Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (661)

Search Parameters:
Keywords = cutting fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9694 KiB  
Article
Experimental Study of a Silica Sand Sensible Heat Storage System Enhanced by Fins
by Paniz Niksiar, Claire Rogillio, Hamid Torab and Saeed Tiari
Energies 2024, 17(21), 5402; https://doi.org/10.3390/en17215402 - 30 Oct 2024
Viewed by 225
Abstract
This study aims to assess the thermal performance of silica sand as a heat storage medium within a shell-and-tube sensible heat storage thermal energy system that operates using water as the heat transfer fluid. Two types of silica sand were analyzed, fine sand [...] Read more.
This study aims to assess the thermal performance of silica sand as a heat storage medium within a shell-and-tube sensible heat storage thermal energy system that operates using water as the heat transfer fluid. Two types of silica sand were analyzed, fine sand and coarse sand, to determine which was the best for heat transfer and storage. It was found that the fine sand, which had smaller particles compared to the coarse sand, enhanced the heat transfer in the system. The fine sand required 11.86 h to charge using the benchmark case and 17.58 h to discharge, whereas the coarse sand required 13.36 h to charge and 16.55 h to discharge. Methods of enhancement are also explored by comparing the system performance with the inclusion of four different configurations of copper fins to investigate against a benchmark case without fins in the system with fine sand. When equipped with four radial fins, the system demonstrated a significant enhancement, reducing charging and discharging times by 59.02% and 69.17%, respectively, compared to the baseline. Moreover, the system exhibited an even greater improvement with eight radial fins, cutting charging and discharging times by 63.74% and 78.5%, respectively, surpassing the improvements achieved with four radial fins. The ten annular fins decreased the charging time by 42.58% and the discharge by 62.4%, whereas the twenty annular fins decreased the charging by 56.24% and the discharging by 68.26% when compared to the baseline. Full article
(This article belongs to the Special Issue Highly Efficient Thermal Energy Storage (TES) Technologies)
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
In Vitro Evaluation of Root Surface Temperature Using Different Endodontic Filling Techniques
by Lea Külzer, Theresia Saban, Andreas Braun and Johannes-S. Wenzler
Appl. Sci. 2024, 14(21), 9830; https://doi.org/10.3390/app14219830 - 28 Oct 2024
Viewed by 408
Abstract
Depending on the obturation technique, the tooth and surrounding tissues may heat up during root canal filling, particularly with warm methods. This study aimed to analyze the temperature increase in the periradicular and -apical region during various warm obturation techniques with a present [...] Read more.
Depending on the obturation technique, the tooth and surrounding tissues may heat up during root canal filling, particularly with warm methods. This study aimed to analyze the temperature increase in the periradicular and -apical region during various warm obturation techniques with a present simulated periodontal blood flow. Seventy-five extracted human teeth were shortened to 11 mm (cut-grinder Primus diamond cutting device; Walter Messner GmbH, Oststeinbek, Germany) and prepared using the ProTaper Gold system (Dentsply Sirona Inc., Charlotte, NC, USA) ISO size 40/.06. Specimens were prepared to ensure stable fluid circulation in an artificially created periodontal space, and the procedure was recorded with a thermal infrared camera (VarioCAM HD; InfraTec GmbH Infrarotsensorik und Messtechnik, Dresden, Germany). The following obturation methods were applied: I, cold single-cone obturation (control group); II, gutta-percha-coated rigid carrier technique (GuttaFusion); III, squirting technique (injection technique); IV, continuous wave technique; and V, Schilder technique. Statistical analysis was performed using the Kruskal–Wallis test, followed by the Mann–Whitney pairwise test using the sequential Bonferroni procedure for significant differences (p < 0.05). The Schilder technique with 0 mL/min showed the lowest temperature change, with a median of 0.00 °C (max. 0.00 °C, min. 0.00 °C, IQR 0.00 °C). In contrast, the continuous wave technique at a circulation rate of 2.6 mL/min exhibited the highest temperature change, with a median of 3.76 °C (max. 5.33 °C, min. 2.42 °C, IQR 1.46 °C). Although warm obturation techniques can increase surface temperature, none of the methods produced changes that were potentially damaging to the periodontium or surrounding bone. Full article
(This article belongs to the Special Issue Research on Endodontic Treatment Methods and Materials)
Show Figures

