A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microgreen Samples
2.2. Selection of the Bioactive Compound-Rich Microgreens
2.3. Health-Promoting Potentials
2.3.1. Antioxidative Activity
2.3.2. Antiproliferative Activity
2.3.3. Neuroprotective Activity
2.3.4. Antidiabetic Activity
2.3.5. Antihypertension Activity
2.3.6. Antihypercholesteromic Activity
2.3.7. Anti-Inflammatory Activity
2.4. Antimicrobial Properties
2.4.1. Antibacterial Activity
2.4.2. Antifungal and Anti-Yeast Activities
2.4.3. Antibiofilm Activity
2.4.4. Antiadhesion Activity
2.5. Nutritive Profile of Microgreens
2.5.1. Amino Acids
2.5.2. Metals and Metalloids
2.5.3. Content of Carbohydrates (Mono- and Disaccharides)
2.5.4. Proteins
2.5.5. Headspace Analysis of Biogenic Volatile Organic Compounds
2.6. Phytochemical Profile
2.7. Statistical Analysis
3. Results and Discussion
3.1. Selection of Microgreen Samples Rich in Bioactive Compounds
3.2. Comprehensive Assessment of Sango Radish and Kale Potentials
3.2.1. Evaluation of Health-Promoting and Antimicrobial Potentials
3.2.2. Evaluation of Nutritive (Chemical) and Antioxidant Profile
3.3. Comparative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunjal, M.; Singh, J.; Kaur, J.; Kaur, S.; Nanda, V.; Sharma, A.; Rasane, P. Microgreens: Cultivation practices, bioactive potential, health benefits, and opportunities for its utilization as value-added food. Food Biosci. 2024, 62, 105133. [Google Scholar] [CrossRef]
- Bhaswant, M.; Shanmugam, D.K.; Miyazawa, T.; Abe, C.; Miyazawa, T. Microgreens—A comprehensive review of bioactive molecules and health benefits. Molecules 2023, 28, 867. [Google Scholar] [CrossRef] [PubMed]
- Rai, U.; Rai, S.; Datta, S. Microgreens: A superfood for nutritional security in the 21st century-a review. Environ. Ecol. 2022, 40, 2239–2244. [Google Scholar]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- Kyriacou, M.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Michell, K.A.; Isweiri, H.; Newman, S.; Bunning, M.; Bellows, L.; Dinges, M.M.; Grabos, L.; Rao, S.; Foster, M.; Heuberger, A.; et al. Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. J. Food Sci. 2020, 85, 926–935. [Google Scholar] [CrossRef]
- Ranitović, A.; Šovljanski, O.; Aćimović, M.; Pezo, L.; Tomić, A.; Travičić, V.; Markov, S. Biological potential of alternative kombucha beverages fermented on essential oil distillation by-products. Fermentation 2022, 8, 625. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Čanadanovic-Brunet, J.; Ćetković, G.; Jaksić, M.; Vulić, J.; Stajčić, S.; Šeregelj, V. Optimisation of beetroot juice encapsulation by freeze-drying. Pol. J. Food Nutr. Sci. 2020, 70, 25–34. [Google Scholar] [CrossRef]
- Šeregelj, V.; Tumbas Šaponjac, V.; Pezo, L.; Kojić, J.; Cvetković, B.; Ilić, N. Analysis of antioxidant potential of fruit and vegetable juices available in Serbian markets. Food Sci. Technol. Int. 2024, 30, 472–484. [Google Scholar] [CrossRef]
