Sol–Gel Derived Alumina Particles for the Reinforcement of Copper Films on Brass Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructural and Chemical Characterization of Alumina Nanoparticles
2.1.1. Microstructure of Al2O3-FE/SEM and TEM
2.1.2. Chemical Purity of Al2O3-EDS/Mapping
2.1.3. XRD Analysis of Al2O3
2.2. Characterization of Substrate, Copper Films, and MMC of Cu-Al2O3 Films
2.2.1. Characterization of Substrate
Topography of Brass Substrate after Mechanical and Chemical Modification
Microhardness of Brass Substrate after Chemical Modification
2.2.2. Characterization of Copper Films and Cu-Al2O3 MMC Films
Microstructure of Free Cu and Cu-Al2O3 Composite Films-FE/SEM
Chemical Analysis of Metal Cu and MMC Films of Cu-Al2O3-EDS
2.2.3. Roughness Analyses of Free Cu and Cu-Al2O3 MMC Films—AFM Analyses
2.2.4. Microhardness Analyses of Free Cu and Cu-Al2O3 MMC Films—Vickers Indentation Method
2.2.5. Adhesion Analyses of Free Cu and Cu-Al2O3 MMC Films—Vickers Indentation Method
2.2.6. Wettability Analyses of Free Cu and MMC Cu-Al2O3 Films—Sessile Drop Method
3. Conclusions
4. Materials and Methods
4.1. Materials and Method—Synthesis of Al2O3 Nanoparticles
4.2. Materials and Method—Synthesis of Cu Films
4.3. Materials and Method—Synthesis of Cu-Al2O3 Composite Films
4.4. Characterization Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaunisto, K.; Lagerbom, J.; Honkanen, M.; Varis, T.; Lambai, A.; Mohanty, G.; Levänen, E.; Kivikytö-Reponen, P.; Frankberg, E. Evolution of Alumina Phase Structure in Thermal Plasma Processing. Ceram. Int. 2023, 49, 21346–21354. [Google Scholar] [CrossRef]
- Abyzov, A.M. Aluminum Oxide and Alumina Ceramics (Review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract. Ind. Ceram. 2019, 60, 24–32. [Google Scholar] [CrossRef]
- Boumaza, A.; Favaro, L.; Lédion, J.; Sattonnay, G.; Brubach, J.B.; Berthet, P.; Huntz, A.M.; Roy, P.; Tétot, R. Transition Alumina Phases Induced by Heat Treatment of Boehmite: An X-Ray Diffraction and Infrared Spectroscopy Study. J. Solid State Chem. 2009, 182, 1171–1176. [Google Scholar] [CrossRef]
- Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012. [Google Scholar] [CrossRef]
- Drah, A.; Tomić, N.Z.; Kovačević, T.; Djokić, V.; Tomić, M.; Heinemann, R.J.; Marinković, A. Structurally and Surface-Modified Alumina Particles as a Reinforcement in Polyester-Based Composites with an Improved Toughness. Mech. Compos. Mater. 2020, 56, 249–260. [Google Scholar] [CrossRef]
- Ashor, A.A.; Vuksanović, M.M.; Tomić, N.Z.; Petrović, M.; Dojčinović, M.; Husović, T.V.; Radojević, V.; Heinemann, R.J. Optimization of Modifier Deposition on the Alumina Surface to Enhance Mechanical Properties and Cavitation Resistance. Polym. Bull. 2019, 77, 3603–3620. [Google Scholar] [CrossRef]
- Lazouzi, G.A.; Vuksanović, M.M.; Tomić, N.; Petrović, M.; Spasojević, P.; Radojević, V.; Jančić Heinemann, R. Dimethyl Itaconate Modified PMMA—Alumina Fillers Composites with Improved Mechanical Properties. Polym. Compos. 2019, 40, 1691–1701. [Google Scholar] [CrossRef]