Figure 1

32 pages, 3090 KiB  
Review
Nanofluid Minimum Quantity Lubrication (NMQL): Overview of Nanoparticle Toxicity and Safer-Design Guidelines
by José V. Abellán-Nebot, Oscar Andreu-Sánchez, Carlos Fito-López and Rosa Mondragón
Lubricants 2024, 12(10), 359; https://doi.org/10.3390/lubricants12100359 - 21 Oct 2024
Viewed by 459
Abstract
Minimum Quantity Lubrication (MQL) has received much attention from the research community as a potential lubricating system to reduce environmental hazards and health issues that can be commonly found in flood cooling/lubricating systems based on metalworking fluids. The addition of nanoparticles in MQL [...] Read more.
Minimum Quantity Lubrication (MQL) has received much attention from the research community as a potential lubricating system to reduce environmental hazards and health issues that can be commonly found in flood cooling/lubricating systems based on metalworking fluids. The addition of nanoparticles in MQL systems (NMQL) has led to improved machining performance, increasing the cooling capability and reducing friction and tool wear, and some researchers have proved the applicability of this type of system for difficult-to-cut materials. However, the mist generated by MQL systems due to both the MQL system itself and the machining operation may pose an additional hazard to operators which is being overlooked by the research community. These hazards become more severe when using nanoparticles, but unfortunately very few works have paid attention to nanoparticle toxicity as applied in MQL systems, and this issue should be clearly understood before encouraging its implementation in industry. Furthermore, current legislation does not help since regulation of permissible exposure limits when dealing with nanoparticles is still ongoing in most cases. In this work, the toxicity of nanoparticles applied in MQL systems is analyzed, and recent research on studies of nanoparticle toxicity both in vitro and in vivo is presented. A relative comparison of toxicity is provided for those nanoparticles that have been reported in the literature as potential additives for MQL. The review is focused on analyzing the main factors of toxicity of nanoparticles which are identified as size, shape, surface properties, agglomeration and solubility. This review presents guidelines for safer nanolubricant formulations, guiding practitioners towards proper NMQL implementations in industry. Furthermore, current occupational exposure limits and recommendations are provided for all the nanoparticles potentially used in MQL systems, which is of interest in terms of work safety. Full article
Show Figures

Figure 1

24 pages, 7663 KiB  
Article
Experimental Analysis of Shale Cuttings Migration in Horizontal Wells
by Qiang Fang, Mingyu Ma, Dong Xiao, Ming Wang and Xiaoqi Ning
Appl. Sci. 2024, 14(20), 9559; https://doi.org/10.3390/app14209559 - 19 Oct 2024
Viewed by 481
Abstract
The extraction of shale gas via horizontal drilling presents considerable challenges, primarily due to the accumulation of cuttings within the annular space, resulting in increased friction, torque, and potential drilling complications. To address this issue, the study proposes an experimental setup aimed at [...] Read more.
The extraction of shale gas via horizontal drilling presents considerable challenges, primarily due to the accumulation of cuttings within the annular space, resulting in increased friction, torque, and potential drilling complications. To address this issue, the study proposes an experimental setup aimed at simulating cuttings transport under various operational conditions, with a particular emphasis on gas wells. The methodology encompasses the modulation of the drilling fluid flow rate and the drill’s rotational speed to examine the transport velocity of cuttings. Furthermore, the study analyzes the impact of annular eccentricity on return volume, transport time, and cuttings bed height. Critical initiation velocities for cuttings across different motion modes were also determined, and theoretical calculations were compared with empirical data. The findings indicate that an increased flow rate of drilling fluid and higher rotation speed substantially improve the transport of cuttings, thereby minimizing bed formation, whereas increased eccentricity hinders this process. The results revealed that the theoretical model showed a greater overestimation of the start-up velocity for spherical particles, with average errors ranging from 15.50% to 17.56%. In contrast, the model exhibited better accuracy for non-spherical (flaky) particles, with errors between 8.63% and 9.61%. Under non-rotating conditions, the average error of the model was approximately 8.32%, while the introduction of drill tool rotation increased the average error to 11.94%. These results have the potential to optimize operational parameters in shale gas well drilling and may contribute to the development of specialized borehole purification tools. Full article
(This article belongs to the Special Issue Development and Production of Oil Reservoirs)
Show Figures

