Recent Advances on Machine Learning Applications in Machining Processes
Abstract
:1. Introduction
- Condition Monitoring [37,38]: it consists of monitoring process parameters (e.g., temperature, vibrations, accelerations and tool wear) in order to predict the MT conditions, for example, it allows the correct definition of the tool replacement time and reduces the periods of time that the machine is stopped due to critical breakages. In this case, further approaches may be used, such as Tool Condition Monitoring (TCM) and Condition Monitoring (CM—related to the current machining structure).
- Chatter [39,40]: it is a self-excited vibration caused by the continuous interaction between the tool and the workpiece that creates several issues in machining: the ability to correctly determine or predict when chatter occurs reduces the probability to refinish the workpiece and the corresponding tool wear.
- Quality [41,42]: the thermomechanical behavior of the machining structure may generate unwanted tool tip displacements, which would increase the final machining error. In this case, the main issue is related to the quality level of the surface roughness, which is one of the main requirements in machining.
- Energy [45,46]: the energy consumption prediction of a machine tool is becoming increasingly critical in terms of emission reduction and energy efficiency of the manufacturing processes. The application of ML techniques permits to predict the most suitable MT setting to save energy in machining, guaranteeing the required production performance.
2. Machine Learning Paradigm in Machining Application
2.1. Chatter
2.2. Roughness
2.3. Quality
2.4. Modeling
2.5. Machine Condition Monitoring
2.6. Tool Condition Monitoring
3. Discussion
Application | Machining | Algorithm | Input Parameters | Feature Extraction | Feature Selection | Results | Ref. |
---|---|---|---|---|---|---|---|
Tool Health Indicator Estimation for Blade Wear Monitoring | Bandsaw | CNN | Process Parameters | - | - | RMSE < 0.084 | [117] |
Tool Wear Regression | Broaching | LS-SVM | Vibrations, and Forces | TD | PCA | - | [118] |
Tool Wear Curve Prediction in Drilling of CFRP | Drilling | ANN | Force, and Torque | TD, FFT, and FA | SCC | RMSE = 0.00113 mm | [119] |
Tool Wear Classification | Drilling | IBk | Vibrations, AE, Forces, Torques, Sound, and Process Parameters | TD | t-test | 92.70% | [120] |
Grinding Wheel Wear Prediction | Grinding | LSTM | Vibrations, AE, and Forces | WPT, EEMD, TD, FD | mRMR and Wrapper Method | RMSE = 0.00024 mm | [26] |
Grinding Burn Detection | Grinding | SSAE | Vibrations, AE, and Forces | WPT, EEMD, TD, and FD | Relief-F and Wrapper Method | 97.50% | [27] |
Worn Grinding Wheel Recognition | Grinding | CNN | Sound | FFT and iFFT | - | 97.44% | [38] |
Grinding Burn Detection | Grinding | CNN | AE | STFT | - | 99.40% | [121] |
Tool Wear Classification | Milling | KELM | Vibrations | ITD | CC Analysis based on PR | 93.28% | [15] |
Tool Wear Monitoring Classification | Milling | SVM | Sound | WPT, and ECBCA-MSST | AKPCA | 98.11% | [23] |
Tool Health Degradation Classification | Milling | GenSVM | Vibrations, AE, and Current | TD, FD (FFT), and CEEMDAN | PCC | 99.78% | [24] |
Tool Wear Direct Classification | Milling | SVM-intersection | Tool Image | B-ORCHIZ | - | >87.06% | [104] |
Tool Wear Condition Monitoring | Milling | TA-KELM | Sound | TD, and FD | - | RMSE = 0.0195 mm | [105] |
Tool Wear Condition Monitoring | Milling | TA-KELM | Current | TD, FD, and WPT | - | RMSE = 0.0328 mm | [106] |
Tool Wear Condition Monitoring | Milling | TA-KELM | Vibrations, Forces, Current, Sound | TD, FD, and WPT | BDE | RMSE = 0.0013 mm | [107] |
Tool Wear Regression Monitoring | Milling | ANN | Sound | WPT | VIF | 8.59% | [109] |
Tool Wear Amount Prediction | Milling | RF | Vibrations, AE, and Forces | TD | - | MSE = 10.156 µm2 | [110] |
Tool Wear Amount Prediction Under Varying Cutting Conditions | Milling | FCNN (MAML) | Forces, Current, and Power | - | Deep-FS, and Entropy Weight-Grey Correlation Analysis | MAE = 0.02 mm | [114] |
Tool Condition Classification | Milling | CHMM | Forces and Torque | TD, WPT | FDR | ~92% | [122] |
Tool Wear Monitoring | Milling | ANN | Forces, Current, and Voltage | TD | Cross-Correlation Chart | 0.031 mm | [123] |
In-process Tool Wear Prediction | Milling | ANN | Forces, and Process Parameters | TD | - | ±0.037 mm | [124] |
Tool Wear Regression Prediction | Milling | ANN | Process Parameters | - | - | 2% | [125] |
Tool Wear Prediction | Milling | ANN | Vibrations, AE, Forces, Spindle Current, and Process Parameters | LSTM | - | RMSE = 0.0456 mm | [126] |
Optimized Tool Wear Condition Classification | Milling | GWO-SVM | Vibrations OR Forces | TD, FD, WPT | GA | >96% | [127] |
Tool Wear Classification | Milling | OS-ELM | Current | SDAE | - | 96.84% | [128] |
Tool Wear Amount Prediction | Milling | Parallel RF | Vibrations, AE, and Forces | TD | - | MSE = 10.469 µm2 | [129] |
Tool Wear State Classification | Milling | SVM | Forces | WTMM, and HE index | MI | 86.20% | [130] |
Tool Condition Binary Classification | Milling | SVM | Forces | TD | PCA | 91.43% | [131] |
Tool Tipping Monitoring | Milling | SVM | Vibrations | WTMM, and HE index | MI | 98.70% | [132] |
Tool Wear Classification in 5 Wear States | Milling | CNN | Vibration | DWFs, and HEDS | - | 98.70% | [14] |
Tool Wear Classification | Milling | SSAE | AE, and Process Parameters | MFCC | - | 99.63% | [17] |
In-Process Tool Condition Forecasting | Milling | LSTM + ResNet | Vibrations, AE, and Forces | - | - | RMSE < 0.001995 mm | [30] |
Tool Wear Type and Amount Recognition | Milling | CNN + ATWVD | Tool Images | - | - | MAPE = 4.76% (Precision = 96.20%) | [31] |
Tool Wear Type and Amount Recognition | Milling | CNN | Tool Images | Sliding Window Segmentation | - | 17.1µm average error reduction (91.5% accuracy in pixel classification) | [32] |
Tool Wear Classification | Milling | CNN | Forces | WT | DBN | 99.40% | [34] |
Tool Wear State Classification | Milling | CNN (LeNet) | Vibrations, and Current | SCCS | - | >95.9% | [112] |