- Travičić, V.; Šovljanski, O.; Tomić, A.; Perović, M.; Milošević, M.; Ćetković, N.; Antov, M. Augmenting Functional and Sensorial Quality Attributes of Kefir through Fortification with Encapsulated Blackberry Juice. Foods 2023, 17, 4163. [Google Scholar] [CrossRef]
- Šovljanski, O.; Saveljić, A.; Tomić, A.; Šeregelj, V.; Lončar, B.; Cvetković, D.; Ranitović, A.; Pezo, L.; Ćetković, G.; Markov, S.; et al. Carotenoid-producing yeasts: Selection of the best-performing strain and the total carotenoid extraction procedure. Processes 2022, 10, 1699. [Google Scholar] [CrossRef]
- Stajčić, S.; Ćetković, G.; Tumbas Šaponjac, V.; Travičić, V.; Ilić, P.; Brunet, S.; Tomić, A. Bioactive compounds and the antioxidant activity of selected vegetable microgreens: A correlation study. Processes 2024, 12, 1743. [Google Scholar] [CrossRef]
- Supino, R. MTT Assays. In In Vitro Toxicity Testing Protocols; O’Hare, S., Atterwill, C.K., Eds.; Humana Press: Totowa, NJ, USA, 1995; Volume 43, pp. 137–149. [Google Scholar]
- Pintać, D.; Četojević-Simin, D.; Berežni, S.; Orčić, D.; Mimica-Dukić, N.; Lesjak, M. Investigation of the chemical composition and biological activity of edible grapevine (Vitis vinifera L.) leaf varieties. Food Chem. 2019, 286, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shin, Y. Antioxidant compounds and activities of edible roses (Rosa hybrida spp.) from different cultivars grown in Korea. Appl. Biol. Chem. 2017, 60, 129–136. [Google Scholar] [CrossRef]
- Palanisamy, U.D.; Ling, L.T.; Manaharan, T.; Appleton, D. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem. 2011, 127, 21–27. [Google Scholar] [CrossRef]
- Rachmawati, H.; Soraya, I.S.; Kurniati, N.F.; Rahma, A. In vitro study on antihypertensive and antihypercholesterolemic effects of a curcumin nanoemulsion. Sci. Pharm. 2016, 84, 131. [Google Scholar] [CrossRef]
- Tomić, A.; Šovljanski, O.; Nikolić, V.; Pezo, L.; Aćimović, M.; Cvetković, M.; Markov, S. Screening of antifungal activity of essential oils in controlling biocontamination of historical papers in archives. Antibiotics 2023, 12, 103. [Google Scholar] [CrossRef]
- Šovljanski, O.; Aćimović, M.; Sikora, V.; Koren, A.; Saveljić, A.; Tomić, A.; Tešević, V. Exploring (Un) Covered Potentials of Industrial Hemp (Cannabis sativa L.) Essential Oil and Hydrolate: From Chemical Characterization to Biological Activities. Nat. Prod. Commun. 2024, 19, 1934578X241264712. [Google Scholar] [CrossRef]
- ISO 13903:2011; Animal Feeding Stuffs—Determination of Amino Acids Content. ISO: Geneva, Switzerland, 2011.
- Horwitz, W.; Latimer, G. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- ISO 11292:1995; International Organization for Standardization Instant Coffee—Determination of Free and Total Carbohydrate Contents—Method Using High-Performance Anion-Exchange Chromatography. ISO: Geneva, Switzerland, 1995.