Figure 1

14 pages, 3948 KiB  
Article
Assessment of the Functional Properties of the Surfaces of Ductile Cast Iron Parts
by Daniel Grochała, Marcin Jasiewicz, Krzysztof Filipowicz, Arkadiusz Parus, Bartosz Powałka, Rafał Grzejda and Paweł Zmarzły
Appl. Sci. 2024, 14(19), 9129; https://doi.org/10.3390/app14199129 - 9 Oct 2024
Viewed by 513
Abstract
Modern technology allows ductile cast iron parts to be efficiently machined while ensuring a relatively long tool life. One of the basic indices describing the susceptibility of ductile cast irons to change in volume, shape, and dimensions under machining conditions is their machinability. [...] Read more.
Modern technology allows ductile cast iron parts to be efficiently machined while ensuring a relatively long tool life. One of the basic indices describing the susceptibility of ductile cast irons to change in volume, shape, and dimensions under machining conditions is their machinability. Machinability can be expressed directly in terms of the values of basic quantities such as periodic cutting speed and roughness. At the same time, machinability is a relative quantity evaluated alternatively. This means that the machinability of ductile cast iron can be good, allowing high cutting speeds to be achieved, but it can also be poor, expressed in terms of poor surface quality. In the experimental research carried out, an attempt was made to determine the limit values of the cutting speed, beyond which one should not exceed, in order to increase the efficiency of the machining process. The surface roughness, unlike the periodic cutting speed, is a quantity defined in the product design documentation, so its limits must be observed. In addition to the usual indices of surface geometric texture, the research analysed alternative indices for determining the condition of surface geometric texture and the influence of periodic cutting speed on their values. In the conclusions, valuable recommendations are given for designers and technologists on the purpose and functionality of product surfaces and how to define them. Methods of specifying tribological characteristics, hydrophobic or hydrophilic properties, as well as the ability to retain fluids and maintain protective coatings of ductile cast iron parts after machining are described, for which relative values, depending on the machining parameters used, can vary from about 10 to even 30%. Full article
Show Figures

Figure 1

17 pages, 6892 KiB  
Article
Effect of Spray Characteristic Parameters on Friction Coefficient of Ultra-High-Strength Steel against Cemented Carbide
by Bangfu Wu, Minxiu Zhang, Biao Zhao, Benkai Li and Wenfeng Ding
Materials 2024, 17(19), 4867; https://doi.org/10.3390/ma17194867 - 3 Oct 2024
Viewed by 577
Abstract
Ultra-high-strength steels have been considered an essential material for aviation components owing to their excellent mechanical properties and superior fatigue resistance. When machining these steels, severe tool wear frequently results in poor surface quality and low machining efficiency, which is intimately linked to [...] Read more.
Ultra-high-strength steels have been considered an essential material for aviation components owing to their excellent mechanical properties and superior fatigue resistance. When machining these steels, severe tool wear frequently results in poor surface quality and low machining efficiency, which is intimately linked to the friction behavior at the tool–workpiece interface. To enhance the service life of tools, the adoption of efficient cooling methods is paramount. However, the understanding of friction behavior at the tool–workpiece interface under varying cooling conditions remains limited. In this work, both air atomization of cutting fluid (AACF) and ultrasonic atomization of cutting fluid (UACF) were employed, and their spray characteristic parameters, including droplet size distribution, droplet number density, and droplet velocity, were evaluated under different air pressures. Discontinuous sliding tests were conducted on the ultra-high-strength steel against cemented carbide and the effect of spray characteristic parameters on the adhesion friction coefficient was studied. The results reveal that ultrasonic atomization significantly improved the uniformity of droplet size distribution. An increase in air pressure resulted in an increase in both droplet number density and droplet velocity under both AACF and UACF conditions. Furthermore, the thickness of the liquid film was strongly dependent on the spray characteristic parameters. Additionally, UACF exhibited a reduction of 4.7% to 9.8% in adhesion friction coefficient compared to AACF. UACF provided the appropriate combination of spray characteristic parameters, causing an increased thickness of the liquid film, which subsequently exerted a positive impact on reducing the adhesion friction coefficient. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing)
Show Figures