Tool Wear Classification | Milling | CNN | Forces | GASF | PAA | >80% | [113] |
Tool Wear Prediction in Milling TC18 | Milling | BLSTM | Forces | CNN | - | RMSE = 0.007368 mm | [133] |
Tool Wear Prediction and Roughness Estimation | Milling | Bi-RNN + CNN | Process Parameters, and Spindle Power | - | - | >90% | [134] |
Real-Time Tool Wear Monitoring Classification | Milling | CABLSTM | Vibrations | - | - | 96.97% | [135] |
Tool Wear Binary Classification | Milling | CNN | Sound | STFT | - | 99.50% | [136] |
Tool Breakage Classification | Milling | CNN | Current | TD | - | 93% | [137] |
Tool Anomaly Detection | Milling | CNN-AD | Current | TD, FFT, and WPT | - | 99.12% | [138] |
Tool Wear Estimation for Complex Part Milling | Milling | DNN | Forces, and Process Parameters | TD, and WPT | DAE | ME = 8.2% | [139] |
Tool Wear Prediction | Milling | LSTM | Vibrations, AE, Forces, and Process Parameters | SAE | - | MAPE = 5.31% | [140] |
Tool Wear Classification | Milling | SSAE | Currents | OA based on FFT | - | 98.79% | [141] |
Current Health and RUL Prediction | Milling | IELM | AE | CCWT | - | RMSE < 0.1968 | [16] |
Tool Wear Amount Prediction, Classification, and RUL Prediction | Milling | ANN + BDT | Vibrations, AE, Forces, Spindle Current and Process Parameters | TD, FT | CC and Multicollinearity | RMSE = 0.110 mm & Classification Accuracy = 95.7% | [142] |
Tool Wear and RUL Prediction | Milling | ELM | Vibrations, and Forces | TD, FFT, and WT | CC | MSE = 185.6 µm2 | [143] |
Tool Wear Monitoring and RUL Prediction | Milling | SVM | Vibrations, AE, and Forces | WPT | EM-PCA, and ISOMAP | MAPER < 8.98% | [144] |
RUL Prediction | Milling | SBULSTM + FC layers + Regression layer | Vibrations, Current, and PLC signals (Axes Positions and Spindle Power) | CNN | - | RMSE < 7.81 min | [33] |
RUL Estimation with Varying Spindle Load | Milling | LSTM with Attention Mechanism | Vibrations, Current, and Spindle Load | VMD (with GA), TD, FD | 1D-CNN | RMSE < 9.08 | [145] |
RUL Prediction with the Confidence Interval | Milling | RCNN | Vibrations, AE, Forces, Current, Sound | - | - | CRA > 77.81% | [146] |
Tool State Classification and RUL Prediction | Milling | sLSTM-HMM | Forces, and Temperature | TD, and WPT | - | 95.25% Accuracy & MSE = 10.1816 µm2 | [147] |
Tool Insert Health Monitoring | Turning | DT | Vibration | TD | DT | 94.78% | [20] |
Tool Wear Regression Estimation in Turning of Inconel 718 | Turning | ANN | Vibrations, AE, and Forces | WPT | PCC | MAPE = 5.17% | [25] |
Tool Wear Size Prediction across Multi-Cutting conditions | Turning | Ensemble based on: RF, GBR, ANN, LR, and SVM | Vibrations, AE, Forces, and Process Parameters | TD, FD (FFT), WPT | PCC | RMSE = 0.00834 mm | [111] |
Tool Wear Monitoring Classification | Turning | ANN | Vibrations, and AE | TD, WPT, and DWT | Relief-F | 92.59% | [148] |
Tool Wear Regression Prediction in Ti-6Al-4V Turning | Turning | ANN | Vibrations, AE, and Forces | TD | PCC, PCA based on SVD | MSE < 5.17 × 10−2 mm2 | [149] |
Tool Wear Diagnosis | Turning | ANN | Cutting Parameters, AE, and Forces | TD, and FD | CC | RMSE < 0.0018 mm | [150] |
Tool Wear Prediction | Turning | ANN | Process Parameters | - | - | - | [151] |
Tool Wear Monitoring | Turning | ANN (EKF) | Forces, and Process Parameters | - | Fisher’s Linear Discriminant Criteria | 96.36% & MSE = 0.1463 mm2 | [152] |
Tool Wear Monitoring and Optimal Process Parameters Selection under input uncertainty | Turning | ANN-GA | Strain, and Current | WPT | PCA | 10.76% ± 10.29% | [153] |
Tool Flank Wear Classification | Turning | DT | AE, and Forces | TD, and FD | - | NSE = 0.031 | [154] |
Tool Wear Classification | Turning | DT | Vibrations | TD | - | 77.22% | [155] |
Flank Wear and Crater Wear Estimation | Turning | FNN | AE, Forces, and Process Parameters | TD, and FD | - | - | [156] |
In-process Tool Wear Monitoring | Turning | LS-SVM | Current, Sound, and Process Parameters | SSA | - | RMSE < 0.01705 mm | [157] |
Tool Wear Monitoring Classification | Turning | OLAM ANN | Spindle Load, Tool Load, Spindle Power, and Process Parameters | Data Mining based on t-student | Self-Organizing Deep Learning Method (K-Means) | 93.80% | [158] |
Tool Wear Regression Prediction | Turning | TWNFIS | Vibrations, AE, Forces, and Time | TD | - | SSE = −0.0071 mm2 | [159] |
Tool Wear Classification Based on Chip Color Analysis | Turning | CNN | HSV Chip Images | KDE | - | >95% | [108] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Acronym | Full Name |
AKPCA | Adaptive Kernel Principal Component Analysis |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
ASA | Angular Synchronous Averaging |
ATWVD | Automatic Tool Wear Value Detection |
BADS | Bayesian Adaptive Direct Research |
BDE | Binary Differential Evolution |
BDT | Boosted Decision Tree |
Bi-RNN | Bidirectional Recurrent Neural Network |
BLSTM | Bidirectional Long Short-Term Memory |
CABLSTM | Convolutional Bi-directional LSTM with an Attention Mechanism |
CC | Correlation Coefficient |
CEEMDAN | Complete EEMD with Adaptive Noise |
CHMM | Continuous Hidden Markov Models |
CNN-AD | Convolutional Neural Network with Abnormal Detection |
CRA | Cumulative Recurrent Accuracy |
CWT | Continuous Wavelet Transform |
DAE | Deep Autoencoder |
DBN | Deep Belief Network |
Deep-FS | Deep Feature Selection |
DF | Deep Forest |
DNN | Deep Neural Network |
DT | Decision Tree |
DWFs | Derived Wavelet Frames |
DWT | Discrete Wavelet Transform |
ECBCA | Extended Convolutive Bounded Component Analysis |
EEMD | Ensemble Empirical Mode Decomposition |
EKF | Extended Kalman Filter |
ELM | Extreme Learning Machine |
ETR | Extreme Tree Regressor |
FA | Fractal Analysis |
FCNN | Fully Connected Neural Network |
FD | Frequency Domain |
FDR | Fisher Discriminant Ratio |
GA | Genetic Algorithm |
GASF | Gramian Angular Summation Fields |
GBR | Gradient Boosting Regression |
GBRT | Gradient Boosting Regression Tree |
GenSVM | Generalized Support Vector Machine |
GTB | Gradient Tree Boosting |
GWO | Gray Wolf Optimization |