- Marcó, A.; Rubio, R.; Compañó, R.; Casals, I. Comparison of the Kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 2002, 57, 1019–1026. [Google Scholar] [CrossRef]
- Šovljanski, O.; Aćimović, M.; Cvanić, T.; Travičić, V.; Popović, A.; Vulić, J.; Ćetković, G.; Ranitović, A.; Tomić, A. An In Vitro Evaluation of Robin’s Pincushion Extract as a Novel Bioactive-Based Antistaphylococcal Agent—Comparison to Rosehip and Black Rosehip. Antibiotics 2024, 13, 1178. [Google Scholar] [CrossRef]
- Vulić, J.; Čanadanović-Brunet, J.; Ćetković, G.; Đilas, S.; Tumbas Šaponjac, V.; Stajčić, S. Bioactive compounds and antioxidant properties of goji fruits (Lycium barbarum L.) cultivated in Serbia. J. Am. Coll. Nutr. 2016, 35, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Šovljanski, O.; Saveljić, A.; Aćimović, M.; Šeregelj, V.; Pezo, L.; Tomić, A.; Ćetković, G.; Tešević, V. Biological Profiling of Essential Oils and Hydrolates of Ocimum basilicum var. Genovese and var. Minimum Originated from Serbia. Processes 2022, 10, 1893. [Google Scholar] [CrossRef]
- Aćimović, M.; Zeremski, T.; Šovljanski, O.; Lončar, B.; Pezo, L.; Zheljazkov, V.D.; Pezo, M.; Šuput, D.; Kurunci, Z. Seasonal Variations in Essential Oil Composition of Immortelle Cultivated in Serbia. Horticulturae 2022, 8, 1183. [Google Scholar] [CrossRef]
- Šeregelj, V.; Škrobot, D.; Kojić, J.; Pezo, L.; Šovljanski, O.; Tumbas Šaponjac, V.; Vulić, J.; Hidalgo, A.; Brandolini, A.; Čanadanović-Brunet, J.; et al. Quality and Sensory Profile of Durum Wheat Pasta Enriched with Carrot Waste Encapsulates. Foods 2022, 11, 1130. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Shukla, K.; Odedra, K.N.; Jadeja, B.A. Exploring phytochemical, antioxidant, and antimicrobial properties of Plumeria pudica Jacq. leaves. Sci. Rep. 2025, 15, 193. [Google Scholar] [CrossRef]
- Dantas, T.; Costa, E.; da Silva, J.B.M.; Binotti, F.F.D.S.; Vendruscolo, E.P.; Vieira, G.H.D.C.; Ribeiro, F.C.S. Effect of Different Substrates and Protected Environments on Growth, Chlorophyll, and Carotenoid Contents of Kale Microgreens and Baby Leaf. Int. J. Agron. 2024, 2024, 8842753. [Google Scholar] [CrossRef]
- Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Asp. Med. 2018, 61, 76–82. [Google Scholar] [CrossRef]
- Gunjal, M.; Singh, J.; Kaur, J.; Kaur, S.; Nanda, V.; Mehta, C.M.; Rasane, P. Comparative analysis of morphological, nutritional, and bioactive properties of selected microgreens in alternative growing medium. S. Afr. J. Bot. 2024, 165, 188–201. [Google Scholar] [CrossRef]