- Santos, J.S.; Márquez, V.; Buijnsters, J.G.; Praserthdam, S.; Praserthdam, P. Antimicrobial Properties Dependence on the Composition and Architecture of Copper-Alumina Coatings Prepared by Plasma Electrolytic Oxidation (PEO). Appl. Surf. Sci. 2023, 607, 155072. [Google Scholar] [CrossRef]
- Mitra, D.; Kang, E.-T.; Neoh, K.G. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 21159–21182. [Google Scholar] [CrossRef]
- Kumykov, V.K.; Sergeev, I.N.; Sozaev, V.A.; Gedgagova, M.V. Surface Tension of Copper in Solid Phase. Bull. Russ. Acad. Sci. Phys. 2017, 81, 357–359. [Google Scholar] [CrossRef]
- Podlaha, E.J.; Landolt, D. Pulse-Reverse Plating of Nanocomposite Thin Films. J. Electrochem. Soc. 1997, 144, L200–L202. [Google Scholar] [CrossRef]
- Thiemig, D.; Lange, R.; Bund, A. Influence of Pulse Plating Parameters on the Electrocodeposition of Matrix Metal Nanocomposites. Electrochim. Acta 2007, 52, 7362–7371. [Google Scholar] [CrossRef]
- Stankovic, V.D.; Gojo, M. Electrodeposited Composite Coatings of Copper with Inert, Semiconductive and Conductive Particles. Surf. Coatings Technol. 1996, 81, 225–232. [Google Scholar] [CrossRef]
- Wang, C.; Bai, L.; Xu, H.; Qin, S.; Li, Y.; Zhang, G. A Review of High-Temperature Aerogels: Composition, Mechanisms, and Properties. Gels 2024, 10, 286. [Google Scholar] [CrossRef]
- Dascalu, I.; Hornoiu, C.; Calderon Moreno, J.M.; Osiceanu, P.; Somacescu, S. Layered Sol–Gel Deposition of a Sn, Ti, Zn, and Pr Mixed Oxide Thin Film with Electrical Properties for Gas Sensing. Gels 2023, 9, 638. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Vuksanović, M.M.; Dimitrijević, S.P.; Vasilić, R.; Radojević, V.J.; Vasiljević-Radović, D.G.; Nikolić, N.D. Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles. Metals 2023, 13, 1979. [Google Scholar] [CrossRef]
- Algellai, A.A.; Tomić, N.; Vuksanović, M.M.; Dojčinović, M.; Volkov-Husović, T.; Radojević, V.; Heinemann, R.J. Adhesion Testing of Composites Based on Bis-GMA/TEGDMA Monomers Reinforced with Alumina Based Fillers on Brass Substrate. Compos. Part B Eng. 2018, 140, 164–173. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Bošković, M.V.; Vuksanović, M.M.; Nikolić, N.D.; Lamovec, J.S.; Vasiljević-Radović, D.G.; Radojević, V.J. Structural, Mechanical and Electrical Characteristics of Copper Coatings Obtained by Various Electrodeposition Processes. Electronics 2022, 11, 443. [Google Scholar] [CrossRef]
- Mogra, A.; Pandey, P.K.; Gupta, K.K.; Shivhare, S.; Bagal, V. Development and Characterization of Cu-Al2O3 Nanocomposite Coating Using Electrodeposition Process on Copper Substrate. J. Inst. Eng. Ser. C 2022, 103, 1103–1109. [Google Scholar] [CrossRef]
- Souza, H.J.D.; D’Souza, N.; Ashith, V.K.; Nagappa Moger, S.; D’Silva, E.D. Effect of Deposition Time on Copper Incorporation of ZnS Thin Films by Low-Cost Technique. Mater. Sci. Eng. B 2023, 294, 116551. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Nikolić, N.D. Influence of Parameters and Regimes of the Electrodeposition on Hardness of Copper Coatings. Metals 2023, 13, 683. [Google Scholar] [CrossRef]