HE | Holder Exponent |
HEDS | Hilbert Envelope Demodulation Spectra |
HMM | Hidden Markov Model |
IBk | Instance-Based k |
IELM | Improved ELM |
KBDBN | Knowledge-Based DBN |
KDE | Kernel Density Estimation |
KELM | Kernel Extreme Learning Machine |
KI | Kernel Interpolation |
k-NN | k-Nearest Neighbors |
KPCA-IRBF | Radial Basis Function Based Kernel Principal Component Analysis |
LR | Linear Regression |
LSSVM | Least Mean Square SVM |
LSTM | Long Short-Term Memory |
MAML | Model-Agnostic Meta-Learning |
MFCC | Mel-frequency Cepstrum Coefficients |
MI | Mutual Information |
mRMR | Minimum Redundancy Maximum Relevance |
MSST | Multivariate Synchrosqueezing Transform |
NSE | Normalized Square Error |
OA | Order Analysis |
OLAM | Optimal Linear Associative Memory |
OS-ELM | Online Sequential Extreme Learning Machine |
PAA | Piecewise Aggregation Approximation |
PCA | Principal Component Analysis |
PCC | Pearson Correlation Coefficient |
PR | Proper Rotation |
QPSO | Quantum Particle Swarm Optimization |
RBF | Radial Basis Function |
RBM | Restricted Boltzman Machines |
RCNN | Recurrent Convolutional Neural Network |
RF | Random Forest |
RFE | Recursive Feature Elimination |
RNN | Recurrent Neural Network |
RST | Rough Set Theory |
SAE | Stacked Autoencoder |
SBLR | Sparse Bayesian Linear Regression |
SBULSTM | Stacked Bi-Directional and Uni-Directional Long Short-Term Memory |
SCCS | Spindle Current Clutter Signal |
SDAE | Stack Denoising Autoencoder |
sLSTM | Stacked Long Short-Term Memory |
SMOTE | Synthetic Minority Over-Sampling Technique |
SSA | Singular Spectrum Analysis |
SSAE | Stacked Sparse Autoencoder |
SSE | Sum of Square Errors |
SVM | Support Vector Machine |
TAKELM | Two-Layer Angle Kernel Extreme Learning Machine |
TD | Time Domain |
TDA | Topological Data Analysis |
TFD | Time–Frequency Domain |
t-SNE | t-Distributed Stochastic Neighbor Embedding |
VIF | Variance Inflation Factor |
WPT | Wavelet Packet Transform |
WSRMC | Wear State Recognition of Milling Cutter |
WT | Wavelet Transform |
WTMM | Wavelet Transform Modulus Maxima |
References
- Junkar, M.; Filipic, B. Grinding Process Control through Monitoring and Machine Learning. In Proceedings of the Third International Conference on Factory 2000, ‘Competitive Performance through Advanced Technology’, York, UK, 27–29 July 1992; pp. 77–80. [Google Scholar]
- Rangwala, S.; Dornfeld, D.A. Learning and optimization of machining operations using computing abilities of neural networks. IEEE Trans. Syst. Man Cybern. 1989, 19, 299–314. [Google Scholar] [CrossRef]
- Okafor, A.C.; Adetona, O. Predicting quality characteristics of end-milled parts based on multi-sensor integration using neural networks: Individual effects of learning parameters and rules. J. Intell. Manuf. 1995, 6, 389–400. [Google Scholar] [CrossRef]
- Zaretalab, A.; Haghighi, S.S.; Mansour, S.; Sajadieh, M.S. An integrated stochastic model to optimize the machining condition and tool maintenance policy in the multi-pass and multi-stage machining. Int. J. Comput. Integr. Manuf. 2020, 33, 211–228. [Google Scholar] [CrossRef]
- Xu, W.; Cao, L. Optimal tool replacement with product quality deterioration and random tool failure. Int. J. Prod. Res. 2015, 53, 1736–1745. [Google Scholar] [CrossRef]
- Vagnorius, Z.; Rausand, M.; Sørby, K. Determining optimal replacement time for metal cutting tools. Eur. J. Oper. Res. 2010, 206, 407–416. [Google Scholar] [CrossRef]
- Zaretalab, A.; Haghighi, H.S.; Mansour, S.; Sajadieh, M.S. A mathematical model for the joint optimization of machining conditions and tool replacement policy with stochastic tool life in the milling process. Int. J. Adv. Manuf. Technol. 2018, 96, 2319–2339. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, B.; Yin, Q.; Zhao, T. Infrastructure deployment and optimization of fog network based on MicroDC and LRPON integration. Peer-Peer Netw. Appl. 2016, 10, 579–591. [Google Scholar] [CrossRef]
- Spooner, A.; Chen, E.; Sowmya, A.; Sachdev, P.; Kochan, N.A.; Trollor, J.; Brodaty, H. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 2020, 10, 20410. [Google Scholar] [CrossRef] [PubMed]
- Rajula, H.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicine 2020, 56, 455. [Google Scholar] [CrossRef]
- Li, Y.-F.; Liang, D.-M. Safe semi-supervised learning: A brief introduction. Front. Comput. Sci. 2019, 13, 669–676. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Liu, M.-K.; Tran, Q.-V. Milling chatter detection using scalogram and deep convolutional neural network. Int. J. Adv. Manuf. Technol. 2020, 107, 1505–1516. [Google Scholar] [CrossRef]
- Li, K.; He, S.; Li, B.; Liu, H.; Mao, X.; Shi, C. A novel online chatter detection method in milling process based on multiscale entropy and gradient tree boosting. Mech. Syst. Signal Process. 2020, 135, 106385. [Google Scholar] [CrossRef]
- Cao, X.-C.; Chen, B.-Q.; Yao, B.; He, W.-P. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [Google Scholar] [CrossRef]
- Lei, Z.; Zhou, Y.; Sun, B.; Sun, W. An intrinsic timescale decomposition-based kernel extreme learning machine method to detect tool wear conditions in the milling process. Int. J. Adv. Manuf. Technol. 2019, 106, 1203–1212. [Google Scholar] [CrossRef]
- Laddada, S.; Si-Chaib, M.O.; Benkedjouh, T.; Drai, R. Tool wear condition monitoring based on wavelet transform and improved extreme learning machine. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 234, 1057–1068. [Google Scholar] [CrossRef]
- Ochoa, L.E.E.; Quinde, I.B.R.; Sumba, J.P.C.; Guevara, A.V.; Morales-Menendez, R. New Approach based on Autoencoders to Monitor the Tool Wear Condition in HSM. IFAC-PapersOnLine 2019, 52, 206–211. [Google Scholar] [CrossRef]
- Chen, T.; Shang, H.; Bi, Q. A Prediction Method of Five-Axis Machine Tool Energy Consumption with GBRT Algorithm. IEEE Int. Conf. Mechatron. Syst. Robot. 2019, 34–39. [Google Scholar] [CrossRef]
- Postel, M.; Bugdayci, B.; Wegener, K. Ensemble transfer learning for refining stability predictions in milling using experimental stability states. Int. J. Adv. Manuf. Technol. 2020, 107, 4123–4139. [Google Scholar] [CrossRef]