- Manivannan, A.; Kim, J.H.; Kim, D.S.; Lee, E.S.; Lee, H.E. Deciphering the Nutraceutical Potential of Raphanus sativus-A Comprehensive Overview. Nutrients 2019, 11, 402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kermanshahi, K.Y.; Tabaraki, R.; Karimi, H.; Nikorazm, M.; Abbasi, S. Classification of Iranian bottled waters as indicated by manufacturer’s labellings. Food Chem. 2010, 120, 1218–1223. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Reglero, G.; Dávalos, A. Data mining of nutrigenomics experiments: Identification of a cancer protective gene signature. J. Funct. Foods 2018, 42, 380–386. [Google Scholar] [CrossRef]
- Jadhav, P.D.; Okinyo-Owiti, D.P.; Ahiahonu, P.W.; Reaney, M.J. Detection, isolation and characterisation of cyclolinopeptides J and K in ageing flax. Food Chem. 2013, 138, 1757–1763. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional ingredients from Brassicaceae species: Overview and perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Dereje, B.; Jacquier, J.C.; Elliott-Kingston, C.; Harty, M.; Harbourne, N. Brassicaceae microgreens: Phytochemical compositions, influences of growing practices, postharvest technology, health, and food applications. ACS Food Sci. Technol. 2023, 3, 981–998. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Viršilė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Duchovskis, P. Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra. Front. Plant Sci. 2019, 10, 1475. [Google Scholar] [CrossRef]
- Neugart, S.; Baldermann, S.; Hanschen, F.S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2018, 233, 460–478. [Google Scholar] [CrossRef]
- Tomas, M.; Zhang, L.; Zengin, G.; Rocchetti, G.; Capanoglu, E.; Lucini, L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res. Int. 2021, 140, 110039. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef]
- Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Di Scala, K. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. J. Funct. Foods 2015, 16, 256–264. [Google Scholar] [CrossRef]
- Torres-Contreras, A.M.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Stability of bioactive compounds in broccoli as affected by cutting styles and storage time. Molecules 2017, 22, 636. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small functional foods: Comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods 2021, 10, 427. [Google Scholar] [CrossRef]
- Mlinarić, S.; Piškor, A.; Melnjak, A.; Mikuška, A.; Šrajer Gajdošik, M.; Begović, L. Antioxidant capacity and shelf life of radish microgreens affected by growth light and cultivars. Horticulturae 2023, 9, 76. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Q.; Chen, C.; Yu, H.; Xu, B. Effects of different smoking methods on sensory properties, free amino acids and volatile compounds in bacon. J. Sci. Food Agric. 2021, 101, 2984–2993. [Google Scholar] [CrossRef]
- McCord, J.P.; Groff II, L.C.; Sobus, J.R. Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environ. Int. 2022, 158, 107011. [Google Scholar] [CrossRef]