Graphical abstract

13 pages, 6681 KiB  
Article
Experimental Research on Pollution-Free Alcohol Cutting Fluid in Scratching of Single-Crystal Copper Material
by Xian Wu, Benchi Li, Ke Sun, Congfu Fang and Jianyun Shen
Lubricants 2024, 12(10), 333; https://doi.org/10.3390/lubricants12100333 - 28 Sep 2024
Viewed by 616
Abstract
Cutting fluid can improve the heat dissipation and lubrication in the cutting process and thus increase the machining quality. In this work, a pollution-free alcohol solution was proposed as the cutting fluid in an ultra-precision cutting process to explore green cutting fluids. The [...] Read more.
Cutting fluid can improve the heat dissipation and lubrication in the cutting process and thus increase the machining quality. In this work, a pollution-free alcohol solution was proposed as the cutting fluid in an ultra-precision cutting process to explore green cutting fluids. The scratching experiments were conducted with the alcohol cutting fluid to study its effect on the cutting process. It is found that the use of an alcohol cutting fluid, on average, reduces the tangential and normal force about 27–53%, but exhibits few effects on the friction coefficient in the cutting process. Compared to dry cutting, the alcohol cutting fluid reduces the exposed shear slip steps on the outside surface of the chip, which implies the decreased chip deformation degree of workpiece material in the cutting process. The alcohol cutting fluid can reduce microburrs and decrease the machined surface roughness Ra from 21 nm to 9.9 nm in the ultra-precision turning application on single-crystal copper material. Full article
Show Figures

Figure 1

10 pages, 859 KiB  
Article
The Ratio of Baseline Ventricle Volume to Total Brain Volume Predicts Postoperative Ventriculo-Peritoneal Shunt Dependency after Sporadic Vestibular Schwannoma Surgery
by Lisa Haddad, Franziska Glieme, Martin Vychopen, Felix Arlt, Alim Emre Basaran, Erdem Güresir and Johannes Wach
J. Clin. Med. 2024, 13(19), 5789; https://doi.org/10.3390/jcm13195789 - 28 Sep 2024
Viewed by 477
Abstract
Background/Objectives: Obstructive hydrocephalus associated with vestibular schwannoma (VS) is the most common in giant VS. Despite tumor removal, some patients may require ongoing ventriculo-peritoneal (VP) surgery. This investigation explores the factors contributing to the requirement for VP surgery following VS surgery in instances [...] Read more.
Background/Objectives: Obstructive hydrocephalus associated with vestibular schwannoma (VS) is the most common in giant VS. Despite tumor removal, some patients may require ongoing ventriculo-peritoneal (VP) surgery. This investigation explores the factors contributing to the requirement for VP surgery following VS surgery in instances of persistent hydrocephalus (HCP). Methods: Volumetric MRI analyses of pre- and postoperative tumor volumes, cerebellum, cerebrum, ventricle system, fourth ventricle, brainstem, and peritumoral edema were conducted using Brainlab Smartbrush and 3D Slicer. The total brain volume was defined as the sum of the cerebrum, cerebellum, and brainstem. ROC analyses were performed to identify the optimum cut-off values of the volumetric data. Results: Permanent cerebrospinal fluid (CSF) diversion after surgery was indicated in 12 patients (12/71; 16.9%). The ratio of baseline volume fraction of brain ventricles to total brain ventricle volume (VTB ratio) was found to predict postoperative VP shunt dependency. The AUC was 0.71 (95% CI: 0.51–0.91), and the optimum threshold value (</≥0.449) yielded a sensitivity and specificity of 67% and 81%, respectively. Multivariable logistic regression analyses of imaging data (pre- and postoperative VS volume, VTB ratio, and extent of resection (%) (EoR)) and patient-specific factors revealed that an increased VTB ratio (≥0.049, OR: 6.2, 95% CI: 1.0–38.0, p = 0.047) and an EoR < 96.4% (OR: 9.1, 95% CI: 1.2–69.3, p = 0.032) were independently associated with postoperative VP shunt dependency. Conclusions: Primary tumor removal remains the best treatment to reduce the risk of postoperative persistent hydrocephalus. However, patients with an increased preoperative VTB ratio are prone to needing postoperative VP shunt surgery and may benefit from perioperative EVD placement. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