- Shantisagar, K.; Jegadeeshwaran, R.; Sakthivel, G.; Manghai, T.M.A. Vibration Based Tool Insert Health Monitoring Using Decision Tree and Fuzzy Logic. Struct. Durab. Health Monit. 2019, 13, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Alghassi, A.; Yu, Z.; Farbiz, F. Machine Performance Monitoring and Fault Classification using Vibration Frequency Analysis. In Proceedings of the 2020 Prognostics and Health Management Conference (PHM-Besançon), Besancon, France, 4–7 May 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 8–14. [Google Scholar]
- Kong, D.; Zhu, J.; Duan, C.; Lu, L.; Chen, D. Bayesian linear regression for surface roughness prediction. Mech. Syst. Signal Process. 2020, 142, 106770. [Google Scholar] [CrossRef]
- Li, Z.; Liu, R.; Wu, D. Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning. J. Manuf. Process. 2019, 48, 66–76. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, H.; Hu, K.; Wu, J.; Shao, X.; Wang, Y. Multisensory Data-Driven Health Degradation Monitoring of Machining Tools by Generalized Multiclass Support Vector Machine. IEEE Access 2019, 7, 47102–47113. [Google Scholar] [CrossRef]
- Segreto, T.; D’Addona, D.; Teti, R. Tool wear estimation in turning of Inconel 718 based on wavelet sensor signal analysis and machine learning paradigms. Prod. Eng. 2020, 14, 693–705. [Google Scholar] [CrossRef]
- Guo, W.; Li, B.; Zhou, Q. An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and Long Short-Term Memory network. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 2436–2446. [Google Scholar] [CrossRef]
- Guo, W.; Li, B.; Shen, S.; Zhou, Q. An intelligent grinding burn detection system based on two-stage feature selection and stacked sparse autoencoder. Int. J. Adv. Manuf. Technol. 2019, 103, 2837–2847. [Google Scholar] [CrossRef]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Zhao, Z.; Li, Y.; Liu, C.; Gao, J. On-line part deformation prediction based on deep learning. J. Intell. Manuf. 2019, 31, 561–574. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Mo, R.; Zhang, X. In-process tool condition forecasting based on a deep learning method. Robot. Comput. Manuf. 2020, 64, 101924. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhou, X.; Mou, A. Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process. Sensors 2019, 19, 3817. [Google Scholar] [CrossRef] [Green Version]
- Lutz, B.; Kisskalt, D.; Regulin, D.; Reisch, R.; Schiffler, A.; Franke, J. Evaluation of Deep Learning for Semantic Image Segmentation in Tool Condition Monitoring. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2008–2013. [Google Scholar]
- An, Q.; Tao, Z.; Xu, X.; El Mansori, M.; Chen, M. A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement 2020, 154, 107461. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, J. A Deep Learning Approach for High Speed Machining Tool Wear Monitoring. In Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 1–3 June 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 63–68. [Google Scholar]
- Yesilli, M.C.; Khasawneh, F.A.; Otto, A. On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition. CIRP J. Manuf. Sci. Technol. 2020, 28, 118–135. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Liu, X. Pose-dependent tool tip dynamics prediction using transfer learning. Int. J. Mach. Tools Manuf. 2019, 137, 30–41. [Google Scholar] [CrossRef]
- Huang, C.-G.; Yin, X.; Huang, H.-Z.; Li, Y.-F. An Enhanced Deep Learning-Based Fusion Prognostic Method for RUL Prediction. IEEE Trans. Reliab. 2020, 69, 1097–1109. [Google Scholar] [CrossRef]
- Lee, C.-H.; Jwo, J.-S.; Hsieh, H.-Y.; Lin, C.-S. An Intelligent System for Grinding Wheel Condition Monitoring Based on Machining Sound and Deep Learning. IEEE Access 2020, 8, 58279–58289. [Google Scholar] [CrossRef]
- Cherukuri, H.; Perez-Bernabeu, E.; Selles, M.; Schmitz, T. Machining Chatter Prediction Using a Data Learning Model. J. Manuf. Mater. Process. 2019, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Cherukuri, H.; Perez-Bernabeu, E.; Selles, M.; Schmitz, T.L. A neural network approach for chatter prediction in turning. Procedia Manuf. 2019, 34, 885–892. [Google Scholar] [CrossRef]
- Aggogeri, F.; Merlo, A.; Pellegrini, N. Modeling the thermo-mechanical deformations of machine tool structures in CFRP material adopting data-driven prediction schemes. Mechatronics 2020, 71, 102436. [Google Scholar] [CrossRef]
- Segreto, T.; Teti, R. Machine learning for in-process end-point detection in robot-assisted polishing using multiple sensor monitoring. Int. J. Adv. Manuf. Technol. 2019, 103, 4173–4187. [Google Scholar] [CrossRef]
- Gao, K.; Chen, H.; Zhang, X.; Ren, X.; Chen, J.; Chen, X. A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int. J. Adv. Manuf. Technol. 2019, 105, 217–232. [Google Scholar] [CrossRef]
- Cica, D.; Sredanovic, B.; Tesic, S.; Kramar, D. Predictive modeling of turning operations under different cooling/lubricating conditions for sustainable manufacturing with machine learning techniques. Appl. Comput. Inform. 2020. [Google Scholar] [CrossRef]
- Pantazis, D.; Goodall, P.; Conway, P.P.; West, A.A. An automated feature extraction method with application to empirical model development from machining power data. Mech. Syst. Signal Process. 2019, 124, 21–35. [Google Scholar] [CrossRef]
- He, Y.; Wu, P.; Li, Y.; Wang, Y.; Tao, F.; Wang, Y. A generic energy prediction model of machine tools using deep learning algorithms. Appl. Energy 2020, 275, 115402. [Google Scholar] [CrossRef]
- Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D. Advanced monitoring of machining operations. CIRP Ann. 2010, 59, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Mohanraj, T.; Shankar, S.; Rajasekar, R.; Sakthivel, N.; Pramanik, A. Tool condition monitoring techniques in milling process—A review. J. Mater. Res. Technol. 2020, 9, 1032–1042. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, T.J.Y.; Wang, X.; Kim, M.; Quan, Y.-J.; Oh, J.W.; Min, S.-H.; Kim, H.; Bhandari, B.; Yang, I.; et al. Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 555–568. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Yusof, Y.; Daud, E.; Latiff, K.; Kadir, A.Z.A.; Saif, Y. Machine monitoring system: A decade in review. Int. J. Adv. Manuf. Technol. 2020, 108, 3645–3659. [Google Scholar] [CrossRef]
