Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review
Abstract
:1. Introduction
2. Fabrication Process of LM–Hydrogel Composites
2.1. Conductive Path Through Microfluid Channels in LM–Hydrogel Composites
2.2. Creating a Conductive Path Involves Mixing or Dispersing LM Filler Particles Within Hydrogel Composites
3. Three-Dimensional Printable LM Hydrogels
4. Categorization of Liquid Metal Integration in Hydrogels and the Role of 3D Printing
5. Printing of the LM-Based Inks over Hydrogel Substrate (Interface Engineering)
6. Liquid Metal Hydrogels Applications
6.1. LM–Hydrogel Composite in Electromagnetic Interference (EMI) Shielding Applications
6.2. LM–Hydrogel Composite in Energy Applications
6.3. LM–Hydrogel Composite in Sensor and Biomonitoring Applications
6.4. LM–Hydrogel Composite in Biomedical Applications (Toxicity and Treatment)
6.5. Wearable Triboelectric Nanogenerators (TENGs)
7. Summary and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Yan, X.; Zhang, T.; Yuan, X.; Zhang, Q. Advances of liquid metal hydrogel composites in biomedical applications. Biomed. Mater. 2023, 19, 012001. [Google Scholar] [CrossRef]
- Park, J.-E.; Kang, H.S.; Baek, J.; Park, T.H.; Oh, S.; Lee, H.; Koo, M.; Park, C. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019, 13, 9122–9130. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, Y.; Xiao, J.; Chen, S.-W.; Tu, Q.; Yuan, M.-S.; Wang, J. Liquid metal-doped conductive hydrogel for construction of multifunctional sensors. Anal. Chem. 2023, 95, 3811–3820. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, T.; Zhang, Y.; Qu, G.; Wei, S.; Liu, Z.; Kong, T. Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv. Mater. 2019, 31, 1902783. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, B.; Handschuh-Wang, S.; Zhou, X. Liquid metal–based soft microfluidics. Small 2020, 16, 1903841. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Tang, S.-Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-Zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab Chip 2017, 17, 974–993. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; You, J.; Li, X.; Li, M.; Wu, X.; Li, C. Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices. Chem. Eng. J. 2020, 392, 123788. [Google Scholar] [CrossRef]
- Fonseca, R.G.; Hajalilou, A.; Freitas, M.; Kuster, A.; Parvini, E.; Serra, A.C.; Coelho, J.F.; Fonseca, A.C.; Tavakoli, M. Photodegradable Non-Drying Hydrogel Substrates for Liquid Metal Based Sustainable Soft-Matter Electronics. Adv. Mater. Technol. 2023, 8, 2301007. [Google Scholar] [CrossRef]
- Parvini, E.; Hajalilou, A.; Tavakoli, M. A bright future of hydrogels in flexible batteries and Supercapacitors storage systems: A review. Int. J. Energy Res. 2022, 46, 13276–13307. [Google Scholar] [CrossRef]
- Parvini, E.; Hajalilou, A.; Lopes, P.A.; Tiago, M.S.M.; de Almeida, A.T.; Tavakoli, M. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics. Soft Matter. 2022, 18, 8486–8503. [Google Scholar] [CrossRef]
- Yang, Y.; Han, M.; Liu, W.; Wu, N.; Liu, J. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022, 15, 9614–9630. [Google Scholar] [CrossRef]
- Zhu, T.; Ni, Y.; Biesold, G.M.; Cheng, Y.; Ge, M.; Li, H.; Huang, J.; Lin, Z.; Lai, Y. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473–509. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, P.; Chen, J.; Sun, Z.; Zhao, B. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240. [Google Scholar] [CrossRef]
- Wang, Z.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 2020, 8, 3437–3459. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, J.; Wang, T.; Peng, X.; Liu, J.; Wang, X.; Wang, J.; Zeng, H. Recent advances in designing conductive hydrogels for flexible electronics. InfoMat 2020, 2, 843–865. [Google Scholar] [CrossRef]