- Alazreg, A.; Vuksanović, M.M.; Egelja, A.; Mladenović, I.O.; Radovanović, Ž; Petrović, M.; Marinković, A.; Jančić Heinemann, R. Mechanical properties of acrylate matrix reinforced with manganese-aluminum layered double hydroxide (MnAl-LDH). Polym. Compos. 2023, 44, 6783–6792. Available online: https://Mediacy.Com/Image-Pro/ (accessed on 27 August 2024). [CrossRef]
- Gafur, M.A.; Al-Amin, M.; Sarker, M.S.R.; Alam, M.Z. Structural and Mechanical Properties of Alumina-Zirconia (ZTA) Composites with Unstabilized Zirconia Modulation. Mater. Sci. Appl. 2021, 12, 542–560. [Google Scholar] [CrossRef]
- Petrík, J.; Blaško, P.; Markulík, Š.; Šolc, M.; Palfy, P. The Indentation Size Effect (ISE) of Metals. Crystals 2022, 12, 795. [Google Scholar] [CrossRef]
- Gong, J.; Wu, J.; Guan, Z. Examination of the Indentation Size Effect in Low-Load Vickers Hardness Testing of Ceramics. J. Eur. Ceram. Soc. 1999, 19, 2625–2631. [Google Scholar] [CrossRef]
- Li, N.; Liu, L.; Zhang, M. The Role of Friction to the Indentation Size Effect in Amorphous and Crystallized Pd-Based Alloy. J. Mater. Sci. 2009, 44, 3072–3076. [Google Scholar] [CrossRef]
- Li, H.; Bradt, R.C. The Microhardness Indentation Load/Size Effect in Rutile and Cassiterite Single Crystals. J. Mater. Sci. 1993, 28, 917–926. [Google Scholar] [CrossRef]
- Chuah, H.G.; Ripin, Z.M. Quantifying the Surface Roughness Effect in Microindentation Using a Proportional Specimen Resistance Model. J. Mater. Sci. 2013, 48, 6293–6306. [Google Scholar] [CrossRef]
- LaGraff, J.R.; Gewirth, A.A. Nanometer-Scale Mechanism for the Constructive Modification of Cu Single Crystals and Alkanethiol Passivated Au(111) with an Atomic Force Microscope. J. Phys. Chem. 1995, 99, 10009–10018. [Google Scholar] [CrossRef]
- Maharana, H.S.; Ashok, A.; Pal, S.; Basu, A. Surface-Mechanical Properties of Electrodeposited Cu-Al2O3 Composite Coating and Effects of Processing Parameters. Metall. Mater. Trans. A 2016, 47, 388–399. [Google Scholar] [CrossRef]
- Guglielmi, N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths. J. Electrochem. Soc. 1972, 119, 1009. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, X.Z.; Zhi, C.C. Kinetics of Ni/Nano-SiO2 Codeposition on the Sintered NdFeB Surface. Strength Mater. 2021, 53, 134–144. [Google Scholar] [CrossRef]
- Dordsheikh Torkamani, A.; Velashjerdi, M.; Abbas, A.; Bolourchi, M.; Maji, P. Electrodeposition of Nickel Matrix Composite Coatings via Various Boride Particles: A Review. J. Compos. Compd. 2021, 3, 91–98. [Google Scholar] [CrossRef]
- Kumar, N.; Kishore, K.; Yadav, S.; Sharma, P. Characterisation of Ni-Al2O3 Composite Coatings at Different Al2O3 Concentrations. Mater. Today Proc. 2024; in press. [Google Scholar] [CrossRef]