- Denkena, B.; Bergmann, B.; Reimer, S. Analysis of different machine learning algorithms to learn stability lobe diagrams. Procedia CIRP 2020, 88, 282–287. [Google Scholar] [CrossRef]
- Yesilli, M.C.; Tymochko, S.; Khasawneh, F.; Munch, E. Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1211–1218. [Google Scholar]
- Chen, Y.; Li, H.; Jing, X.; Hou, L.; Bu, X. Intelligent chatter detection using image features and support vector machine. Int. J. Adv. Manuf. Technol. 2019, 102, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Zacharia, K.; Krishnakumar, P. Chatter Prediction in High Speed Machining of Titanium Alloy (Ti-6Al-4V) using Machine Learning Techniques. Mater. Today Proc. 2020, 24, 350–358. [Google Scholar] [CrossRef]
- Kvinevskiy, I.; Bedi, S.; Mann, S. Detecting machine chatter using audio data and machine learning. Int. J. Adv. Manuf. Technol. 2020, 108, 3707–3716. [Google Scholar] [CrossRef]
- Shi, F.; Cao, H.; Zhang, X.; Chen, X. A Reinforced k-Nearest Neighbors Method With Application to Chatter Identification in High-Speed Milling. IEEE Trans. Ind. Electron. 2020, 67, 10844–10855. [Google Scholar] [CrossRef]
- Pan, Y.; Kang, R.; Dong, Z.; Du, W.; Yin, S.; Bao, Y. On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning. J. Intell. Manuf. 2020. [Google Scholar] [CrossRef]
- Yu, J.; Liu, G. RETRACTED: Knowledge-based deep belief network for machining roughness prediction and knowledge discovery. Comput. Ind. 2020, 121, 103262. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, M.; Dai, W. Machined Surface Quality Monitoring Using a Wireless Sensory Tool Holder in the Machining Process. Sensors 2019, 19, 1847. [Google Scholar] [CrossRef] [Green Version]
- Grzenda, M.; Bustillo, A. Semi-supervised roughness prediction with partly unlabeled vibration data streams. J. Intell. Manuf. 2019, 30, 933–945. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, H.; Mou, P. Self-learning Optimization of Turning Process Parameters Based on NSGA-II and ANNs. Int. J. Mech. Eng. Robot. Res. 2020, 9, 841–846. [Google Scholar] [CrossRef]
- Thankachan, T.; Prakash, K.S.; Malini, R.; Ramu, S.; Sundararaj, P.; Rajandran, S.; Ramasamy, D.; Jothi, S. Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey Relational Analysis and Artificial Neural Networks. Appl. Surf. Sci. 2019, 472, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Mirifar, S.; Kadivar, M.; Azarhoushang, B. First Steps through Intelligent Grinding Using Machine Learning via Integrated Acoustic Emission Sensors. J. Manuf. Mater. Process. 2020, 4, 35. [Google Scholar] [CrossRef]
- Alajmi, M.S.; Almeshal, A.M. Prediction and optimization of surface roughness in a turning process using the ANFIS-QPSO method. Materials 2020, 13, 2986. [Google Scholar] [CrossRef]
- Lin, W.-J.; Lo, S.-H.; Young, H.-T.; Hung, C.-L. Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis. Appl. Sci. 2019, 9, 1462. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lin, H.; Mao, X.; Jiang, X.; Liu, Q.; Li, B. Surface roughness optimal estimation for disc parts turning using Gaussian-process-based Bayesian combined model. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 4032–4046. [Google Scholar] [CrossRef]
- Vuong, N.K.; Xue, Y.; Liu, S.; Zhou, Y.; Wu, M. Predicting Surface Roughness and Flank Wear in Turning Processes. In Proceedings of the 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, USA, 8–10 June 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; Volume 2020, pp. 1–6. [Google Scholar]
- Wang, K.-C.; Shen, H.-C.; Yang, C.-H.; Chen, H.-Y. Temperature Sensing and Two-stage Integrated Modeling of the Thermal Error for a Computer-numerical Control Swiss-type Turning Center. Sens. Mater. 2019, 31, 1007. [Google Scholar] [CrossRef]
- Fujishima, M.; Narimatsu, K.; Irino, N.; Mori, M.; Ibaraki, S. Adaptive thermal displacement compensation method based on deep learning. CIRP J. Manuf. Sci. Technol. 2019, 25, 22–25. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Lou, P.; Yan, J.; Liu, N. Machine Tools Thermal Error Modeling with Imbalanced Data Based on Transfer Learning. In Proceedings of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 10–13 April 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 214–218. [Google Scholar]
- Li, P.; Lou, P.; Yan, J.; Liu, N. The Thermal Error Modeling with Deep Transfer Learning. J. Phys. Conf. Ser. 2020, 1576, 012003. [Google Scholar] [CrossRef]
- Liu, M.; Cheung, C.F.; Senin, N.; Wang, S.; Su, R.; Leach, R. On-machine surface defect detection using light scattering and deep learning. J. Opt. Soc. Am. A 2020, 37, B53–B59. [Google Scholar] [CrossRef]
- Lin, X.; Wang, X.; Li, L. Intelligent detection of edge inconsistency for mechanical workpiece by machine vision with deep learning and variable geometry model. Appl. Intell. 2020, 50, 2105–2119. [Google Scholar] [CrossRef]
- Bustillo, A.; Pimenov, D.Y.; Mia, M.; Kapłonek, W. Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. J. Intell. Manuf. 2021, 32, 895–912. [Google Scholar] [CrossRef]
- Schorr, S.; Möller, M.; Heib, J.; Fang, S.; Bähre, D. Quality Prediction of Reamed Bores Based on Process Data and Machine Learning Algorithm: A Contribution to a More Sustainable Manufacturing. Procedia Manuf. 2020, 43, 519–526. [Google Scholar] [CrossRef]
- Klein, S.; Schorr, S.; Bähre, D. Quality Prediction of Honed Bores with Machine Learning Based on Machining and Quality Data to Improve the Honing Process Control. Procedia CIRP 2020, 93, 1322–1327. [Google Scholar] [CrossRef]
- Schorr, S.; Möller, M.; Heib, J.; Bähre, D. In-process Quality Control of Drilled and Reamed Bores using NC-Internal Signals and Machine Learning Method. Procedia CIRP 2020, 93, 1328–1333. [Google Scholar] [CrossRef]