- Duan, J.; Liang, X.; Guo, J.; Zhu, K.; Zhang, L. Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater. 2016, 28, 8037–8044. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xie, D.; Li, Z.; Zhu, H. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R Rep. 2017, 115, 1–37. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, H.; Lee, D.; Lee, Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 2014, 6, 18401–18407. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, M.; Ouyang, C.; Lu, T.J.; Li, F.; Xu, F. Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors. Small 2018, 14, 1801711. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, S.; Yoon, I.S.; Lee, C.; Oh, Y.; Hong, J.M. Ultrastretchable conductor fabricated on skin-like hydrogel–elastomer hybrid substrates for skin electronics. Adv. Mater. 2018, 30, 1800109. [Google Scholar] [CrossRef]
- Yuk, H.; Zhang, T.; Parada, G.A.; Liu, X.; Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Yang, T.; Li, X.; Zang, X.; Zhu, M.; Wang, K.; Wu, D.; Zhu, H. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670. [Google Scholar] [CrossRef]
- Hajalilou, A.; Silva, A.F.; Lopes, P.A.; Parvini, E.; Majidi, C.; Tavakoli, M. Biphasic liquid metal composites for sinter-free printed stretchable electronics. Adv. Mater. Interfaces 2022, 9, 2101913. [Google Scholar] [CrossRef]
- Hajalilou, A.; Parvini, E.; Pereira, J.P.M.; Lopes, P.A.; Silva, A.F.; De Almeida, A.; Tavakoli, M. Digitally printable magnetic liquid metal composite for recyclable soft-matter electronics. Adv. Mater. Technol. 2023, 8, 2201621. [Google Scholar] [CrossRef]
- Kazem, N.; Bartlett, M.D.; Majidi, C. Extreme toughening of soft materials with liquid metal. Adv. Mater. 2018, 30, 1706594. [Google Scholar] [CrossRef]
- Li, T.; He, S.; Stein, A.; Francis, L.F.; Bates, F.S. Synergistic toughening of epoxy modified by graphene and block copolymer micelles. Macromolecules 2016, 49, 9507–9520. [Google Scholar] [CrossRef]
- Peng, H.; Xin, Y.; Xu, J.; Liu, H.; Zhang, J. Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater. Horiz. 2019, 6, 618–625. [Google Scholar] [CrossRef]
- Tavakoli, M.; Alhais Lopes, P.; Hajalilou, A.; Silva, A.F.; Reis Carneiro, M.; Carvalheiro, J.; Marques Pereira, J.; de Almeida, A.T. 3R Electronics: Scalable Fabrication of Resilient, Repairable, and Recyclable Soft-Matter Electronics. Adv. Mater. 2022, 34, 2203266. [Google Scholar] [CrossRef]
- Liao, M.; Liao, H.; Ye, J.; Wan, P.; Zhang, L. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl. Mater. Interfaces 2019, 11, 47358–47364. [Google Scholar] [CrossRef]
- Hajalilou, A.; Parvini, E.; Morgado, T.A.; Alhais Lopes, P.; Melo Jorge, M.E.; Freitas, M.; Tavakoli, M. Replacing the Gallium Oxide Shell with Conductive Ag: Toward a Printable and Recyclable Composite for Highly Stretchable Electronics, Electromagnetic Shielding, and Thermal Interfaces. ACS Appl. Mater. Interfaces 2024, 16, 61157–61168. [Google Scholar] [CrossRef] [PubMed]
- Parvini, E.; Hajalilou, A.; Lopes, P.A.; Silva, A.F.; Tiago, M.S.M.; Fernandes, P.M.P.; de Almeida, A.T.; Tavakoli, M. 3R Batteries: Resilient, Repairable, and Recyclable Based on Liquid Gallium Electrode. Adv. Mater. Technol. 2024, 9, 2301189. [Google Scholar] [CrossRef]
- Parvini, E.; Hajalilou, A.; Gonçalves Vilarinho, J.P.; Alhais Lopes, P.; Maranha, M.; Tavakoli, M. Gallium–Carbon: A Universal Composite for Sustainable 3D Printing of Integrated Sensor–Heater–Battery Systems in Wearable and Recyclable Electronics. ACS Appl. Mater. Interfaces 2024, 16, 32812–32823. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, M.; Islam, T.; Islam, G.S. Injection-molded natural fiber-reinforced polymer composites—A review. Int. J. Mech. Mater. Eng. 2021, 16, 15. [Google Scholar] [CrossRef]
- Ma, J.; Lin, Y.; Kim, Y.-W.; Ko, Y.; Kim, J.; Oh, K.H.; Sun, J.-Y.; Gorman, C.B.; Voinov, M.A.; Smirnov, A.I. Liquid metal nanoparticles as initiators for radical polymerization of vinyl monomers. ACS Macro Lett. 2019, 8, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Malakooti, M.H.; Lu, Z.; Wang, Z.; Kazem, N.; Pan, C.; Bockstaller, M.R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019, 14, 684–690. [Google Scholar] [CrossRef]