19 pages, 6672 KiB  
Article
Experimental Investigation of the Effects of Coolant Temperature on Cutting Tool Wear in the Machining Process
by Osman Şahin, Durmuş Karayel, Mustafa Ali Ertürk, Ergün Nart and Ömer Seçgin
Machines 2024, 12(10), 677; https://doi.org/10.3390/machines12100677 - 27 Sep 2024
Viewed by 396
Abstract
In machining processes, the heat generated in the cutting zone varies depending on cutting parameters such as depth of cut, cutting speed and feed rate. On the other hand, in most existing machine tools, the flow rate of the coolant sent to the [...] Read more.
In machining processes, the heat generated in the cutting zone varies depending on cutting parameters such as depth of cut, cutting speed and feed rate. On the other hand, in most existing machine tools, the flow rate of the coolant sent to the cutting zone is constant, and there is no additional cooling system in the tank. Therefore, the temperature of the coolant circulating in the closed circuit in the system is constantly increasing, which negatively affects cutting performance. This study aims to investigate the effect of coolant temperature on tool wear in the machining process and to control the coolant temperature. For this purpose, a comprehensive coolant temperature control system was developed and integrated into the CNC machine tool. Thanks to this system, it was possible to automatically control the temperature of the cutting fluid (coolant) and maintain it within a constant temperature range throughout the cutting process. Thus, experiments were conducted at different temperatures with different cutting parameters and coolant emulsion ratios using the developed system. Since the cutting parameters interact with each other, the Taguchi method was used to observe the effect of each parameter and to determine the optimum cutting parameters. As a result, it was observed that tool wear was reduced, tool life was extended and unnecessary coolant use was prevented, especially at low temperatures. In addition, the amount of coolant used is expected to reduce negative environmental impacts. Full article
(This article belongs to the Special Issue Precision Manufacturing and Machine Tools)
Show Figures

Figure 1

18 pages, 4380 KiB  
Article
Application of Seagull Optimization Algorithm-BP Neural Network in Oil-Water Two-Phase Flow Pattern Forecasting
by Ao Li, Haimin Guo, Yongtuo Sun, Dudu Wang, Haoxun Liang and Yuqing Guo
Processes 2024, 12(9), 2012; https://doi.org/10.3390/pr12092012 - 19 Sep 2024
Viewed by 509
Abstract
With the ongoing increase in global energy demand, the significance of innovations in oil exploration and development technologies is rising, especially in relation to the development of unconventional reservoirs. The application of horizontal wells is becoming increasingly important in this particular situation. However, [...] Read more.
With the ongoing increase in global energy demand, the significance of innovations in oil exploration and development technologies is rising, especially in relation to the development of unconventional reservoirs. The application of horizontal wells is becoming increasingly important in this particular situation. However, accurately monitoring and analyzing fluids in horizontal wells remains challenging due to the complex and fluctuating flow patterns of oil-water two-phase flow within the wellbore. Several elements, including well slope angle, flow rate, and water content, are involved. This study aimed to explore and develop an effective method for forecasting flow patterns, improving the precision of the dynamic monitoring of oil-water two-phase flow in horizontal wells. By analyzing the flow patterns in different experimental conditions, a predictive model using the SOA-BP neural network was developed, providing a scientific basis for dynamic monitoring in actual production scenarios. Initially, the simulated experiment for oil-water two-phase flow was carried out at room temperature and pressure utilizing a multiphase flow simulator. An optically transparent wellbore, with a diameter comparable to that of a real downhole well, was utilized, and No. 10 industrial white oil and tap water were employed as the experimental fluids. The experiment considered multiple contributing factors, including different well deviation, total flow, and water cut. The flow characteristics of oil and water were observed via visual monitoring and high-definition video, followed by detailed analysis. After collecting the experimental data, flow regimes for various scenarios were classified based on the established theory of oil-water two-phase flow in horizontal wells; then, detailed flow distribution diagrams were drawn. These data and diagrams presented offer a visual representation of the behavioral patterns exhibited by oil-water two-phase flow under varying situations and form the basis for subsequent model training and testing. Subsequently, based on the experimental data, this study combined the Seagull Optimization Algorithm (SOA) with a BP neural network to effectively learn and predict the experimental data. The SOA optimized the weights and biases of the BP neural network, improving the model’s convergence speed and prediction accuracy. Through rigorous training and testing, an oil-water two-phase flow pattern forecasting model was established, effectively predicting flow patterns under different well deviation, total flow, and water cut conditions. Finally, to validate the efficiency of the established model, a total of 15 data points were chosen from a sample well for validation. By comparing the flow patterns predicted by the model with actual logging data, the results indicate that the model’s accuracy in identifying flow pattern was 86.67%. This demonstrates that the flow pattern prediction model based on the SOA-BP neural network achieved a high level of accuracy under different complicated working conditions. This model effectively fulfills the requirements for dynamic monitoring in actual production. This indicates that the SOA-BP neural network-based flow pattern forecasting method is highly valuable due to its practical application value and provides an efficient technical approach for the development of unconventional reservoirs and the dynamic monitoring of horizontal wells in the future. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