- Kim, M.J.; Kwak, H.S.; Kim, S.S. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang). Food Chem. 2018, 245, 402–409. [Google Scholar] [CrossRef]
- Sun, Y.N.; Li, W.; Yang, S.Y.; Kang, J.S.; Ma, J.Y.; Kim, Y.H. Isolation and identification of chromone and pyrone constituents from Aloe and their anti-inflammatory activities. J. Funct. Foods 2016, 21, 232–239. [Google Scholar] [CrossRef]
- Shamlan, K.A.; Yahya, H.; Ismail, I.N.A.; Yahya, H.N. Antibacterial Activities of Microgreens and Mature Extract of Kale and Red Spinach Against Selected Pathogenic Bacteria. East Afr. Sch. J. Agric. Life Sci 2020, 3, 337–342. [Google Scholar] [CrossRef]
- Sharma, R.; Gupta, P. Nutraceutical potential of Pennisetum typhoides microgreens: In vitro evaluation of antioxidant and antibacterial activities and in silico Staphylococcus aureus FtsZ inhibition. Food Biosci. 2021, 42, 101151. [Google Scholar] [CrossRef]
- Lazou, A.; Krokida, M. Thermal characterisation of corn–lentil extruded snacks. Food Chem. 2011, 127, 1625–1633. [Google Scholar] [CrossRef]
Health-Promoting Parameters | ||||||
---|---|---|---|---|---|---|
Plant Material | Sango Radish 1 | Sango Radish 2 | Sango Radish 3 | Kale 1 | Kale 2 | Kale 3 |
Antioxidant activities | ||||||
Antioxidant activity, DPPH• (mM TE/100 g) | 7.59 ± 0.33 b | 7.81 ± 0.23 b | 7.92 ± 0.15 b | 4.72 ± 0.17 a | 4.95 ± 0.29 a | 5.03 ± 0.11 a |
Antioxidant activity, ABTS•+ (mM TE/100 g) | 37.89 ± 0.70 b | 37.81 ± 1.39 b | 43.47 ± 1.26 c | 20.22 ± 0.35 a | 20.59 ± 0.44 a | 19.38 ± 1.35 a |
Antioxidant activity, RP (mM TE/100 g) | 7.73 ± 0.19 a | 7.08 ± 0.43 a | 7.45 ± 0.33 a | 19.70 ± 0.82 b | 19.64 ± 1.35 b | 20.84 ± 0.82 b |
Pharmaceutical activities | ||||||
Anti-inflammatory activity (%) | 76.00 ± 4.05 a | 75.42 ± 5.24 a | 79.17 ± 2.18 a | 107.95 ± 3.40 b | 104.12 ± 3.32 b | 98.22 ± 3.00 b |
Neuroprotective activity (mg EE/g de) | 10.87 ± 0.21 a | 10.26 ± 0.17 a | 10.37 ± 0.67 a | 14.79 ± 0.11 b | 14.40 ± 0.20 b | 14.61 ± 0.66 b |
ADI a-amylase (%) | 19.32 ± 0.46 b | 20.92 ± 0.31 b | 20.06 ± 0.74 b | 12.44 ± 0.54 a | 13.26 ± 0.53 a | 12.70 ± 0.30 a |
ADI a-amylase mg (mg ACAE/g de) | 166.15 ± 6.70 b | 173.01 ± 7.20 b | 162.11 ± 1.41 b | 103.12 ± 4.20 a | 106.39 ± 2.96 a | 109.72 ± 5.06 a |
ADI a-glucosidase (%) | 54.65 ± 3.68 a | 55.95 ± 2.54 a | 58.00 ± 2.26 a | 84.37 ±2.72 b | 85.50 ± 2.10 b | 80.03 ± 3.75 b |
ADI a-glucosidase mg (mg ACAE/g de) | 63.18 ± 2.60 a | 57.67 ± 1.58 a | 61.24 ± 2.37 a | 318.41 ± 18.71 b | 311.45 ± 6.47 b | 328.40 ± 24.22 b |
AHA ACE (%) | 44.19 ± 1.03 c | 45.29 ± 0.99 c | 40.22 ± 1.20 b | 14.59 ± 0.31 a | 14.91 ± 0.94 a | 14.41 ± 0.63 a |
AHA HMGCR (%) | 53.56 ± 3.04 c | 52.84 ± 2.62 bc | 47.29 ± 1.65 b | 31.97 ± 1.49 a | 32.54 ± 1.39 a | 34.08 ± 1.30 a |
Antimicrobial Parameters | ||||||