- Chu, K.; Song, B.G.; Yang, H.I.; Kim, D.M.; Lee, C.S.; Park, M.; Chung, C.M. Smart Passivation Materials with a Liquid Metal Microcapsule as Self-Healing Conductors for Sustainable and Flexible Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1800110. [Google Scholar] [CrossRef]
- Bartlett, M.D.; Kazem, N.; Powell-Palm, M.J.; Huang, X.; Sun, W.; Malen, J.A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2017, 114, 2143–2148. [Google Scholar] [CrossRef]
- Mei, S.; Gao, Y.; Deng, Z.; Liu, J. Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J. Electron. Packag. 2014, 136, 011009. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Mashima, Y.; Iyoda, T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew. Chem. Int. Ed. 2015, 54, 12809–12813. [Google Scholar] [CrossRef]
- Chechetka, S.A.; Yu, Y.; Zhen, X.; Pramanik, M.; Pu, K.; Miyako, E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 2017, 8, 15432. [Google Scholar] [CrossRef]
- Hohman, J.N.; Kim, M.; Wadsworth, G.A.; Bednar, H.R.; Jiang, J.; LeThai, M.A.; Weiss, P.S. Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett. 2011, 11, 5104–5110. [Google Scholar] [CrossRef]
- Chen, J.; Tian, G.; Liang, C.; Yang, D.; Zhao, Q.; Liu, Y.; Qi, D. Liquid metal–hydrogel composites for flexible electronics. Chem. Commun. 2023, 59, 14353–14369. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, L.; Chen, C.; Yu, H.; Bai, H.; Wang, L.; Qin, M.; Feng, Y.; Feng, W. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 2021, 9, 875–883. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Indentation and temperature response of liquid metal/hydrogel composites. J. Ind. Eng. Chem. 2022, 110, 225–233. [Google Scholar] [CrossRef]
- Chen, Y.; Estevez, D.; Zhu, Z.; Wang, Y.; Mai, Y.-W.; Qin, F. Multifunctional Conductive Hydrogel Composites with Nickel Nanowires and Liquid Metal Conductive Highways. ACS Appl. Mater. Interfaces 2024, 16, 29267–29281. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, C.; He, Q.; Lin, S.; Chen, Y.; Zhang, Y.; Fang, N.X.; Zhao, X. Hydrogels: Metagel with Broadband Tunable Acoustic Properties Over Air–Water–Solid Ranges (Adv. Funct. Mater. 38/2019). Adv. Funct. Mater. 2019, 29, 1970264. [Google Scholar] [CrossRef]
- Shay, T.; Velev, O.D.; Dickey, M.D. Soft electrodes combining hydrogel and liquid metal. Soft Matter 2018, 14, 3296–3303. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wu, P.; Gao, Q.; Xu, J.; Guo, B.; He, Y. Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals. Mater. Horiz. 2022, 9, 961–972. [Google Scholar] [CrossRef]
- Ho, D.H.; Hu, C.; Li, L.; Bartlett, M.D. Soft electronic vias and interconnects through rapid three-dimensional assembly of liquid metal microdroplets. Nat. Electron. 2024, 7, 1015–1024. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Zhang, C.; Yu, W. The electro-mechanical behavior of conductive filler reinforced polymer composite undergone large deformation: A combined numerical-analytical study. Compos. Part B Eng. 2018, 133, 185–192. [Google Scholar] [CrossRef]
- Flandin, L.; Cavaillé, J.; Bidan, G.; Brechet, Y. New nanocomposite materials made of an insulating matrix and conducting fillers: Processing and properties. Polym. Compos. 2000, 21, 165–174. [Google Scholar] [CrossRef]
- Mohammadi Nasab, A.; Buckner, T.L.; Yang, B.; Kramer-Bottiglio, R. Effect of filler aspect ratio on stiffness and conductivity in phase-changing particulate composites. Adv. Mater. Technol. 2022, 7, 2100920. [Google Scholar] [CrossRef]
- Feng, J.; Venna, S.R.; Hopkinson, D.P. Interactions at the interface of polymer matrix-filler particle composites. Polymer 2016, 103, 189–195. [Google Scholar] [CrossRef]
- Ankit; Tiwari, N.; Rajput, M.; Chien, N.A.; Mathews, N. Highly transparent and integrable surface texture change device for localized tactile feedback. Small 2018, 14, 1702312. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Peng, X.-F.; Turng, L.-S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 2018, 136, 63–72. [Google Scholar] [CrossRef]