23 pages, 8179 KiB  
Article
Study on Extraordinarily High-Speed Cutting Mechanics and Its Application to Dry Cutting of Aluminum Alloys with Non-Coated Carbide Tools
by Jun Eto, Takehiro Hayasaka, Eiji Shamoto and Liangji Xu
J. Manuf. Mater. Process. 2024, 8(5), 198; https://doi.org/10.3390/jmmp8050198 - 13 Sep 2024
Viewed by 940
Abstract
The friction/adhesion between the tool and chip is generally large in metal cutting, and it causes many problems such as high cutting energy/rough surface finish. To suppress this, cutting fluid and tool coating are used in practice, but they are high in energy/cost [...] Read more.
The friction/adhesion between the tool and chip is generally large in metal cutting, and it causes many problems such as high cutting energy/rough surface finish. To suppress this, cutting fluid and tool coating are used in practice, but they are high in energy/cost and environmentally unfriendly. Therefore, this paper investigates the extraordinarily high-speed cutting (EHS cutting) mechanics of mainly soft and highly heat-conductive materials and proposes their application to solve the friction/adhesion problem in an environmentally friendly manner. In order to clarify the EHS cutting mechanics, a simple analytical model is constructed and experiments are conducted with measurement of the cutting temperature and forces. As a result, the following points are clarified/found: (1) heat softening at the secondary plastic deformation zone rather than the primary plastic deformation zone, (2) friction coefficient drop to 0.170 in EHS cutting, and (3) gradually increasing trend of cutting temperature in EHS cutting. Finally, EHS cutting is applied to dry cutting of aluminum alloys with a non-coated carbide tool and compared to conventional wet cutting with a DLC-coated carbide tool, and it is shown that a coating/coolant can be omitted in this region to achieve environmentally friendly cutting. Full article
Show Figures

Figure 1

4 pages, 2343 KiB  
Proceeding Paper
An Analysis of Green Manufacturing Environments for Challenging Materials
by Roopsandeep Bammidi, Pavan Kumar Rejeti, Sreeramulu Dowluru, Hymavathi Madivada, Venkatesh Muddada and Sathish Kumar Adapa
Eng. Proc. 2024, 66(1), 47; https://doi.org/10.3390/engproc2024066047 - 13 Sep 2024
Viewed by 356
Abstract
Industry wants materials of the highest competence that are strong and precise in their dimensions. Due to their strength even at high temperatures, these high-grade, high-strength materials are difficult to machine. The traditional methods of cooling and lubricating have been shown to be [...] Read more.
Industry wants materials of the highest competence that are strong and precise in their dimensions. Due to their strength even at high temperatures, these high-grade, high-strength materials are difficult to machine. The traditional methods of cooling and lubricating have been shown to be ineffective and are harming the environment and human health. Researchers have created green machining environments that can lower cutting pressures and temperatures while improving surface quality and tool life to solve this issue. An attempt has been made in this work to compile every alternate approach that may be used to manufacture materials that are challenging to cut, like titanium, toughened steels, and nickel super alloys. The results of diverse machining conditions will undoubtedly be shown in our assessment. The best green settings, according to current research, are nano fluid minimum quantity cutting fluid (NFMQL) and minimal quantity cutting fluid (MQL). Full article
Show Figures