- Allahkaram, S.R.; Golroh, S.; Mohammadalipour, M. Properties of Al2O3 Nano-Particle Reinforced Copper Matrix Composite Coatings Prepared by Pulse and Direct Current Electroplating. Mater. Des. 2011, 32, 4478–4484. [Google Scholar] [CrossRef]
- Lim, J.D.; Susan, Y.S.Y.; Daniel, R.M.; Leong, K.C.; Wong, C.C. Surface Roughness Effect on Copper–Alumina Adhesion. Microelectron. Reliab. 2013, 53, 1548–1552. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Xu, K. Effect of Substrate on Surface Morphology Evolution of Cu Thin Films Deposited by Magnetron Sputtering. Surf. Coatings Technol. 2007, 201, 5574–5577. [Google Scholar] [CrossRef]
- Chen, M.; Gao, J. The Adhesion of Copper Films Coated on Silicon and Glass Substrates. Mod. Phys. Lett. B 2000, 14, 103–108. [Google Scholar] [CrossRef]
- Kim, M.; Sun, F.; Lee, J.; Hyun, Y.K.; Lee, D. Influence of Ultrasonication on the Mechanical Properties of Cu/Al2O3 Nanocomposite Thin Films during Electrocodeposition. Surf. Coatings Technol. 2010, 205, 2362–2368. [Google Scholar] [CrossRef]
- Yan, Y.-F.; Kou, S.-Q.; Yang, H.-Y.; Shu, S.-L.; Qiu, F.; Jiang, Q.-C.; Zhang, L.-C. Ceramic Particles Reinforced Copper Matrix Composites Manufactured by Advanced Powder Metallurgy: Preparation, Performance, and Mechanisms. Int. J. Extrem. Manuf. 2023, 5, 032006. [Google Scholar] [CrossRef]
- Thiemig, D.; Osborne, S.; Sweet, W.; Talbot, J. Electroplating of Copper-Alumina Nanocomposite Films with an Impinging Jet Electrode. ECS Trans. 2008, 11, 35–44. [Google Scholar] [CrossRef]
- Lamb, V.A.; Johnson, C.E.; Valentine, D.R. Physical and Mechanical Properties of Electrodeposited Copper. J. Electrochem. Soc. 1970, 117, 381C. [Google Scholar] [CrossRef]
- Tao, S.; Li, D.Y. Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition. Nanotechnology 2006, 17, 65–78. [Google Scholar] [CrossRef]
- Sasi Maoloud Mohamed, S.; Nikolić, N.D.; Vuksanović, M.M.; Vasilić, R.; Vasiljević-Radović, D.G.; Jančić Heinneman, R.M.; Marinković, A.D.; Mladenović, I.O. Hardness and Wettability Characteristics of Electrolytically Produced Copper Composite Coatings Reinforced with Layered Double Oxide (Fe/Al LDO) Nanoparticles. Coatings 2024, 14, 740. [Google Scholar] [CrossRef]
- Tey, E.; Hashim, M.; Ismail, I. Characterization of Cu-Al2O3 and Ni-Al2O3 Nanocomposites Electrodeposited on Copper Substrate. Mater. Sci. Forum 2016, 846, 471–478. [Google Scholar] [CrossRef]
- Magagnin, L.; Maboudian, R.; Carraro, C. Adhesion Evaluation of Immersion Plating Copper Films on Silicon by Microindentation Measurements. Thin Solid Films 2003, 434, 100–105. [Google Scholar] [CrossRef]
- Lesage, J.; Chicot, D. Models for Hardness and Adhesion of Coatings. Surf. Eng. 1999, 15, 447–453. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Tuan, W.H. Elastic Properties of Ceramic–Metal Particulate Composites. Mater. Sci. Eng. A 2005, 393, 133–139. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Wang, S.; Feng, L.; Liu, H.; Sun, T.; Zhang, X.; Jiang, L.; Zhu, D. Manipulation of Surface Wettability between Superhydrophobicity and Superhydrophilicity on Copper Films. ChemPhysChem 2005, 6, 1475–1478. [Google Scholar] [CrossRef]
- Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M. Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties. J. Manuf. Process. 2020, 59, 131–152. [Google Scholar] [CrossRef]
- Cardoso, J.T.; Garcia-Girón, A.; Romano, J.M.; Huerta-Murillo, D.; Jagdheesh, R.; Walker, M.; Dimov, S.S.; Ocaña, J.L. Influence of Ambient Conditions on the Evolution of Wettability Properties of an IR-, Ns-Laser Textured Aluminium Alloy. RSC Adv. 2017, 7, 39617–39627. [Google Scholar] [CrossRef]
- Argyris, D.; Ashby, P.D.; Striolo, A. Structure and Orientation of Interfacial Water Determine Atomic Force Microscopy Results: Insights from Molecular Dynamics Simulations. ACS Nano 2011, 5, 2215–2223. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jin, Y.; Gu, J.; Zeng, Z.; Su, X.; Xu, J.; Guo, B. Critical Surface Characteristics for Coating Adhesion and Friction Behavior of Aluminum Alloys after Laser Cleaning. J. Mater. Process. Technol. 2024, 332, 118549. [Google Scholar] [CrossRef]
- Tong, W.; Cui, L.; Qiu, R.; Yan, C.; Liu, Y.; Wang, N.; Xiong, D. Laser Textured Dimple-Patterns to Govern the Surface Wettability of Superhydrophobic Aluminum Plates. J. Mater. Sci. Technol. 2021, 89, 59–67. [Google Scholar] [CrossRef]
- Gun’ko, V.M.; Yurchenko, G.R.; Turov, V.V.; Goncharuk, E.V.; Zarko, V.I.; Zabuga, A.G.; Matkovsky, A.K.; Oranska, O.I.; Leboda, R.; Skubiszewska-Zięba, J.; et al. Adsorption of Polar and Nonpolar Compounds onto Complex Nanooxides with Silica, Alumina, and Titania. J. Colloid Interface Sci. 2010, 348, 546–558. [Google Scholar] [CrossRef]
Fractional Coordinates for O and Al | x | y | z |
---|---|---|---|
O | 0.68998 (38) | 0.00000 (0) | 0.25000 (0) |
Al | 0.00000 (0) | 0.00000 (0) | 0.35273 (10) |
Sample No. | Electrolyte | Experimental Thickness of Films, δ (µm) | Grain Size, Dmean (µm) |
---|---|---|---|
1. | ABSE | 2 | 0.752 |
2. | ABSE-Al-1% | 2 | 0.920 |
3. | ABSE | 22 | 1.123 |
4. | ABSE-Al-1% | 22 | 1.961 |
5. | ABSE | 52 | 2.534 |
6. | ABSE-Al-1% | 52 | 4.094 |
7. | ABSE-Al-3% | 22 | 4.159 |
8. | ABSE-Al-5% | 22 | 4.466 |
Sample No. | Electrolyte | c (wt.%) | Elements | ||
---|---|---|---|---|---|
Al | O | Cu | |||
2. | ABSE | 0 | 0 | 2.68 | 97.32 |
4. | ABSE-Al-1% | 1.0 | 0.35 | 0.68 | 98.97 |
7. | ABSE-Al-3% | 3.0 | 0.54 | 1.52 | 97.95 |
8. | ABSE-Al-5% | 5.0 | 1.01 | 3.19 | 95.80 |
Sample No. | Electrolyte | Experimental Thickness ofFilms, δ (µm) | Elements | ||
---|---|---|---|---|---|
Al | O | Cu | |||
2. | ABSE-Al-1% | 2 | 0.24 | 1.47 | 98.29 |
4. | ABSE-Al-1% | 22 | 0.35 | 0.68 | 98.97 |
7. | ABSE-Al-1% | 52 | 2.18 | 6.12 | 91.70 |
δ (µm) | 2 | 2 | 22 | 22 | 52 | 52 | 22 | 22 |
---|---|---|---|---|---|---|---|---|
Electrolyte | ABSE | ABSE-Al-1% | ABSE | ABSE-Al-1% | ABSE | ABSE-Al-1% | ABSE-Al-3% | ABSE-Al-5% |
Sa (nm) | 96.5 | 312.2 | 153.8 | 354.7 | 366.6 | 584.7 | 420.7 | 849.0 |
Sq (nm) | 126.7 | 387.1 | 195.8 | 436.7 | 452.4 | 695.8 | 519.6 | 1066.0 |