- Liu, C.; He, Y.; Li, Y.; Wang, Y.; Wang, L.; Wang, S.; Wang, Y. Predicting residual properties of ball screw raceway in whirling milling based on machine learning. Measurement 2021, 173, 108605. [Google Scholar] [CrossRef]
- Dittrich, M.-A.; Uhlich, F. Self-optimizing compensation of surface deviations in 5-axis ball-end milling based on an enhanced description of cutting conditions. CIRP J. Manuf. Sci. Technol. 2020, 31, 224–232. [Google Scholar] [CrossRef]
- Glatt, M.; Hotz, H.; Kölsch, P.; Mukherjee, A.; Kirsch, B.; Aurich, J.C. Predicting the martensite content of metastable austenitic steels after cryogenic turning using machine learning. Int. J. Adv. Manuf. Technol. 2020, 115, 749–757. [Google Scholar] [CrossRef]
- Knittel, D.; Makich, H.; Nouari, M. Milling diagnosis using artificial intelligence approaches. Mech. Ind. 2019, 20, 809. [Google Scholar] [CrossRef]
- Codjo, L.; Jaafar, M.; Makich, H.; Knittel, D.; Nouari, M. Honeycomb Core Milling Diagnosis using Machine Learning in the Industry 4.0 Framework. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; Volume 1, pp. 1251–1258. [Google Scholar]
- Nain, S.S.; Sai, R.; Sihag, P.; Vambol, S.; Vambol, V. Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy. Arch. Mater. Sci. Eng. 2019, 1, 12–19. [Google Scholar] [CrossRef]
- Vaishnav, S.; Agarwal, A.; Desai, K.A. Machine learning-based instantaneous cutting force model for end milling operation. J. Intell. Manuf. 2019, 31, 1353–1366. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, M.; Zou, Y.; Xiao, J. Robotic constant-force grinding control with a press-and-release model and model-based reinforcement learning. Int. J. Adv. Manuf. Technol. 2019, 106, 589–602. [Google Scholar] [CrossRef]
- Samsonov, V.; Enslin, C.; Köpken, H.-G.; Baer, S.; Lütticke, D. Using Reinforcement Learning for Optimization of a Workpiece Clamping Position in a Machine Tool. In Proceedings of the 22nd International Conference on Enterprise Information Systems, Prague, Czech Republic, 5–7 May 2020; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2020; Volume 1, pp. 506–514. [Google Scholar]
- Saadallah, A.; Finkeldey, F.; Morik, K.; Wiederkehr, P. Stability prediction in milling processes using a simulation-based Machine Learning approach. Procedia CIRP 2018, 72, 1493–1498. [Google Scholar] [CrossRef]
- Nametala, C.A.L.; Souza, A.M.; Júnior, B.R.P.; da Silva, E.J. A simulator based on artificial neural networks and NSGA-II for prediction and optimization of the grinding process of superalloys with high performance grinding wheels. CIRP J. Manuf. Sci. Technol. 2020, 30, 157–173. [Google Scholar] [CrossRef]
- Misaka, T.; Herwan, J.; Kano, S.; Sawada, H.; Furukawa, Y. Deep neural network-based cost function for metal cutting data assimilation. Int. J. Adv. Manuf. Technol. 2020, 107, 385–398. [Google Scholar] [CrossRef]
- Świć, A.; Wołos, D.; Gola, A.; Kłosowski, G. The Use of Neural Networks and Genetic Algorithms to Control Low Rigidity Shafts Machining. Sensors 2020, 20, 4683. [Google Scholar] [CrossRef]
- Ren, X.; Chai, Z.; Xu, J.; Zhang, X.; He, Y.; Chen, H.; Chen, X. A new method to achieve dynamic heat input monitoring in robotic belt grinding of Inconel 718. J. Manuf. Process. 2020, 57, 575–588. [Google Scholar] [CrossRef]
- Ay, M.; Stemmler, S.; Schwenzer, M.; Abel, D.; Bergs, T. Model Predictive Control in Milling based on Support Vector Machines. IFAC-PapersOnLine 2019, 52, 1797–1802. [Google Scholar] [CrossRef]
- Denkena, B.; Dittrich, M.-A.; Böß, V.; Wichmann, M.; Friebe, S. Self-optimizing process planning for helical flute grinding. Prod. Eng. 2019, 13, 599–606. [Google Scholar] [CrossRef]
- Gurgenc, T.; Ucar, F.; Korkmaz, D.; Ozel, C.; Ortac, Y. A study on the extreme learning machine based prediction of machining times of the cycloidal gears in CNC milling machines. Prod. Eng. 2019, 13, 635–647. [Google Scholar] [CrossRef]
- Garrido-Labrador, J.L.; Gabarri, D.P.; Ramírez-Sanz, J.M.; Ayala-Dulanto, D.; Maudes, J. Using Ensembles for Accurate Modelling of Manufacturing Processes in an IoT Data-Acquisition Solution. Appl. Sci. 2020, 10, 4606. [Google Scholar] [CrossRef]
- Shin, S.-J.; Kim, Y.-M.; Meilanitasari, P. A Holonic-Based Self-Learning Mechanism for Energy-Predictive Planning in Machining Processes. Process. 2019, 7, 739. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, Z.; Wang, B.; Ohsawa, Y.; Hayashi, T. Feature Extraction of Laser Machining Data by Using Deep Multi-Task Learning. Information 2020, 11, 378. [Google Scholar] [CrossRef]
- Li, W.; Liang, Y. Deep transfer learning based diagnosis for machining process lifecycle. Procedia CIRP 2020, 90, 642–647. [Google Scholar] [CrossRef]
- Dong, X.; Gao, H.; Guo, L.; Li, K.; Duan, A. Deep Cost Adaptive Convolutional Network: A Classification Method for Imbalanced Mechanical Data. IEEE Access 2020, 8, 71486–71496. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, K. A data-driven method based on deep belief networks for backlash error prediction in machining centers. J. Intell. Manuf. 2020, 31, 1693–1705. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, M.; Dai, W.; Sun, J. In-process complex machining condition monitoring based on deep forest and process information fusion. Int. J. Adv. Manuf. Technol. 2019, 104, 1953–1966. [Google Scholar] [CrossRef]
- Zhang, Y.; Beudaert, X.; Argandoña, J.; Ratchev, S.; Munoa, J. A CPPS based on GBDT for predicting failure events in milling. Int. J. Adv. Manuf. Technol. 2020, 111, 341–357. [Google Scholar] [CrossRef]
- Nguyen, V.; Hoang, T.D.; Thai, V.; Nguyen, X. Big Vibration Data Diagnosis of Bearing Fault Base on Feature Representation of Autoencoder and Optimal LSSVM-CRO Classifier Model. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 557–563. [Google Scholar]