Figure 1

24 pages, 5293 KiB  
Article
Computational Fluid Dynamics Study on Bottom-Hole Multiphase Flow Fields Formed by Polycrystalline Diamond Compact Drill Bits in Foam Drilling
by Lihong Wei and Jaime Honra
Fluids 2024, 9(9), 211; https://doi.org/10.3390/fluids9090211 - 10 Sep 2024
Viewed by 533
Abstract
High-temperature geothermal wells frequently employ foam drilling fluids and Polycrystalline Diamond Compact (PDC) drill bits. Understanding the bottom-hole flow field of PDC drill bits in foam drilling is essential for accurately analyzing their hydraulic structure design. Based on computational fluid dynamics (CFD) and [...] Read more.
High-temperature geothermal wells frequently employ foam drilling fluids and Polycrystalline Diamond Compact (PDC) drill bits. Understanding the bottom-hole flow field of PDC drill bits in foam drilling is essential for accurately analyzing their hydraulic structure design. Based on computational fluid dynamics (CFD) and multiphase flow theory, this paper establishes a numerical simulation technique for gas-liquid-solid multiphase flow in foam drilling with PDC drill bits, combined with a qualitative and quantitative hydraulic structure evaluation method. This method is applied to simulate the bottom-hole flow field of a six-blade PDC drill bit. The results show that the flow velocity of the air phase in foam drilling fluid is generally higher than that of the water phase. Some blades’ cutting teeth exhibit poor cleaning and cooling effects, with individual cutting teeth showing signs of erosion damage and cuttings cross-flow between channels. To address these issues, optimizing the nozzle spray angle and channel design is necessary to improve hydraulic energy distribution, enhance drilling efficiency, and extend drill bit life. This study provides new ideas and methods for developing geothermal drilling technology in the numerical simulation of a gas-liquid-solid three-phase flow field. Additionally, the combined qualitative and quantitative evaluation method offers new insights and approaches for research and practice in drilling engineering. Full article
(This article belongs to the Special Issue Multiphase Flow and Granular Mechanics)
Show Figures

Figure 1

19 pages, 19626 KiB  
Article
The Fluid Evolution in the Skarn Stages of the Baoshan Skarn Cu-Polymetallic Deposit, South China
by Ping Zheng, Ke Chen, Jun-Ke Zhang, Zhong-Fa Liu, Yong-Shun Li and Ming-Peng He
Minerals 2024, 14(9), 907; https://doi.org/10.3390/min14090907 - 5 Sep 2024
Viewed by 514
Abstract
Baoshan is a world-class skarn Cu-polymetallic deposit located at the junction of the Nanling and Qin-Hang metallogenic belts in China. While there has been extensive research on the mineralogy and geochemistry of skarn deposits, studies on the fluid characteristics and evolutionary history from [...] Read more.
Baoshan is a world-class skarn Cu-polymetallic deposit located at the junction of the Nanling and Qin-Hang metallogenic belts in China. While there has been extensive research on the mineralogy and geochemistry of skarn deposits, studies on the fluid characteristics and evolutionary history from the early to late skarn stages in such deposits are still limited. In this study, we analyzed garnet and pyroxene from the early skarn stage and scheelite from the late skarn stage of the Baoshan deposit. We distinguished two generations of garnet (Grt1 and Grt2), one generation of pyroxene, and three generations of scheelite (Sch I, Sch II, and Sch III) on the basis of mineral assemblages and microscopic characteristics. Grt1 appears coarse-grained, and Grt2 cuts through Grt1 as veinlets. In Grt1, the andradite end-member increases from the core to the rim, while the grossular portion decreases (Ad35–36Gr59–61Sp3–4 to Ad59–61Gr36–37Sp2–3), and in Grt2, the andradite end-member significantly increases (Ad41–73Gr25–55Sp2–3). Grt1 and Grt2 have similar trace element compositions, with enrichment in Zr and depletion in Nb and Hf, depletion in LREE, enrichment in HREE, and weak negative Eu anomalies. Pyroxene coexists with Grt1 and is similarly cut by Grt2, with its composition mainly being diopside (Di82–99Hd0.6–15Jo0–3.2). Sch I and Sch II appear as anhedral to subhedral grains, while Sch III is predominantly found in veinlets. In Sch I and Sch II, most REEs enter the scheelite lattice via the Na-REE coupled substitution mechanism, with a smaller portion substituting Ca vacancies. In Sch III, the substitution mechanism involving Ca site vacancies may dominate. During the early skarn stage, the oxygen fugacity of the fluid gradually decreased from Grt1 and pyroxene to Grt2. In the late skarn stage, fluid oxygen fugacity remains stable from Sch I and Sch II to Sch III in shallow parts but significantly decreases in deeper parts. The garnet and pyroxene from the Baoshan deposit align with typical skarn Cu deposit compositions, while scheelite in the late skarn stage shows Sch I, Sch II, and shallow Sch III as skarn-type and deep Sch III as vein-type scheelite. Early skarn stage fluids were weakly acidic. Sch I, Sch II, and Sch III originated from fluids related to the Baoshan granite porphyry, with Sch III also showing evidence of water–rock interaction. This study reconstructed the fluid evolution history from the early to late skarn stages at the Baoshan deposit, providing insights into the ore-forming processes of other skarn deposits. Full article
Show Figures