- Yin, M.J.; Zhang, Y.; Yin, Z.; Zheng, Q.; Zhang, A.P. Micropatterned Elastic Gold-Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Adv. Mater. Technol. 2018, 3, 1800051. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, S.; So, J.-H.; Kim, K.; Koo, H.-J. Cytotoxicity of gallium–indium liquid metal in an aqueous environment. ACS Appl. Mater. Interfaces 2018, 10, 17448–17454. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.; He, Z.; Rao, W.; Hu, L.; Chen, S.; Lin, J.; Gao, J.; Zhang, P.; Sun, X. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv. Mater. 2019, 31, 1901337. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Xue, L.; Zhang, L.; Zhang, C.; Goodenough, J.B.; Yu, G. A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv. Funct. Mater. 2018, 28, 1804649. [Google Scholar] [CrossRef]
- Wang, J.; Cai, G.; Li, S.; Gao, D.; Xiong, J.; Lee, P.S. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv. Mater. 2018, 30, 1706157. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Tang, S.-Y.; Sun, S.; Yuan, D.; Zhao, Q.; Deng, L.; Yan, S.; Du, H.; Dickey, M.D.; Li, W. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1300. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, B.; Liang, S.; Guo, R.; Rao, W.; Wang, X.; Chang, H.; Ding, Y.; Liu, J.; Wang, L. PLUS-M: A porous liquid-metal enabled ubiquitous soft material. Mater. Horiz. 2018, 5, 222–229. [Google Scholar] [CrossRef]
- Ren, L.; Zhuang, J.; Casillas, G.; Feng, H.; Liu, Y.; Xu, X.; Liu, Y.; Chen, J.; Du, Y.; Jiang, L. Nanodroplets for stretchable superconducting circuits. Adv. Funct. Mater. 2016, 26, 8111–8118. [Google Scholar] [CrossRef]
- Xin, Y.; Peng, H.; Xu, J.; Zhang, J. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 2019, 29, 1808989. [Google Scholar] [CrossRef]
- Farrell, Z.J.; Tabor, C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir 2018, 34, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Farrell, Z.J.; Reger, N.; Anderson, I.; Gawalt, E.; Tabor, C. Route to universally tailorable room-temperature liquid metal colloids via phosphonic acid functionalization. J. Phys. Chem. C 2018, 122, 26393–26400. [Google Scholar] [CrossRef]
- Farrell, Z.J.; Thrasher, C.J.; Flynn, A.E.; Tabor, C.E. Silanized liquid-metal nanoparticles for responsive electronics. ACS Appl. Nano Mater. 2020, 3, 6297–6303. [Google Scholar] [CrossRef]
- Hu, Y.; Zhuo, H.; Zhang, Y.; Lai, H.; Yi, J.; Chen, Z.; Peng, X.; Wang, X.; Liu, C.; Sun, R. Graphene oxide encapsulating liquid metal to toughen hydrogel. Adv. Funct. Mater. 2021, 31, 2106761. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, J.-Y.; Kim, T.Y.; Shin, W.S.; Hwang, I. Activation of persulfate by nanosized zero-valent iron (NZVI): Mechanisms and transformation products of NZVI. Environ. Sci. Technol. 2018, 52, 3625–3633. [Google Scholar] [CrossRef]
- Wahba, N.; El Asmar, M.; El Sadr, M. Iodometric method for determination of persulfates. Anal. Chem. 1959, 31, 1870–1871. [Google Scholar] [CrossRef]
- Li, H.; Tan, C.; Li, L. Review of 3D printable hydrogels and constructs. Mater. Des. 2018, 159, 20–38. [Google Scholar] [CrossRef]
- Pedde, R.D.; Mirani, B.; Navaei, A.; Styan, T.; Wong, S.; Mehrali, M.; Thakur, A.; Mohtaram, N.K.; Bayati, A.; Dolatshahi-Pirouz, A. Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 2017, 29, 1606061. [Google Scholar] [CrossRef] [PubMed]
