteroides spp. | ||||
decrease in Lachnospiraceae spp. | ||||
decrease in Enterococcus spp. |
No. crt. | Origin/Type of Polyphenols | Related GI Microbiota | Therapeutic Effect | Ref. |
---|---|---|---|---|
1 | Daidzein | Eggerthellaceae spp. | lower risk of aortic calcification | [27,89,90,91,92,93,94,95,96] |
increase in Adlercreutzia equolifaciens | lower cardiometabolic risk | |||
Adlercreutzia mucosicola | lower obesity risk | |||
Slackia isoflavoniconvertens | reduce total serum colesterol | |||
Slackia equolifaciens | anti-atherogenic effect | |||
Enteroscipio spp. | hindering carbohydrate metabolism | |||
Lactococcus garvieae | ||||
increase in Bifidobacteriaceae spp. | ||||
Coriobacteriaceae spp. | ||||
Asaccharobacter spp. | ||||
Clostridium spp. | ||||
increase in Bifidobacterium bifidum | ||||
decrease in Bacteroides spp. | ||||
decrease in Faecalibacterium spp. | ||||
decrease in Butyrivibrium spp. | ||||
decrease in Desulfovibrio | ||||
increase in Lactobacillus | ||||
2 | Flavan-3-ols | Lactiplantibacillus plantarum | improve vascular function | [27,97,98,99,100,101,102,103,104] |
Eggerthella lenta | improve serum cholesterol | |||
Adlercreutzia equolifaciens | improve glucose metabolism | |||
Flavonifractor plautii | lower risk of cardiovascular diseases | |||
increase in Lactobacillus spp. | lower trigricerid concentration | |||
increase in Bifidobacterium spp. | lower c-reactive protein coincentration | |||
increase in Akkermansia spp. | lower rsk of Alzeheimer’s diseae | |||
decrease in Clostridium spp. | lower risk of prostate cancer | |||
lower risk of colorectal cancer | ||||
increase in Dorea | improve antioxidant response | |||
decrease in Scillospira | improve anti-inflammatory response | |||
decrease in Bacteroides | ||||
3 | Flavones/Flavanones | increase in Bifidobacterium spp. | lower risk of coronary heart disease | [27,97,105,106,107,108,109,110,111,112] |
Clostridium spp. | lower risk of dementia | |||
increase in Bacteroides spp. | improve vascularization of hippocampal | |||
increase in Lactobacillus spp. | dental gyrus | |||
Prevotellaceae spp. | improve memory | |||
Bifidobacterium longum | decreasing inflammatory cytokines | |||
Eubacterium ramulus | improve antioxidant response | |||
Clostridium orbiscindens | improve anti-inflamatory response | |||
Bacteroides distasonis | lower risk of cancer | |||
Escherichia coli | ||||
4 | Quercitin | increase in Akkermansia muciniphila | lower risk of amyotrophic lateral sclerosis | [30] |
decrease in Enterococcus spp. | ||||
5 | Myricetin | increase in Actinobacteria spp. | lower risk of dementia | [113,114] |
increase in Verrucomicrobia spp. | ||||
decrease in Proteobacteria spp. | ||||
decrease in Bacteroidetes spp. | ||||
6 | Luteolin | increase in Bifidobacterium spp. | increase SCFA production | [107] |
increase in Bacteroides spp. | lower risk of cancer | |||
7 | Lignans | Butyribacterium methylotrophicum | modulate estrogen signaling | [115,116,117,118,119,120,121,122,123] |
Prevotellaceae callanderi | modulate lipid metabolism | |||
Prevotellaceae limosum | decrease the inflamation | |||
PeptoStreptococcus productus | reduce risk of obesity | |||
Clostridium scindens | lower risk of cardiovascular diseases | |||
Eggerthella lenta | lower glucose concentration | |||
Lactobacillus spp. | ||||
Bifidobacterium spp. | ||||
increase in Faecalibacterium prausnitzii | ||||
increase in Alistipes shahii | ||||
increase in Butyrivibrio crossotus | ||||
increase in Methanobrevibacter smithii | ||||
increase in Moryella spp. | ||||
increase in Acetanaerobacterium spp. | ||||
increase in Fastidiosipila spp. | ||||
increase in Streptobacillus spp. | ||||
8 | Ellagic acid/Ellagitannins | increase in Enterobacteriaceae spp. | lower risk of cardiovascular diseases | [3,10,20,27,86,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139] |
Gordonibacter pamelaeae | lower obesity risk | |||
Gordonibacter urolithinfaciens | lower risk of colorectal cancer | |||
Ellagibacter isourolithinifacien | improve blood lipid profile | |||