Figure 1

11 pages, 2465 KiB  
Article
Comparison of Class II Bulk-Fill, Self-Adhesive Composites, Alkasite, and High-Viscosity Glass Ionomer Restorations in Terms of Marginal and Internal Adaptation
by Agnès Sahli, Laurent Daeniker, Isaline Rossier, Luciana Caseiro, Enrico di Bella, Ivo Krejci and Tissiana Bortolotto
Materials 2024, 17(17), 4373; https://doi.org/10.3390/ma17174373 - 4 Sep 2024
Viewed by 615
Abstract
(1) Background: Restoring decayed teeth in young patients can be challenging. This calls for a simplification of the protocols through new biomaterials. Therefore, the aim of this study was to compare the marginal adaptation delivered by restorative materials applied on class II cavities [...] Read more.
(1) Background: Restoring decayed teeth in young patients can be challenging. This calls for a simplification of the protocols through new biomaterials. Therefore, the aim of this study was to compare the marginal adaptation delivered by restorative materials applied on class II cavities by using a simplified protocol, before and after fatigue test, followed by the assessment of the internal adaptation. (2) Methods: Forty-eight human teeth were divided into six groups (n = 8). Dentinal fluid simulation was performed before restoring the class II cavities: Gr 1—adhesive (Clearfil Universal Bond Quick) and nanohybrid flowable composite (Clearfil Majesty ES Super Low Flow), Gr 2—adhesive (Clearfil Universal Bond Quick) and nanohybrid composite (Clearfil Majesty ES standard), Gr 3—bulk fill self-adhesive composite (Surefil One), Gr 4—bioactive powder-liquid filling material (Cention Forte), Gr 5—universal adhesive (Adhese Universal) and nanohybrid composite resin (Tetric Powerfill); and control group (CT)—high-viscosity glass ionomer (Equia Forte). Marginal adaptation was observed with scanning electron microscopy (SEM) and compared before and after a fatigue test consisting of repeated thermal and mechanical cycles. The specimens were then cut mesio-distally, and internal adaptation was undertaken using SEM again. Repeated measures and one way ANOVA followed by a Fisher’s LSD test and Fisher’s LSD post hoc test were used in order to compare the statistically significant differences among groups. (3) Results: As for the marginal adaptation after loading, Cention Forte (58%) and Equia Forte HT (53%) were statistically equivalent and presented the highest results, followed by Clearfil Majesty ES Standard (32%) and Tetric Powerfill (27%), with Surefil One (8%) and Clearfil Majesty ES Flow Super Low (7%) showing the worst results. In terms of internal adaptation, Cention Forte (85%) and Clearfil Majesty ES Standard (74%) had the highest percentages of continuous margins. Tetric powerfill (56%) and Equia Forte HT (44%) showed statistically significantly lower results, followed by Clearfil Majesty ES Flow Super Low (33%) and eventually Surefil One (17%). (4) Conclusions: This in vitro study showed promising results for the marginal and internal adaptation of alkasite dual cured Cention Forte in the restoration of class II cavities. This material could be considered an interesting restorative alternative for the restoration of deciduous teeth. Full article
Show Figures

Figure 1

Back to TopTop