- Colosi, C.; Shin, S.R.; Manoharan, V.; Massa, S.; Costantini, M.; Barbetta, A.; Dokmeci, M.R.; Dentini, M.; Khademhosseini, A. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 2016, 28, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Liao, I.C.; Moutos, F.T.; Estes, B.T.; Zhao, X.; Guilak, F. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv. Funct. Mater. 2013, 23, 5833–5839. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, F.; Zhang, R.; Liu, J. Suspension 3D printing of liquid metal into self-healing hydrogel. Adv. Mater. Technol. 2017, 2, 1700173. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Fan, L.; Wang, X.; Shang, L.; Zhang, H.; Zhao, Y. Liquid metal hybrid antibacterial hydrogel scaffolds from 3D printing for wound healing. Chem. Eng. J. 2024, 496, 153805. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Ho, D.H.; Cho, J.H. Self-healable hydrogel–liquid metal composite platform enabled by a 3D printed stamp for a multimodular sensor system. ACS Appl. Mater. Interfaces 2020, 12, 9824–9832. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, H.; Sun, X.; Bai, J.; Zhang, J. 3D-Printed Liquid Metal-in-Hydrogel Solar Evaporator: Merging Spectrum-Manipulated Micro-Nano Architecture and Surface Engineering for Solar Desalination. ACS Nano 2024, 18, 5847–5863. [Google Scholar] [CrossRef]
- Matsubara, K.; Tachibana, D.; Matsuda, R.; Onoe, H.; Fuchiwaki, O.; Ota, H. Hydrogel actuator with a built-in stimulator using liquid metal for local control. Adv. Intell. Syst. 2020, 2, 2000008. [Google Scholar] [CrossRef]
- Yoshida, K.; Onoe, H. Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary. Sci. Rep. 2017, 7, 45987. [Google Scholar] [CrossRef] [PubMed]
- Markvicka, E.J.; Bartlett, M.D.; Huang, X.; Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618–624. [Google Scholar] [CrossRef]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; De Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-Zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef]
- Park, J.E.; Kang, H.S.; Koo, M.; Park, C. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 2020, 32, 2002178. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhu, F.; Wu, Z.; Xie, Y.; Qian, J.; Yin, J.; Yang, H. Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions. NPJ Flex. Electron. 2022, 6, 50. [Google Scholar] [CrossRef]
- Xu, C.; Ma, B.; Yuan, S.; Zhao, C.; Liu, H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv. Electron. Mater. 2020, 6, 1900721. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Kim, T.; Kim, W.; Lee, J. Spray-coated liquid metal reflectors for transparent hydrogel atomic force microscope cantilevers. J. Microelectromech. Syst. 2016, 25, 848–850. [Google Scholar] [CrossRef]
- Feng, X.; Wang, C.; Shang, S.; Liu, H.; Huang, X.; Jiang, J.; Song, Z.; Zhang, H. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Carbohydr. Polym. 2023, 311, 120786. [Google Scholar] [CrossRef]
- Guo, H.; Shi, Y.; Pan, F.; Zheng, S.; Chai, X.; Yang, Y.; Jiang, H.; Wang, X.; Li, L.; Xiu, Z. Tough, stretchable dual-network liquid metal-based hydrogel toward high-performance intelligent on-off electromagnetic interference shielding, human motion detection and self-powered application. Nano Energy 2023, 114, 108678. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, Z.; Zhang, R.; Song, S.; Yang, Y.; Xie, D.; Liu, X.; Wei, L.; Liu, Y.; Song, Y. Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydr. Polym. 2025, 348, 122788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, P.; Wang, Q.; Li, L.; Dong, S.; Liu, J.; Rao, W. Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 2019, 7, 10331–10337. [Google Scholar] [CrossRef]
- Yu, Y.; Yi, P.; Xu, W.; Sun, X.; Deng, G.; Liu, X.; Shui, J.; Yu, R. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77. [Google Scholar] [CrossRef]
- Luo, J.-Q.; Zhao, S.; Zhang, H.-B.; Deng, Z.; Li, L.; Yu, Z.-Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2019, 182, 107754. [Google Scholar] [CrossRef]
- Zhao, B.; Bai, Z.; Lv, H.; Yan, Z.; Du, Y.; Guo, X.; Zhang, J.; Wu, L.; Deng, J.; Zhang, D. Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 2023, 15, 79. [Google Scholar] [CrossRef]