System Film/Substrate | c | Alumina Type | Method of Synthesis | Parameter of Synthesis | Method of Characterization | Hardness | Ref. |
---|---|---|---|---|---|---|---|
Cu/Cu | 0 | / | ED/DC | 11 A/dm2, 20 min. | HV | 81 | [30] |
Cu/Al2O3/Cu | 30 g/L | Commercial/287 nm | CED/DC | 11 A/dm2, 20 min. | HV | 247 | [30] |
Cu/Cu | 0 | / | ED/DC | 10 mA/cm2, 10 min. | HV | 85 | [35] |
Cu/Al2O3/Cu | 15.2 wt.% | Commercial/50 nm | CED/PC | 10 mA/cm2 | HV | 149 | [35] |
Cu/Al2O3/Cu | 17.2 wt.% | Commercial/50 nm | CED/PC | 10 mA/cm2 | HV | 150 | [35] |
Cu/Al2O3/Cu | 17.8 wt.% | Commercial/50 nm | CED/PC | 10 mA/cm2 | HV | 156 | [35] |
Cu/Si | 0 | / | ED/DC | 200 A/m2 | Nanoindentation/GPa | 1.29 ± 0.18 | [39] |
Cu/Al2O3/Si | 5 g/l | Commercial/50 nm | CED/DC | 200 A/m2 | Nanoindentation/GPa | 1.71 ± 0.14 | [39] |
Cu/Cu | 0 | / | ED/DC | 10 mA/cm2 | HV | 100.4 | [41] |
Cu/Cu | 0 | / | ED/DC | 75 mA/cm2 | HV | 138.2 | [41] |
Cu/Al2O3/Cu | 8.2 wt.% | 50 nm γ-Al2O3 | CED/DC | 10 mA/cm2 | HV | 182.9 | [41] |
Cu/Al2O3/Cu | 3.2 wt.% | 50 nm γ-Al2O3 | CED/DC | 75 mA/cm2 | HV | 241.7 | [41] |
Cu/Cu | 0 | / | ED/DC | 4 ± 0.1 A/dm2 | Rockwell | ≈65 | [45] |
Cu/Al2O3/Cu | 50 g/l | Commercial/50 nm | CED/DC | 4 ± 0.1 A/dm2 | Rockwell | ≈50 | [45] |
Cu/Al2O3 | 1.0 wt.% 3.0 wt.% 5.0 wt.% | Synthesis from sol–gel | CED/DC | 50 mA·cm−2 | HV | 101.9 217.0 150.1 | This work |
Concentration of Alumina, c/wt.% | Thickness, δ/μm | Slope (k) | Intercept (n) | b | R2 |
---|---|---|---|---|---|
0 | 2 | 2.74958 ± 0.47254 | −0.2128 ± 0.06956 | 1.4344 | 0.86793 |
1.0 | 2 | 2.6125 ± 0.29533 | −0.12388 ± 0.0425 | 1.7210 | 0.93920 |
0 | 22 | 0.20341 ± 0.01504 | 0.02246 ± 0.0183 | 25.872 | 0.94787 |
1.0 | 22 | 0.23341 ± 0.0388 | 0.13497 ± 0.0444 | 26.774 | 0.77871 |
0 | 52 | 0.0495 ± 0.00782 | 0.37686 ± 0.0197 | 130.56 | 0.78104 |
1.0 | 52 | 0.04716 ± 0.00644 | 0.50972 ± 0.0152 | 165.25 | 0.82692 |
3.0 | 22 | −0.48371 ± 0.0421 | 0.43142 ± 0.0532 | 15.330 | 0.98821 |
5.0 | 22 | −0.21415 ± 0.0537 | 0.38714 ± 0.0572 | 4.6713 | 0.84983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, S.S.M.; Vuksanović, M.M.; Vasiljević-Radović, D.G.; Janković Mandić, L.; Jančić Heinneman, R.M.; Marinković, A.D.; Mladenović, I.O. Sol–Gel Derived Alumina Particles for the Reinforcement of Copper Films on Brass Substrates. Gels 2024, 10, 648. https://doi.org/10.3390/gels10100648
Mohamed SSM, Vuksanović MM, Vasiljević-Radović DG, Janković Mandić L, Jančić Heinneman RM, Marinković AD, Mladenović IO. Sol–Gel Derived Alumina Particles for the Reinforcement of Copper Films on Brass Substrates. Gels. 2024; 10(10):648. https://doi.org/10.3390/gels10100648
Chicago/Turabian StyleMohamed, Samah Sasi Maoloud, Marija M. Vuksanović, Dana G. Vasiljević-Radović, Ljiljana Janković Mandić, Radmila M. Jančić Heinneman, Aleksandar D. Marinković, and Ivana O. Mladenović. 2024. "Sol–Gel Derived Alumina Particles for the Reinforcement of Copper Films on Brass Substrates" Gels 10, no. 10: 648. https://doi.org/10.3390/gels10100648