- García-Ordás, M.T.; Alegre, E.; González-Castro, V.; Alaiz-Rodríguez, R. A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. Int. J. Adv. Manuf. Technol. 2016, 90, 1947–1961. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Sun, B.; Sun, W.; Lei, Z. Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. J. Intell. Manuf. 2020. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, W. Tool Wear Condition Monitoring in Milling Process Based on Current Sensors. IEEE Access 2020, 8, 95491–95502. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, B.; Sun, W. A tool condition monitoring method based on two-layer angle kernel extreme learning machine and binary differential evolution for milling. Measurement 2020, 166, 108186. [Google Scholar] [CrossRef]
- Pagani, L.; Parenti, P.; Cataldo, S.; Scott, P.J.; Annoni, M. Indirect cutting tool wear classification using deep learning and chip colour analysis. Int. J. Adv. Manuf. Technol. 2020, 111, 1099–1114. [Google Scholar] [CrossRef]
- Liu, M.-K.; Tseng, Y.-H.; Tran, M.-Q. Tool wear monitoring and prediction based on sound signal. Int. J. Adv. Manuf. Technol. 2019, 103, 3361–3373. [Google Scholar] [CrossRef]
- Wu, D.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S. A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. J. Manuf. Sci. Eng. 2017, 139, 071018. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, F.; Habibullah, M.S.; Ahmed, J.; Das, A.K.; Zhou, Y.; Ho, C.L. Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. J. Intell. Manuf. 2021, 32, 1753–1766. [Google Scholar] [CrossRef]
- Song, K.; Wang, M.; Liu, L.; Wang, C.; Zan, T.; Yang, B. Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal. Int. J. Adv. Manuf. Technol. 2020, 109, 929–942. [Google Scholar] [CrossRef]
- Martínez-Arellano, G.; Terrazas, G.; Ratchev, S. Tool wear classification using time series imaging and deep learning. Int. J. Adv. Manuf. Technol. 2019, 104, 3647–3662. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, C.; Hua, J.; Gao, J.; Maropoulos, P. A novel method for accurately monitoring and predicting tool wear under varying cutting conditions based on meta-learning. CIRP Ann. 2019, 68, 487–490. [Google Scholar] [CrossRef]
- Loyola-Gonzalez, O. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View. IEEE Access 2019, 7, 154096–154113. [Google Scholar] [CrossRef]
- Nakkiran, P.; Kaplun, G.; Bansal, Y.; Yang, T.; Barak, B.; Sutskever, I. Deep Double Descent: Where Bigger Models and More Data Hurt. arXiv 2019, arXiv:1912.02292. [Google Scholar]
- Li, P.; Jia, X.; Feng, J.; Zhu, F.; Miller, M.; Chen, L.-Y.; Lee, J. A novel scalable method for machine degradation assessment using deep convolutional neural network. Measurement 2020, 151, 107106. [Google Scholar] [CrossRef]
- Shi, D.; Gindy, N. Tool wear predictive model based on least squares support vector machines. Mech. Syst. Signal Process. 2007, 21, 1799–1814. [Google Scholar] [CrossRef]
- Teti, R.; Segreto, T.; Caggiano, A.; Nele, L. Smart Multi-Sensor Monitoring in Drilling of CFRP/CFRP Composite Material Stacks for Aerospace Assembly Applications. Appl. Sci. 2020, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Duo, A.; Basagoiti, R.; Arrazola, P.J.; Aperribay, J.; Cuesta, M. The capacity of statistical features extracted from multiple signals to predict tool wear in the drilling process. Int. J. Adv. Manuf. Technol. 2019, 102, 2133–2146. [Google Scholar] [CrossRef]
- Hübner, H.B.; Duarte, M.A.V.; Da Silva, R.B. Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 110, 1833–1849. [Google Scholar] [CrossRef]
- Xie, Z.; Li, J.; Lu, Y. Feature selection and a method to improve the performance of tool condition monitoring. Int. J. Adv. Manuf. Technol. 2018, 100, 3197–3206. [Google Scholar] [CrossRef]
- Ghosh, N.; Ravi, Y.; Patra, A.; Mukhopadhyay, S.; Paul, S.; Mohanty, A.; Chattopadhyay, A. Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Signal Process. 2007, 21, 466–479. [Google Scholar] [CrossRef]
- Chen, J.C.; Chen, J.C. An artificial-neural-networks-based in-process tool wear prediction system in milling operations. Int. J. Adv. Manuf. Technol. 2004, 25, 427–434. [Google Scholar] [CrossRef]
- Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. Prediction of tool wear using regression and ANN models in end-milling operation. Int. J. Adv. Manuf. Technol. 2007, 37, 29–41. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, W.; Hu, X.; Liu, Y. A hybrid information model based on long short-term memory network for tool condition monitoring. J. Intell. Manuf. 2020, 31, 1497–1510. [Google Scholar] [CrossRef]
- Liao, X.; Zhou, G.; Zhang, Z.; Lu, J.; Ma, J. Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. Int. J. Adv. Manuf. Technol. 2019, 104, 1051–1063. [Google Scholar] [CrossRef]
- Ou, J.; Li, H.; Huang, G.; Yang, G. Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine. Measurement 2021, 167, 108153. [Google Scholar] [CrossRef]
- Wu, D.; Jennings, C.; Terpenny, J.; Kumara, S. Cloud-based machine learning for predictive analytics: Tool wear prediction in milling. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2062–2069. [Google Scholar]
- Zhou, C.; Guo, K.; Yang, B.; Wang, H.; Sun, J.; Lu, L. Singularity Analysis of Cutting Force and Vibration for Tool Condition Monitoring in Milling. IEEE Access 2019, 7, 134113–134124. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, B.; Hao, X.; Li, L.; Chen, N.; Xu, T.; Aqib, K.M.; He, N. A Novel Tool (Single-Flute) Condition Monitoring Method for End Milling Process Based on Intelligent Processing of Milling Force Data by Machine Learning Algorithms. Int. J. Precis. Eng. Manuf. 2020, 21, 2159–2171. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, Z.; Sun, C.; Zhu, Z. The Monitoring of Milling Tool Tipping by Estimating Holder Exponents of Vibration. IEEE Access 2020, 8, 96661–96668. [Google Scholar] [CrossRef]
- Ma, J.; Luo, D.; Liao, X.; Zhang, Z.; Huang, Y.; Lu, J. Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 2021, 173, 108554. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Gao, R.X.; Guo, Y. Heterogeneous data-driven hybrid machine learning for tool condition prognosis. CIRP Ann. 2019, 68, 455–458. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Q.; Yuan, Q.; Huang, H.; Li, Y. Research on a Real-Time Monitoring Method for the Wear State of a Tool Based on a Convolutional Bidirectional LSTM Model. Symmetry 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.; Wang, P.; Zhang, J.; Gao, R.X.; Roney, T.; Ragai, I.; Shaffer, D. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manuf. 2020, 49, 105–111. [Google Scholar] [CrossRef]