- Zhou, H.-W.; Zhao, C.; Zhao, Z.-Y.; Jiang, J.-C.; Jin, H.-L.; Wang, S.; Pan, S.; Xu, M.-Y.; Chen, Y.-H.; Jin, H.-M. Flexible and multifunctional triboelectric nanogenerator based on liquid metal/polyvinyl alcohol hydrogel for energy harvesting and self-powered wearable human–machine interaction. Rare Met. 2024, 43, 1186–1196. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, H.; Yun, G.; Gong, L.; Chen, Z.; Jin, S.; Du, H.; Jiang, Z.; Li, W. A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity. Adv. Funct. Mater. 2024, 34, 2308113. [Google Scholar] [CrossRef]
- Yang, F.; Bao, Z.; Liang, Z.; He, G.; Li, J.; Liang, Q.; Li, J.; Luo, S.; Liu, Y. Black Silver-Decorated liquid metal nanofillers coupled with Glycerol-Modified hydrogel composites for high efficiency solar steam generation and thermoelectric conversion. Chem. Eng. J. 2024, 490, 151815. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Cai, C.; Zhang, Y.; Guo, S.; Fu, Y.; Tan, S.C. Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and Bénard–Marangoni effect. Adv. Funct. Mater. 2022, 32, 2206287. [Google Scholar] [CrossRef]
- Yang, S.; He, Y.; Bai, J.; Zhang, J. Synergistic Dual-Mechanism Localized Heat Channeling and Spectrum-Tailored Liquid Metal Hydrogels for Efficient Solar Water Evaporation and Desalination. Small 2023, 19, 2302526. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Rojas, O.J.; Ning, L.; Li, Y.; Niu, X.; Shi, X.; Qi, H. Liquid metal and Mxene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels. Carbohydr. Polym. 2023, 301, 120330. [Google Scholar] [CrossRef]
- Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments. Mater. Horiz. 2021, 8, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251. [Google Scholar] [CrossRef] [PubMed]
- Hang, T.; Chen, Y.; Yin, F.; Shen, J.; Li, X.; Li, Z.; Zheng, J. Highly stretchable polyvinyl alcohol composite conductive hydrogel sensors reinforced by cellulose nanofibrils and liquid metal for information transmission. Int. J. Biol. Macromol. 2024, 258, 128855. [Google Scholar] [CrossRef]
- Hao, X.P.; Zhang, C.W.; Zhang, X.N.; Hou, L.X.; Hu, J.; Dickey, M.D.; Zheng, Q.; Wu, Z.L. Healable, recyclable, and multifunctional soft electronics based on biopolymer hydrogel and patterned liquid metal. Small 2022, 18, 2201643. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Yan, J.; Li, C.; Wang, X.; Wang, L.; Pan, D.; Xu, Y.; Wang, F.; Li, X.; Wu, Q. Injectable liquid metal nanoflake hydrogel as a local therapeutic for enhanced postsurgical suppression of tumor recurrence. Chem. Eng. J. 2021, 416, 129092. [Google Scholar] [CrossRef]
- Lee, J.H.; Hyun, J.E.; Kim, J.; Yang, J.; Zhang, H.; Ahn, H.; Lee, S.; Kim, J.H.; Lim, T. A highly conductive, robust, self-healable, and thermally responsive liquid metal-based hydrogel for reversible electrical switches. J. Mater. Chem. B 2024, 12, 5238–5247. [Google Scholar] [CrossRef]
- Fan, L.; Duan, M.; Xie, Z.; Pan, K.; Wang, X.; Sun, X.; Wang, Q.; Rao, W.; Liu, J. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy. Small 2020, 16, 1903421. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, Z.; Liu, Y. Encapsulation of liquid metal nanoparticles inside metal–organic frameworks for hydrogel-integrated dual functional biotherapy. Chem. Eng. J. 2023, 457, 141302. [Google Scholar] [CrossRef]
- Lee, W.; Shin, M.J.; Kim, S.; Lee, C.E.; Choi, J.; Koo, H.-J.; Choi, M.-J.; Kim, J.H.; Kim, K. Injectable composite hydrogels embedded with gallium-based liquid metal particles for solid breast cancer treatment via chemo-photothermal combination. Acta Biomater. 2024, 180, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Chen, Q.; Xia, G.; Fang, J. A review of single electrode triboelectric nanogenerators. Nano Energy 2023, 106, 108043. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, S.; Song, H.; Guo, W.; Gu, F.; Yan, C.; Jin, H.; Zhang, L.; Chen, Y.; Wang, S. Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn–air batteries. J. Mater. Chem. A 2021, 9, 19734–19740. [Google Scholar] [CrossRef]
- Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y.C.; Dickey, M.D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 2021, 33, 2004832. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, Z.L.; Fukuda, K.; Someya, T. Flexible self-charging power sources. Nat. Rev. Mater. 2022, 7, 870–886. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Song, Y.; Cao, R.; Wang, L.; Yan, Z.; Shan, G. Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 2020, 73, 104843. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Dai, Y.; Zhao, Z.; Wang, A.; Zhang, T.; Wang, Z.L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Wu, H.M.; Lin, H.C.; Chang, C.L.; Chou, H.H.; Hsiao, Y.C.; Wu, Y.C. Triboelectric Nanogenerators: Entirely, Intrinsically, and Autonomously Self-Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Self-Powered Electronic Skins (Adv. Funct. Mater. 40/2019). Adv. Funct. Mater. 2019, 29, 1970273. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Z.; Guo, H.; Wu, C.; He, X.; Lin, L.; Cao, X.; Wang, Z.L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, M.; Dou, S.; Sun, J.; Cong, Z.; Jiang, C.; Du, C.; Pu, X.; Hu, W.; Wang, Z.L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818–2826. [Google Scholar] [CrossRef]
- Yazdan, A.; Wang, J.-Z.; Hu, B.-K.; Xie, W.-S.; Zhao, L.-Y.; Nan, C.-W.; Li, L.-L. Boron nitride/agarose hydrogel composites with high thermal conductivities. Rare Met. 2020, 39, 375–382. [Google Scholar] [CrossRef]
- Utech, S.; Boccaccini, A.R. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J. Mater. Sci. 2016, 51, 271–310. [Google Scholar] [CrossRef]
- Yang, L.; Guo, L.; Wang, Z.; Meng, C.; Wu, J.; Chen, X.; Musa, A.A.; Jiang, X.; Cheng, H. Stretchable Triboelectric Nanogenerator Based on Liquid Metal with Varying Phases. Adv. Sci. 2024, 11, 2405792. [Google Scholar] [CrossRef]
- Tang, W.; Jiang, T.; Fan, F.R.; Yu, A.F.; Zhang, C.; Cao, X.; Wang, Z.L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725. [Google Scholar] [CrossRef]
- Kim, J.H.; Seo, S. Fabrication of an imperceptible liquid metal electrode for triboelectric nanogenerator based on gallium alloys by contact printing. Appl. Surf. Sci. 2020, 509, 145353. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Lübben, J.F. Review on hydrogel-based flexible supercapacitors for wearable applications. Gels 2023, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jiang, C.; Sun, N.; Tan, D.; Li, Q.; Bi, S.; Song, J. Recent progress in multifunctional hydrogel-based supercapacitors. J.Sci. Adv. Mater. Devices 2021, 6, 338–350. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem. 2019, 1, 335–348. [Google Scholar] [CrossRef]
Composite | Fabrication Method | Key Properties | Applications | Reference |
---|---|---|---|---|
EGaIn–PAM–PAA hydrogel | Microchannel filling | Low impedance; signal-to-noise ratio: 102.6; Young’s modulus: 0.4 MPa | ECG electrodes; health monitoring devices | [47] |
EGaIn–alginate–PAM hydrogel | Microchannel filling | Conductivity: 106 S·m−1; stretchability: 550%; interfacial toughness: 50 J·m−2 | Cardiac patches; NFC; human body monitoring | [4] |
Galinstan–GelMA hydrogel | Microchannel filling | Stable resistance change: 5% increase (50% deformation for 1000 cycles); high conductivity; response time: 51 ms; strain sensitivity: GF ≈ 47 (diameter = 200 μm); underwater sensing | Wireless human health monitoring; drug implant | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajalilou, A. Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review. Molecules 2025, 30, 905. https://doi.org/10.3390/molecules30040905
Hajalilou A. Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review. Molecules. 2025; 30(4):905. https://doi.org/10.3390/molecules30040905
Chicago/Turabian StyleHajalilou, Abdollah. 2025. "Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review" Molecules 30, no. 4: 905. https://doi.org/10.3390/molecules30040905
APA StyleHajalilou, A. (2025). Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review. Molecules, 30(4), 905. https://doi.org/10.3390/molecules30040905