Olsenella spp. | improve intestinal barier integrity | |||
Senegalimassilia spp. | decrease the inflamation | |||
Slackia spp. | lower risk of prostate cancer | |||
Adlercreutzia spp. | lower risk of breast cancer | |||
Enterocloster bolteae | lower risk of gastrointestinal diseases | |||
Bifidobacterium pseudocatenulatum | ||||
Lactococcus garvieae | ||||
Enterococcus faecium | ||||
Streptococcus thermophilus | ||||
increase in Akkermansia muciniphila | ||||
Ruminococcaceae | ||||
Lachnospiraceae | ||||
decrease in Clostridium perfringens | ||||
decrease in Methanobrevibacter | ||||
decrease in Escherichia coli | ||||
9 | Resveratrol | increase in Bacteroidetes spp. | lower risk of cancer | [30,88,140,141,142,143,144,145,146,147,148] |
Actinobacteria spp. | decrease inflamation | |||
Verrucomicrobia spp. | lower risk of amyotrophic lateral sclerosis | |||
Cyanobacteria spp. | lower rik of colorectal cancer | |||
Enterobacteriaceae spp. | lower risk of breast cancer | |||
Slackia equolifaciens | increase SCFA production | |||
Adlercreutzia equolifaciens | increase immune response | |||
Bifidobacterium infantis | increase antioxidant status | |||
increase in Akkermansia muciniphila | improve serum cholesterol | |||
increase in Butyrivibrio fibrisolvens | improve glucose metabolism | |||
increase in Lachnospiraceae spp. | reduce hypertension | |||
increase in Blautia spp. | ||||
increase in LachnoClostridium spp. | ||||
increase in Parabacteroides spp. | ||||
increase in RuminiClostridium spp. | ||||
increase in Bifidobacterium spp. | ||||
increase in Allobaculum | ||||
increase in Ruminococcus | ||||
increase in Clostridium sensu stricto | ||||
increase in Eubacterium | ||||
increase in Ligilactobacillus murinus | ||||
decrease in Psychrobacter | ||||
decrease in Bilophila | ||||
10 | Pterostilbene and Caffeic Acid | increase in Akkermansia spp. | increase serotonin concentration | [149,150,151] |
increase in Odoribacter spp. | lower risk of amyotrophic lateral sclerosis | |||
increase in Akkermansia muciniphila | support a healthy lipid profile | |||
increase in Odoribacter splanchnicus | stimulates the production of butyric acid | |||
11 | Catechin | increase in Bifidobacterium spp. | decrease inflamation | |
increase in Bacteroidetes | increase SCFA production | [152,153] | ||
decrease in Proteobacteria | lower risk of cancer | |||
decrease in Ruminococcaceae | raise serum leptin levels | |||
decrease in Lachnospiraceae | ||||
increase in Prevotella | ||||
increase in Parabacteroides | ||||
increase in Fusicatenibacter | ||||
12 | Aronia | increase in Anaerostipes spp. | increase SCFA production | [154,155,156] |
increase in Lawsonibacter asaccharolyticus | reduced gut-derived endotoxin | |||
increase in Intestinimonas butyriciproducens | improve antioxidant responseimprove anti-inflammatory response | |||
increase in Lactobacillus | ||||
increase in Ruminococcaceae | ||||
increase in Proteobacteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anghel, A.C.; Țăranu, I.; Orțan, A.; Marcu Spinu, S.; Dragoi Cudalbeanu, M.; Rosu, P.M.; Băbeanu, N.E. Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies. Molecules 2024, 29, 6026. https://doi.org/10.3390/molecules29246026
Anghel AC, Țăranu I, Orțan A, Marcu Spinu S, Dragoi Cudalbeanu M, Rosu PM, Băbeanu NE. Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies. Molecules. 2024; 29(24):6026. https://doi.org/10.3390/molecules29246026
Chicago/Turabian StyleAnghel, Andrei Cristian, Ionelia Țăranu, Alina Orțan, Simona Marcu Spinu, Mihaela Dragoi Cudalbeanu, Petronela Mihaela Rosu, and Narcisa Elena Băbeanu. 2024. "Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies" Molecules 29, no. 24: 6026. https://doi.org/10.3390/molecules29246026
APA StyleAnghel, A. C., Țăranu, I., Orțan, A., Marcu Spinu, S., Dragoi Cudalbeanu, M., Rosu, P. M., & Băbeanu, N. E. (2024). Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies. Molecules, 29(24), 6026. https://doi.org/10.3390/molecules29246026