A Mathematical Model for Axial Length Estimation in a Myopic Pediatric Population Based on Easily Obtainable Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Correlations between AL and the Other Variables
3.2. Multiple Linear Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef]
- Priscilla, J.J.; Verkicharla, P.K. Time trends on the prevalence of myopia in India—A prediction model for 2050. Ophthalmic Physiol. Opt. 2021, 41, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Tailor, P.D.; Xu, T.T.; Tailor, S.; Asheim, C.; Olsen, T.W. Trends in Myopia and High Myopia from 1966 to 2019 in Olmsted County, Minnesota. Am. J. Ophthalmol. 2024, 259, 35–44. [Google Scholar] [CrossRef]
- Dong, L.; Kang, Y.K.; Li, Y.; Wei, W.B.; Jonas, J.B. Prevalence and Time Trends of Myopia in Children and Adolescents in China: A Systemic Review and Meta-Analysis. Retina 2020, 40, 399–411. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Lee, S.S.; Schmid, K.L.; Rozema, J.J.; Leveziel, N.; Mallen, E.A.H.; Jacobsen, N.; Iribarren, R.; Verkicharla, P.K.; Polling, J.R.; et al. IMI-Onset and Progression of Myopia in Young Adults. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2. [Google Scholar] [CrossRef]
- Yu, L.; Li, Z.K.; Gao, J.R.; Liu, J.R.; Xu, C.T. Epidemiology, genetics and treatments for myopia. Int. J. Ophthalmol. 2011, 4, 658–669. [Google Scholar] [PubMed]
- Tricard, D.; Marillet, S.; Ingrand, P.; Bullimore, M.A.; Bourne, R.R.A.; Leveziel, N. Progression of myopia in children and teenagers: A nationwide longitudinal study. Br. J. Ophthalmol. 2022, 106, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, J.; Tapaszto, B.; Aclimandos, W.A.; Kestelyn, P.; Jonas, J.B.; De Faber, J.H.N.; Januleviciene, I.; Grzybowski, A.; Nagy, Z.Z.; Parssinen, O.; et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur. J. Ophthalmol. 2021, 31, 853–883. [Google Scholar] [CrossRef]
- Bourke, C.M.; Loughman, J.; Flitcroft, D.I.; Loskutova, E.; O’Brien, C. We can’t afford to turn a blind eye to myopia. QJM Int. J. Med. 2023, 116, 635–639. [Google Scholar] [CrossRef]
- Sankaridurg, P.; Tahhan, N.; Kandel, H.; Naduvilath, T.; Zou, H.; Frick, K.D.; Marmamula, S.; Friedman, D.S.; Lamoureux, E.; Keeffe, J.; et al. IMI Impact of Myopia. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2. [Google Scholar] [CrossRef]
- Naidoo, K.S.; Fricke, T.R.; Frick, K.D.; Jong, M.; Naduvilath, T.J.; Resnikoff, S.; Sankaridurg, P. Potential Lost Productivity Resulting from the Global Burden of Myopia: Systematic Review, Meta-analysis, and Modeling. Ophthalmology 2019, 126, 338–346. [Google Scholar] [CrossRef]
- Foo, L.L.; Lanca, C.; Wong, C.W.; Ting, D.; Lamoureux, E.; Saw, S.M.; Ang, M. Cost of Myopia Correction: A Systematic Review. Front. Med. 2021, 8, 718724. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wen, Y.; Zhong, H.; Lin, S.; Liang, L.; Yang, Y.; Jiang, H.; Chen, J.; Huang, Y.; Ying, X.; et al. Healthcare utilization and economic burden of myopia in urban China: A nationwide cost-of-illness study. J. Glob. Health 2022, 12, 11003. [Google Scholar] [CrossRef]
- Wildsoet, C.F.; Chia, A.; Cho, P.; Guggenheim, J.A.; Polling, J.R.; Read, S.; Sankaridurg, P.; Saw, S.M.; Trier, K.; Walline, J.J.; et al. IMI—Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M106–M131. [Google Scholar] [CrossRef] [PubMed]
- Chamarty, S.; Verkicharla, P.K. Accuracy and Precision of New Optical Biometer Designed for Myopia Management in Measurement of Ocular Biometry. Optom. Vis. Sci. 2023, 100, 745–750. [Google Scholar] [CrossRef]