Plant Material | Sango Radish 1 | Sango Radish 2 | Sango Radish 3 | Kale 1 | Kale 2 | Kale 3 |
Inhibition zone | ||||||
AYA E. Coli (mm) | 19.24 ± 0.45 c | 18.96 ± 0.76 c | 16.79 ± 1.12 b | 10.68 ± 0.59 a | 11.04 ± 0.33 a | 11.28 ± 0.38 a |
AB S. Aureus (mm) | 25.53 ± 0.67 b | 25.63 ± 0.53 b | 28.34 ± 0.56 c | 21.56 ± 1.34 a | 21.91 ± 1.41 a | 20.52 ± 0.45 a |
AB L. Monocytogenes (mm) | 6.75 ± 0.21 a | 7.09 ± 0.22 a | 7.16 ± 0.32 a | 7.02 ± 0.44 a | 7.21 ± 0.26 a | 6.77 ± 0.32 a |
AB S. Typhimurium (mm) | 11.72 ± 0.56 b | 10.96 ± 0.16 b | 11.31 ± 0.32 b | 8.97 ± 0.31 a | 9.27 ± 0.34 a | 8.75 ± 0.51 a |
AYA S. Cerevisiae (mm) | 7.00 ± 0.14 a | 6.92 ± 0.52 a | 7.08 ± 0.27 a | 7.05 ± 0.29 a | 6.72 ± 0.30 a | 7.23 ± 0.02 a |
AYA C. Albicans (mm) | 7.33 ± 0.30 a | 7.10 ± 0.44 a | 6.57 ± 0.41 a | 7.11 ± 0.32 a | 6.65 ± 0.31 a | 7.24 ± 0.11 a |
AFA A. Niger (mm) | 7.10 ± 0.22 a | 6.87± 0.12 a | 7.04 ± 0.12 a | 7.05 ± 0.26 a | 7.05 ± 0.42 a | 6.89 ± 0.31 a |
AFA P.aurantiogriseum (mm) | 7.27 ± 0.34 a | 7.30 ± 0.25 a | 6.43 ± 0.31 a | 6.81 ± 0.32 a | 7.23 ± 0.17 a | 6.96 ± 0.51 a |
Antimicrobial-correlated Effect | ||||||
ABF E. Coli (%) | 31.38 ± 1.18 b | 29.45 ± 1.10 b | 29.18 ± 1.07 b | 20.25 ± 0.18 a | 20.29 ± 0.34 a | 19.46 ± 0.68 a |
ABF S. Aureus (%) | 40.79 ± 0.85 a | 39.33 ± 1.66 a | 39.88 ± 2.93 a | 48.96 ± 1.88 b | 48.94 ± 1.74 b | 52.11 ± 1.83 b |
ABF S. Typhimurium (%) | 19.6 ± 0.32 a | 20.38 ± 1.18 a | 19.93 ± 0.94 a | 30.76 ± 1.19 b | 30.04 ± 0.97 b | 29.20 ± 0.83 b |
ADA E. Coli (%) | 25.71 ± 1.46 a | 25.95 ± 0.46 a | 23.33 ± 0.92 a | 33.61 ± 1.98 b | 36.03 ± 1.50 b | 35.36 ± 1.61 b |
ADA S. Aureus (%) | 25.89 ± 0.99 a | 23.89 ± 1.35 a | 25.22 ± 0.41 a | 40.28 ± 0.86 bc | 41.92 ± 1.72 c | 37.80 ± 1.47 b |
ADA S. Typhimurium (%) | 15.17 ± 0.49 b | 14.85 ± 0.89 b | 14.99 ± 0.44 b | 5.02 ± 0.38 a | 4.93 ± 0.09 a | 5.05 ± 0.23 a |
Plant Material | Sango Radish 1 | Sango Radish 2 | Sango Radish 3 | Kale 1 | Kale 2 | Kale 3 |
---|---|---|---|---|---|---|
Amino Acids (%) | ||||||
L-Lysine | 2.00 ± 0.07 a | 2.09 ± 0.09 a | 2.18 ± 0.13 a | 2.10 ± 0.08 a | 1.98 ± 0.09 a | 1.96 ± 0.14 a |
L-Alanine | 2.60 ± 0.14 a | 2.73 ± 0.04 a | 2.68 ± 0.15 a | 2.91 ± 0.09 a | 2.97 ± 0.14 a | 2.82 ± 0.20 a |
L-Threonine | 2.67 ± 0.07 b | 2.67 ± 0.12 b | 2.58 ± 0.04 b | 1.46 ± 0.09 a | 1.44 ± 0.06 a | 1.45 ± 0.05 a |
Glycine | 2.38 ± 0.14 abc | 2.27 ± 0.10 abc | 2.16 ± 0.01 a | 2.50 ± 0.11 c | 2.43 ± 0.05 bc | 2.24 ± 0.07 ab |
L-Valine | 3.76 ± 0.17 a | 3.76 ± 0.17 a | 3.82 ± 0.12 a | 4.22 ± 0.13 a | 3.95 ± 0.19 a | 4.01± 0.22 a |
L-Serine | 1.39 ± 0.05 a | 1.43 ± 0.05 ab | 1.56 ± 0.06 bc | 1.67 ± 0.03 cd | 1.72 ± 0.06 d | 1.77± 0.08 d |
L-Proline | 1.63 ± 0.04 a | 1.57 ± 0.05 a | 1.48 ± 0.06 a | 1.54 ± 0.07 a | 1.62 ± 0.07 a | 1.49 ± 0.04 a |
L-Isoleucine | 7.17 ± 0.24 b | 7.29 ± 0.22 b | 7.59 ± 0.35 b | 3.63 ± 0.22 a | 3.60 ± 0.07 a | 3.50 ± 0.26 a |
