Sub-Nyquist SAR Based on Pseudo-Random Time-Space Modulation
Abstract
:1. Introduction
2. SAR Image Reconstruction Based on CS
3. Information Channel Model of Microwave Imaging Radar Based on Information Theory
4. Pseudo-Random Space-Time Modulation
4.1. Pseudo-Random Space-Time Modulation
4.2. Choice of Pseudo-Random Space-Time Modulation
4.3. Carrier of Pseudo-Random Space-Time Modulation
5. Sub-Nyquist SAR Based on Pseudo-Random Space-Time Modulation
5.1. Choice of Sub-Nyquist Sampling Method
5.2. Echo Signal Model after Pseudo-Random Space-Time Modulation
5.3. Reconstructed Method after Pseudo-Random Space-Time Modulation
5.4. Reconstructed Performance
6. Validation and Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
- (1)
- the calculation of the data information matrices :
- (2)
- the calculation of the prior information matrix :
References
- Abo-Zahhad, M.M.; Hussein, A.I.; Mohamed, A.M. Compressive sensing algorithms for signal processing applications: A survey. Int. J. Commun. Netw. Syst. Sci. 2015, 8, 197–216. [Google Scholar]
- Matusiak, E.; Eldar, Y.C. Sub-Nyquist sampling of short pulses. IEEE Trans. Signal Process. 2012, 60, 1134–1148. [Google Scholar] [CrossRef]
- Xiao, L.; Xia, X. Frequency determination from truly sub-Nyquist samplers based on robust Chinese remainder theorem. Signal Process. 2018, 15, 248–258. [Google Scholar] [CrossRef]
- Grigoryan, R. Acquisition of Multi-Band Signals via Compressed Sensing. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2015. [Google Scholar]
- Lagunas, E. Compressive Sensing Based Candidate Detector and Its Applications to Spectrum Sensing and through-the-Wall Radar Imaging. Ph.D. Thesis, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain, 2014. [Google Scholar]
- Liu, C.; Wang, H.; Zhang, J.; He, Z. Wideband Spectrum Sensing Based on Single-Channel Sub-Nyquist Sampling for Cognitive Radio. Sensors 2018, 18, 2222. [Google Scholar] [CrossRef]
- Aberman, K.; Eldar, Y.C. Sub-Nyquist SAR via Fourier domain range-Doppler processing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6228–6244. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Martian, A.; Craciunescu, R.; Vulpe, A.; Suciu, G.; Fratu, O. Access to RF white spaces in Romania: Present and future. Wirel. Pers. Commun. 2016, 87, 693–712. [Google Scholar] [CrossRef]
- Yang, J.G.; Thompson, J.; Huang, X.T.; Jin, T.; Zhou, Z.M. Segmented reconstruction for compressed sensing SAR imaging. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4214–4225. [Google Scholar] [CrossRef]
- Potter, L.C.; Ertin, E.; Parker, J.T.; Cetin, M. Sparsity and compressed sensing in radar imaging. Proc. IEEE 2010, 98, 1006–1020. [Google Scholar] [CrossRef]
- Ender, J.H.G. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [Google Scholar] [CrossRef]
- Herman, M.A.; Strohmer, T. High-Resolution Radar via Compressed Sensing. IEEE Trans. Signal Process. 2009, 57, 2275–2284. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.T.; López-Dekker, P.; Mallorquí, J.J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geosci. Remote Sens. 2011, 48, 4285–4295. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, Q.; Luo, Y.; Sun, L. Compressed sensing SAR imaging based on centralized sparse representation. IEEE Sens. J. 2018, 18, 4920–4932. [Google Scholar] [CrossRef]
- Bi, H.; Bi, G.; Zhang, B.; Hong, W. Complex-image-based sparse SAR imaging and its equivalence. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5006–5013. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal. Processing; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Cumming, I.; Wong, F. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Foucart, S.; Rauhut, H. A Mathematical Introduction to Compressive Sensing; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar]
- Weed, J. Approximately certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 2017, 64, 5488–5497. [Google Scholar] [CrossRef]
- Romberg, J.K. Compressive sensing by random convolution. SIAM J. Imaging Sci. 2009, 2, 1098–1128. [Google Scholar] [CrossRef]
- Yang, D.; Liao, G.; Zhu, S.; Yang, X.; Zhang, X. SAR imaging with undersampled data via matrix completion. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1539–1543. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Cerrone, C.; Cerull, R.; Golden, B. Carousel greedy: A generalized greedy algorithm with applications in optimization. Comput. Oper. Res. 2017, 85, 97–112. [Google Scholar] [CrossRef]
- Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Wang, R. A null space analysis of the L1 synthesis method in frame-based compressed sensing. Appl. Comput. Harmon. Anal. 2014, 37, 492–515. [Google Scholar] [CrossRef]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Baron, D.; Sarvotham, S.; Baraniuk, R.G. Bayesian compressive sensing via belief propagation. IEEE Trans. Signal Process. 2010, 58, 269–280. [Google Scholar] [CrossRef]