- Song, A.L.; Rizzuti, A. Optical Biometry; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Noya-Padin, V.; Garcia-Queiruga, J.; Iacubitchii, M.; Giraldez, M.J.; Yebra-Pimentel, E.; Pena-Verdeal, H. Lenstar LS900 vs. EchoScan US-800: Comparison between optical and ultrasound biometry with and without contact lenses and its relationship with other biometric parameters. Expert. Rev. Med. Devices 2023, 20, 681–690. [Google Scholar] [CrossRef]
- Yu, J.; Wen, D.; Zhao, J.; Wang, Y.; Feng, K.; Wan, T.; Savini, G.; McAlinden, C.; Lin, X.; Niu, L.; et al. Comprehensive comparisons of ocular biometry: A network-based big data analysis. Eye Vis. 2022, 10, 1. [Google Scholar] [CrossRef]
- Khorrami-Nejad, M.; Khodair, A.M.; Khodaparast, M.; Babapour Mofrad, F.; Dehghanian Nasrabadi, F. Comparison of the ocular ultrasonic and optical biometry devices in the different quality measurements. J. Optom. 2023, 16, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Queiros, A.; Amorim-de-Sousa, A.; Fernandes, P.; Ribeiro-Queiros, M.S.; Villa-Collar, C.; Gonzalez-Meijome, J.M. Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression. J. Clin. Med. 2022, 11, 6200. [Google Scholar] [CrossRef]
- Morgan, P.B.; McCullough, S.J.; Saunders, K.J. Estimation of ocular axial length from conventional optometric measures. Cont. Lens Anterior Eye 2020, 43, 18–20. [Google Scholar] [CrossRef]
- Lingham, G.; Loughman, J.; Panah, D.S.; Harrington, S.; Saunders, K.J.; Ying, G.S.; Cui, H.; Kobia-Acquah, E.; Flitcroft, D.I. The long and short of it: A comprehensive assessment of axial length estimation in myopic eyes from ocular and demographic variables. Eye 2024, 38, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Noya-Padin, V.; Nores-Palmas, N.; Garcia-Queiruga, J.; Giraldez, M.J.; Pena-Verdeal, H.; Yebra-Pimentel, E. Associations between Ocular Biometry, Refractive Error, and Body Characteristics. Photonics 2024, 11, 165. [Google Scholar] [CrossRef]
- Wu, H.M.; Gupta, A.; Newland, H.S.; Selva, D.; Aung, T.; Casson, R.J. Association between stature, ocular biometry and refraction in an adult population in rural Myanmar: The Meiktila eye study. Clin. Exp. Ophthalmol. 2007, 35, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Kearney, S.; Strang, N.C.; Cagnolati, B.; Gray, L.S. Change in body height, axial length and refractive status over a four-year period in caucasian children and young adults. J. Optom. 2020, 13, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Soper, D.S. A-priori Sample Size Calculator for Multiple Regression [Software]. Available online: https://www.danielsoper.com/statcalc (accessed on 19 February 2024).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Kuo, Y.C.; Wang, J.H.; Chiu, C.J. Comparison of open-field autorefraction, closed-field autorefraction, and retinoscopy for refractive measurements of children and adolescents in Taiwan. J. Formos. Med. Assoc. 2020, 119, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.J.; Zeppieri, M. Principles and Technique of Fogging During Subjective Refraction; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sabur, H.; Takes, O. Agreement of axial length and anterior segment parameters measured with the MYAH device compared to Pentacam AXL and IOLMaster 700 in myopic children. Int. Ophthalmol. 2023, 43, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A.; Davies, L.N.; Dunne, M.C.; Gilmartin, B. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol. Opt. 2011, 31, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G. Design and Analysis of Reliability Studies: The Statistical Evaluation of Measurement Errors; Edward Arnold Publishers: New York, NY, USA; Oxford University Press: London, UK, 1989. [Google Scholar]