- Li, G.; Yang, X.; Chen, D.; Song, A.; Fang, Y.; Zhou, J. Tool Breakage Detection using Deep Learning. In Proceedings of the 2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD), Yonago, Japan, 12–13 July 2018; pp. 37–42. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Fu, Y.; Chen, D.; Shi, L.; Zhou, J. Deep Anomaly Detection for CNC Machine Cutting Tool Using Spindle Current Signals. Sensors 2020, 20, 4896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, C.; Luo, M.; Zhang, D. Tool Wear Monitoring for Complex Part Milling Based on Deep Learning. Appl. Sci. 2020, 10, 6916. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Gao, J.; Li, Z.; Li, E. Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions. IEEE Access 2020, 8, 140726–140735. [Google Scholar] [CrossRef]
- Ou, J.; Li, H.; Huang, G.; Zhou, Q. A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring. Sensors 2020, 20, 2878. [Google Scholar] [CrossRef]
- Traini, E.; Bruno, G.; D’Antonio, G.; Lombardi, F. Machine Learning Framework for Predictive Maintenance in Milling. IFAC-PapersOnLine 2019, 52, 177–182. [Google Scholar] [CrossRef]
- Wang, W.; Ma, L.; Tian, X. Tool Wear Volume and Residual Life Prediction Based on Extreme Learning Machine. In Proceedings of the 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 24–26 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 192–1923. [Google Scholar]
- Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Health assessment and life prediction of cutting tools based on support vector regression. J. Intell. Manuf. 2015, 26, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, L.; Niu, J.; Yao, R.; Wu, C. Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism. Neurocomputing 2020, 417, 239–254. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Yan, T.; Li, N.; Guo, L. Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery. Neurocomputing 2020, 379, 117–129. [Google Scholar] [CrossRef]
- Tao, Z.; An, Q.; Liu, G.; Chen, M. A novel method for tool condition monitoring based on long short-term memory and hidden Markov model hybrid framework in high-speed milling Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2019, 105, 3165–3182. [Google Scholar] [CrossRef]
- Du, M.; Wang, P.; Wang, J.; Cheng, Z.; Wang, S. Intelligent Turning Tool Monitoring with Neural Network Adaptive Learning. Complex. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Caggiano, A. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition. Sensors 2018, 18, 823. [Google Scholar] [CrossRef] [Green Version]
- Jemielniak, K.; Kwiatkowski, L.; Wrzosek, P. Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. J. Intell. Manuf. 1998, 9, 447–455. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Wu, S.-J.; Hsu, J.-W. Investigated iterative convergences of neural network for prediction turning tool wear. Int. J. Adv. Manuf. Technol. 2020, 106, 2939–2948. [Google Scholar] [CrossRef]
- Purushothaman, S. Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. J. Intell. Manuf. 2009, 21, 717–730. [Google Scholar] [CrossRef]
- Pal, S.; Heyns, P.; Freyer, B.; Theron, N.; Pal, S.K. Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. J. Intell. Manuf. 2009, 22, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Jiaa, C.L.; Dornfeld, D.A. A self-organizing approach to the prediction and detection of tool wear. ISA Trans. 1998, 37, 239–255. [Google Scholar] [CrossRef]
- Elangovan, M.; Devasenapati, S.B.; Sakthivel, N.; Ramachandran, K. Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Syst. Appl. 2011, 38, 4450–4459. [Google Scholar] [CrossRef]
- Chungchoo, C.; Saini, D. On-line tool wear estimation in CNC turning operations using fuzzy neural network model. Int. J. Mach. Tools Manuf. 2002, 42, 29–40. [Google Scholar] [CrossRef]
- Salgado, D.; Alonso, J. An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tools Manuf. 2007, 47, 2140–2152. [Google Scholar] [CrossRef]
- De Farias, A.; De Almeida, S.L.R.; Delijaicov, S.; Seriacopi, V.; Bordinassi, E.C. Simple machine learning allied with data-driven methods for monitoring tool wear in machining processes. Int. J. Adv. Manuf. Technol. 2020, 109, 2491–2501. [Google Scholar] [CrossRef]
- Gajate, A.; Haber, R.; del Toro, R.; Vega, P.; Bustillo, A. Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. J. Intell. Manuf. 2012, 23, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Terrazas, G.; Martínez-Arellano, G.; Benardos, P.; Ratchev, S. Online Tool Wear Classification during Dry Machining Using Real Time Cutting Force Measurements and a CNN Approach. J. Manuf. Mater. Process. 2018, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Zhai, S.; Gehring, B.; Reinhart, G. Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning. J. Manuf. Syst. 2021. [Google Scholar] [CrossRef]
- Han, S.; Mannan, N.; Stein, D.C.; Pattipati, K.R.; Bollas, G.M. Classification and regression models of audio and vibration signals for machine state monitoring in precision machining systems. J. Manuf. Syst. 2021, 61, 45–53. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, Y. A Cyber-Physical Production System Framework of Smart CNC Machining Monitoring System. IEEE/ASME Trans. Mechatron. 2018, 23, 2579–2586. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggogeri, F.; Pellegrini, N.; Tagliani, F.L. Recent Advances on Machine Learning Applications in Machining Processes. Appl. Sci. 2021, 11, 8764. https://doi.org/10.3390/app11188764
Aggogeri F, Pellegrini N, Tagliani FL. Recent Advances on Machine Learning Applications in Machining Processes. Applied Sciences. 2021; 11(18):8764. https://doi.org/10.3390/app11188764
Chicago/Turabian StyleAggogeri, Francesco, Nicola Pellegrini, and Franco Luis Tagliani. 2021. "Recent Advances on Machine Learning Applications in Machining Processes" Applied Sciences 11, no. 18: 8764. https://doi.org/10.3390/app11188764