- Arjoune, Y.; Kaabouch, N.; Ghazi, H.E.; Tamtaoui, A. Compressive sensing: Performance comparison of sparse recovery algorithms. In Proceedings of the Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–7. [Google Scholar]
- Zhang, J.; Yang, K.; Liu, F.; Zhang, Y. Information-theoretic characterization and undersampling ratio determination for compressive radar imaging in a simulated environment. Entropy 2015, 17, 5171–5198. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, K. Informational analysis for compressive sampling in radar imaging. Sensors 2015, 15, 7136–7155. [Google Scholar] [CrossRef]
- Verdú, S. Fifty Years of Shannon Theory. IEEE Trans. Inf. Theory 1998, 44, 2057–2078. [Google Scholar] [CrossRef]
- Golub, G.; Loan, C.F.V. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Shanmugam, K.S. Digital and Analog Communication Systems; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge Univ. Press: Cambridge, UK, 2005. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Donoho, D.L.; Huo, X. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 2001, 47, 2845–2862. [Google Scholar] [CrossRef] [Green Version]
- Arjoune, Y.; Kaabouch, N.; el Ghazi, H.; Tamtaoui, A. A performance comparison of measurement matrices in compressive sensing. WILEY Int. J. Commun. Syst. 2018, 31, 1–18. [Google Scholar] [CrossRef]
- Lorenzo, J.A.M.; Juesas, J.H.; Blackwell, W. Single-transceiver compressive antenna for high-capacity sensing and imaging applications. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–3. [Google Scholar]
- Martinez-Lorenzo, J.A.; Juesas, J.H.; Blackwell, W. A single-transceiver compressive reflector antenna for high-sensing-capacity imaging. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 968–971. [Google Scholar] [CrossRef]
- Molaei, A.; Juesas, J.H.; Lorenzo, J.A.M. Compressive Reflector Antenna Phased Array. In Antenna Arrays and Beam-Formation; InTechOpen: Lodon, UK, 2017. [Google Scholar] [Green Version]
- Mailloux, R.J. Phased Array Antenna Handbook; Artech House: Boston, MA, USA, 1994. [Google Scholar]
- Sohrabi, F.; Yu, W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef]
- Sonnaillon, M.O.; Urteaga, R.; Bonetto, F.J. High-Frequency Digital Lock-In Amplifier Using Random Sampling. IEEE Trans. Instrum. Meas. 2008, 57, 616–621. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Wang, H.; Liu, C. Minimum rate sampling and spectrum blind reconstruction in random equivalent sampling. Circuits Syst. Signal Process. 2015, 34, 2667–2680. [Google Scholar] [CrossRef]
- Herley, C.; Wong, P.W. Minimum rate sampling and reconstruction of signals with arbitrary frequency support. IEEE Trans. Inf. Theory 1999, 45, 1555–1564. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, Y.; Liang, Y.C.; Cui, S. Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks. IEEE J. Sel. Areas Commun. 2016, 34, 2750–2762. [Google Scholar] [CrossRef]
- Goodman, N.; Lin, S.C.; Rajakrishna, D.; Stiles, J. Processing of multiple-receiver spaceborne arrays for wide-area SAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 841–852. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, G.; Iodice, A. Coprime Synthetic Aperture Radar (CopSAR): A new acquisition mode for maritime surveillance. IEEE Rans. Geosci. Remote Sens. 2015, 53, 3110–3123. [Google Scholar] [CrossRef]
- Kuruoglu, E.E.; Zerubia, J. Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process. 2004, 13, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Sarabandi, K. Derivation of phase statistics from the Mueller matrix. Radio Sci. 1992, 27, 553–560. [Google Scholar] [CrossRef]
- Kong, J.A.; Swartz, A.A.; Yueh, H.A.; Novak, L.M.; Shin, R.T. Identification of terrain cover using the optimum polarimetric classifier. J. Electromagnet. Waves Appl. 1987, 2, 171–194. [Google Scholar]
- Seber, G. A Matrix Handbook for Statisticians; Wiley-Interscience: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hvan Trees, L.; Bell, K.L.; Tian, Z. Detection, Estimation, and Modulation Theory: Part 1: Detection, Estimation, and Filtering Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
Parameter | Values of the Nyquist Sampling Method | Values of the Sub-Nyquist Sampling Method |
---|---|---|
Orbital height (km) | 693 | 693 |
Wavelength (m) | 0.0555 | 0.0555 |
Pulse width (µs) | 50 | 50 |
Antenna height (m) | 8.93 | 8.93 |
Signal bandwidth (MHz) | 100 | 100 |
The sampling frequency (MHz) | 110 | 110 |
Incidence angles (°) | 38.73–43.50 | 38.73–43.50 |
(Average) pulse repetition frequency (PRF) (Hz) | 1946 | 278 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Li, C.; Yu, Z.; Xiao, P. Sub-Nyquist SAR Based on Pseudo-Random Time-Space Modulation. Sensors 2018, 18, 4343. https://doi.org/10.3390/s18124343
Chen W, Li C, Yu Z, Xiao P. Sub-Nyquist SAR Based on Pseudo-Random Time-Space Modulation. Sensors. 2018; 18(12):4343. https://doi.org/10.3390/s18124343
Chicago/Turabian StyleChen, Wenjiao, Chunsheng Li, Ze Yu, and Peng Xiao. 2018. "Sub-Nyquist SAR Based on Pseudo-Random Time-Space Modulation" Sensors 18, no. 12: 4343. https://doi.org/10.3390/s18124343