- Yang, Y.; Cheung, S.W.; Cho, P.; Vincent, S.J. Comparison between estimated and measured myopia progression in Hong Kong children without myopia control intervention. Ophthalmic Physiol. Opt. 2021, 41, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Barraza-Bernal, M.J.; Ohlendorf, A.; Sanz Diez, P.; Feng, X.; Yang, L.H.; Lu, M.X.; Wahl, S.; Kratzer, T. Prediction of refractive error and its progression: A machine learning-based algorithm. BMJ Open Ophthalmol. 2023, 8, e001298. [Google Scholar] [CrossRef]
- Chamberlain, P.; Peixoto-de-Matos, S.C.; Logan, N.S.; Ngo, C.; Jones, D.; Young, G. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom. Vis. Sci. 2019, 96, 556–567. [Google Scholar] [CrossRef]
- Tideman, J.W.; Snabel, M.C.; Tedja, M.S.; van Rijn, G.A.; Wong, K.T.; Kuijpers, R.W.; Vingerling, J.R.; Hofman, A.; Buitendijk, G.H.; Keunen, J.E.; et al. Association of Axial Length With Risk of Uncorrectable Visual Impairment for Europeans With Myopia. JAMA Ophthalmol. 2016, 134, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Harrington, S.C.; Stack, J.; Saunders, K.; O’Dwyer, V. Refractive error and visual impairment in Ireland schoolchildren. Br. J. Ophthalmol. 2019, 103, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- McCullough, S.J.; O’Donoghue, L.; Saunders, K.J. Six Year Refractive Change among White Children and Young Adults: Evidence for Significant Increase in Myopia among White UK Children. PLoS ONE 2016, 11, e0146332. [Google Scholar] [CrossRef] [PubMed]
- Breslin, K.M.; O’Donoghue, L.; Saunders, K.J. A prospective study of spherical refractive error and ocular components among Northern Irish schoolchildren (the NICER study). Investig. Ophthalmol. Vis. Sci. 2013, 54, 4843–4850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, E.; Wang, X.; Zhang, H.; Zhao, E.; Wang, J.; Yang, Y.; Gu, F.; Gu, L.; Huang, J.; Zhang, R.; et al. Ocular biometrics and uncorrected visual acuity for detecting myopia in Chinese school students. Sci. Rep. 2022, 12, 18644. [Google Scholar] [CrossRef]
- Hou, W.; Norton, T.T.; Hyman, L.; Gwiazda, J.; Group, C. Axial Elongation in Myopic Children and its Association With Myopia Progression in the Correction of Myopia Evaluation Trial. Eye Contact Lens 2018, 44, 248–259. [Google Scholar] [CrossRef]
Age (Months) | Km (mm) | Spherical Equivalent (D) | Body Height (cm) | ||
---|---|---|---|---|---|
AL (mm) | rs | 0.134 | 0.673 * | −0.569 * | 0.267 * |
p | 0.081 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noya-Padin, V.; Nores-Palmas, N.; Castro-Giraldez, A.; Giraldez, M.J.; Pena-Verdeal, H.; Yebra-Pimentel, E. A Mathematical Model for Axial Length Estimation in a Myopic Pediatric Population Based on Easily Obtainable Variables. Photonics 2024, 11, 664. https://doi.org/10.3390/photonics11070664
Noya-Padin V, Nores-Palmas N, Castro-Giraldez A, Giraldez MJ, Pena-Verdeal H, Yebra-Pimentel E. A Mathematical Model for Axial Length Estimation in a Myopic Pediatric Population Based on Easily Obtainable Variables. Photonics. 2024; 11(7):664. https://doi.org/10.3390/photonics11070664
Chicago/Turabian StyleNoya-Padin, Veronica, Noelia Nores-Palmas, Alba Castro-Giraldez, Maria J. Giraldez, Hugo Pena-Verdeal, and Eva Yebra-Pimentel. 2024. "A Mathematical Model for Axial Length Estimation in a Myopic Pediatric Population Based on Easily Obtainable Variables" Photonics 11, no. 7: 664. https://doi.org/10.3390/photonics11070664