L-Leucine | 4.13 ± 0.16 b | 4.13 ± 0.15 b | 3.77 ± 0.09 b | 3.32 ± 0.21 a | 3.33 ± 0.10 a | 3.76 ± 0.08 b |
L-Methionine | 0.35 ± 0.02 a | 0.37 ± 0.01 a | 0.37 ± 0.02 a | 0.39 ± 0.01 a | 0.39 ± 0.01 a | 0.39 ± 0.03 a |
L-Histidine | 0.99 ± 0.04 bc | 1.05 ± 0.05 c | 0.99 ± 0.02 bc | 0.83 ± 0.02 a | 0.91 ± 0.03 ab | 0.88 ± 0.03 a |
L-Phenylalanine | 1.16 ± 0.07 a | 1.15 ± 0.05 a | 1.21 ± 0.05 a | 1.14 ± 0.09 a | 1.15 ± 0.03 a | 1.22± 0.03 a |
L-Glutamate | 5.69 ± 0.17 a | 6.07 ± 0.28 a | 6.00 ± 0.37 a | 8.46 ± 0.37 b | 8.41 ± 0.36 b | 8.54 ± 0.22 b |
L-Aspartate | 3.07 ± 0.24 ab | 2.81 ± 0.12 a | 2.97 ± 0.15 ab | 3.05 ± 0.13 ab | 2.99 ± 0.06 ab | 3.32 ± 0.08 b |
L-Cystine | 0.15 ± 0.00 b | 0.16 ± 0.01 bc | 0.17 ± 0.00 c | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.05 ± 0.00 a |
L-Tyrosine | 1.12 ± 0.04 a | 1.15 ± 0.04 a | 1.18 ± 0.05 a | 1.18 ± 0.08 a | 1.18 ± 0.05 a | 1.21 ± 0.04 a |
L-Arginine | 1.92 ± 0.02 a | 1.96 ± 0.07 a | 2.03 ± 0.06 a | 1.91 ± 0.05 a | 1.99 ± 0.06 a | 1.92 ± 0.04 a |
Mineral compounds (mg/kg) | ||||||
Iron (Fe) | 110.96 ± 5.21 a | 117.05 ± 3.50 a | 108.30 ±7.25 a | 139.53 ± 5.63 b | 141.58 ± 5.96 b | 137.09 ± 5.30 b |
Zinc (Zn) | 81.02 ± 6.52 ab | 86.96 ± 3.13 b | 83.74 ± 3.14 ab | 75.35 ± 3.56 ab | 74.35 ± 5.10 a | 83.82 ± 2.86 ab |
Magnesium (Mg) | 7078.32 ± 181.11 a | 7283.80 ± 290.06 a | 7375.88 ± 281.07 a | 8842.52 ± 196.28 b | 9288.03 ± 359.20 b | 9595.45 ± 412.55 b |
Calcium (Ca) | 11,552.58 ± 232.53 a | 11,467.27 ± 333.85 a | 11,492.14 ± 737.65 a | 17,559.58 ± 314.71 b | 17,671.51 ± 805.62 b | 19,179.91 ± 1400.02 b |
Potassium (K) | 19,787.36 ± 1254.36 a | 19,273.36 ± 1484.63 a | 19,397.29 ± 1121.84 a | 25,445.86 ± 1804.38 b | 24,432.85 ± 108.91 b | 25,634.30 ± 1643.87 b |
Sodium (Na) | 2694.62 ± 88.15 a | 2707.50 ± 79.83 a | 3015.89 ± 109.95 b | 3165.34 ± 149.11 b | 3075.05 ± 18.24 b | 3236.61 ± 65.31 b |
Proteins and sugars (%) | ||||||
Total proteins | 42.59 ± 2.12 a | 43.84 ± 2.04 a | 41.52 ± 1.82 a | 40.27 ± 1.41 a | 41.83 ± 0.42 a | 43.90 ± 1.25 a |
Total sugars | 4.37 ± 0.09 ab | 4.66 ± 0.18 b | 4.29 ± 0.05 a | 4.59 ± 0.10 ab | 4.29 ± 0.18 a | 4.40 ± 0.09 ab |
Glucose | 3.64 ± 0.06 c | 3.55 ± 0.04 c | 3.25 ± 0.06 b | 2.92 ± 0.06 a | 3.09 ± 0.08 ab | 3.20 ± 0.14 b |
Fructose | 0.99 ± 0.03 a | 0.92 ± 0.04 a | 0.97 ± 0.03 a | 1.42 ± 0.07 b | 1.38 ± 0.06 b | 1.31 ± 0.08 b |
Plant Material | Sango Radish 1 | Sango Radish 2 | Sango Radish 3 | Kale 1 | Kale 2 | Kale 3 |
---|---|---|---|---|---|---|
Phenolic Compounds (mg/100 g) | ||||||
p-hydroxybenzoic | 532.58 ± 34.43 b | 511.06 ± 13.58 b | 488.47 ± 18.78 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Gallic acid | 35.52 ± 1.11 c | 34.79 ± 1.33 bc | 33.82 ± 0.55 a | 31.52 ± 1.96 ab | 31.27 ± 1.31 a | 34.79 ± 0.98 bc |
Syringic acid | 29.18 ± 1.22 b | 30.54 ± 1.43 b | 29.60 ± 1.30 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Ellagic acid | 76.11 ± 3.61 b | 76.67 ± 2.10 b | 78.16 ± 4.88 b | 18.04 ± 1.45 a | 17.86 ± 0.88 a | 17.36 ± 0.52 a |
Caffeic acid | 16.76 ± 0.17 ab | 16.84 ± 0.65 b | 18.24 ± 0.75 b | 17.52 ± 0.57 b | 17.69 ± 0.63 b | 15.67 ± 0.83 a |
Chlorogenic acid | 81.72 ± 4.23 b | 79.37 ± 2.15 b | 79.67± 4.23 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Sinapinic acid | 319.50 ± 13.11 a | 319.79 ± 0.95 a | 360.33 ± 13.99 b | 619.82 ± 22.02 b | 595.37 ±16.47 b | 587.44 ± 20.51 b |
Ferulic acid | 136.09 ± 3.51 b | 145.16 ± 3.59 b | 137.57 ± 4.33 b | 80.34 ± 0.93 a | 77.83 ± 5.11 a | 84.83 ± 3.06 a |
Cinnamic acid | 23.66 ± 1.09 a | 23.12 ± 0.90 a | 22.07 ± 1.00 a | 91.73 ± 2.99 b | 99.76 ± 1.19 c | 98.01 ± 3.44 c |
Catechin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 386.61 ±14.35 c | 371.94 ± 7.03 bc | 348.93 ± 17.32 bc |
Protocatechin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 25.70 ± 1.64 b | 23.94 ± 0.70 b | 25.58 ± 1.18 b |
Carotenoids (mg/100 g) | ||||||
Lutein | 503.50 ± 26.90 a | 500.59 ± 23.88 a | 529.60 ± 25.32 a | 1010.00 ± 59.60 b | 950.02 ± 31.39 b | 996.36 ± 71.30 b |
ß-Carotene | 91.81 ± 4.39 a | 95.39 ± 3.79 a | 85.36 ± 3.89 a | 624.89 ± 47.56 b | 600.93 ± 12.89 b | 574.15 ± 26.39 b |
α-Carotene | 350.57 ± 12.95 a | 339.59 ± 12.99 a | 348.30 ± 11.92 b | 1221.47 ± 55.67 b | 1254.60 ± 50.50 b | 1239.98 ± 33.14 b |
Zeaxanthin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 126.95 ± 7.47 bc | 131.11 ± 4.47 c | 118.45 ± 4.73 b |
L-ascorbic acid (mg/100 g) | ||||||
AA | 20.27 ± 0.58 a | 21.82 ± 0.59 a | 21.84 ± 1.04 a | 65.01 ± 2.01 b | 66.07 ± 2.67 b | 67.11 ± 1.60 b |
DHAA | 57.97 ± 2.53 a | 55.71 ± 2.54 a | 55.28 ± 2.20 a | 56.50 ± 1.22 a | 57.28 ± 1.76 a | 57.70 ± 3.98 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vučetić, A.; Šovljanski, O.; Pezo, L.; Gligorijević, N.; Kostić, S.; Vulić, J.; Čanadanović-Brunet, J. A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens. Antioxidants 2025, 14, 191. https://doi.org/10.3390/antiox14020191
Vučetić A, Šovljanski O, Pezo L, Gligorijević N, Kostić S, Vulić J, Čanadanović-Brunet J. A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens. Antioxidants. 2025; 14(2):191. https://doi.org/10.3390/antiox14020191
Chicago/Turabian StyleVučetić, Anja, Olja Šovljanski, Lato Pezo, Nevenka Gligorijević, Saša Kostić, Jelena Vulić, and Jasna Čanadanović-Brunet. 2025. "A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens" Antioxidants 14, no. 2: 191. https://doi.org/10.3390/antiox14020191
APA StyleVučetić, A., Šovljanski, O., Pezo, L., Gligorijević, N., Kostić, S., Vulić, J., & Čanadanović-Brunet, J. (2025). A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens. Antioxidants, 14(2), 191. https://doi.org/10.3390/antiox14020191