Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (242)

Search Parameters:
Keywords = range doppler algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 5645 KiB  
Article
High-Resolution Sea Surface Target Detection Using Bi-Frequency High-Frequency Surface Wave Radar
by Dragan Golubović, Miljko Erić, Nenad Vukmirović and Vladimir Orlić
Remote Sens. 2024, 16(18), 3476; https://doi.org/10.3390/rs16183476 - 19 Sep 2024
Viewed by 645
Abstract
The monitoring of the sea surface, whether it is the state of the sea or the position of targets (ships), is an up-to-date research topic. In order to determine localization parameters of ships, we propose a high-resolution algorithm for primary signal processing in [...] Read more.
The monitoring of the sea surface, whether it is the state of the sea or the position of targets (ships), is an up-to-date research topic. In order to determine localization parameters of ships, we propose a high-resolution algorithm for primary signal processing in high-frequency surface wave radar (HFSWR) which operates at two frequencies. The proposed algorithm is based on a high-resolution estimate of the range–Doppler (RD-HR) map formed at every antenna in the receive antenna array, which is an essential task, because the performance of the entire radar system depends on its estimation. We also propose a new focusing method allowing us to have only one RD-HR map in the detection process, which collects the information from both these carrier frequencies. The goal of the bi-frequency mode of operation is to improve the detectability of targets, because their signals are affected by different Bragg-line interference patterns at different frequencies, as seen on the RD-HR maps during the primary signal processing. Also, the effect of the sea (sea clutter) manifests itself in different ways at different frequencies. Some targets are masked (undetectable) at one frequency, but they become visible at another frequency. By exploiting this, we increase the probability of detection. The bi-frequency architecture (system model) for the localization of sea targets and the novel signal model are presented in this paper. The advantage of bi-frequency mode served as a motivation for testing the detectability of small boats, which is otherwise a very challenging task, primarily because such targets have a small radar reflective surface, they move quickly, and often change their direction. Based on experimentally obtained results, it can be observed that the probability of detection of small boats can also be significantly improved by using a bi-frequency architecture. Full article
Show Figures

Figure 1

19 pages, 9732 KiB  
Article
Improved Methods for Retrieval of Chlorophyll Fluorescence from Satellite Observation in the Far-Red Band Using Singular Value Decomposition Algorithm
by Kewei Zhu, Mingmin Zou, Shuli Sheng, Xuwen Wang, Tianqi Liu, Yongping Cheng and Hui Wang
Remote Sens. 2024, 16(18), 3441; https://doi.org/10.3390/rs16183441 - 17 Sep 2024
Viewed by 547
Abstract
Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected [...] Read more.
Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected by chlorophyll absorption, making it suitable for SIF intensity retrieval. In this study, we propose a retrieval window for far-red SIF, significantly enhancing the sensitivity of data-driven methods to SIF signals near 757 nm. This window introduces a weak O2 absorption band based on the FLs window, allowing for better separation of SIF signals from satellite spectra by altering the shape of specific singular vectors. Additionally, a frequency shift correction algorithm based on standard non-shifted reference spectra is proposed to discuss and eliminate the influence of the Doppler effect. SIF intensity retrieval was achieved using data from the GOSAT satellite, and the retrieved SIF was validated using GPP, enhanced vegetation index (EVI) from the MODIS platform, and published GOSAT SIF products. The validation results indicate that the SIF products provided in this study exhibit higher fitting goodness with GPP and EVI at high spatiotemporal resolutions, with improvements ranging from 55% to 129%. At low spatiotemporal resolutions, the SIF product provided in this study shows higher consistency with EVI and GPP spatially. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

24 pages, 11255 KiB  
Article
On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines
by Yulong Guo, Cailan Gong, Yong Hu, Fuqiang Zheng and Yunmeng Liu
Remote Sens. 2024, 16(18), 3367; https://doi.org/10.3390/rs16183367 - 10 Sep 2024
Viewed by 429
Abstract
Accurate on-orbit wavelength calibration of the spaceborne hyperspectral payload is the key to the quantitative analysis and application of observational data. Due to the high spectral resolution of general spaceborne hyperspectral greenhouse gas (GHG) detection instruments, the common Fraunhofer lines in the solar [...] Read more.
Accurate on-orbit wavelength calibration of the spaceborne hyperspectral payload is the key to the quantitative analysis and application of observational data. Due to the high spectral resolution of general spaceborne hyperspectral greenhouse gas (GHG) detection instruments, the common Fraunhofer lines in the solar atmosphere can be used as a reference for on-orbit wavelength calibration. Based on the performances of a GHG detection instrument under development, this study simulated the instrument’s solar-viewing measurement spectra and analyzed the main sources of errors in the on-orbit wavelength calibration method of the instrument using the solar Fraunhofer lines, including the Doppler shift correction error, the instrumental measurement error, and the peak-seek algorithm error. The calibration accuracy was independently calculated for 65 Fraunhofer lines within the spectral range of the instrument. The results show that the wavelength calibration accuracy is mainly affected by the asymmetry of the Fraunhofer lines and the random error associated with instrument measurement, and it can cause calibration errors of more than 1/10 of the spectral resolution at maximum. A total of 49 Fraunhofer lines that meet the requirements for calibration accuracy were screened based on the design parameters of the instrument. Due to the uncertainty of simulation, the results in this study have inherent limitations, but provide valuable insights for quantitatively analyzing the errors of the on-orbit wavelength calibration method using the Fraunhofer lines, evaluating the influence of instrumental parameters on the calibration accuracy, and enhancing the accuracy of on-orbit wavelength calibration for similar GHG detection payloads. Full article
Show Figures

Graphical abstract

22 pages, 8264 KiB  
Article
Ray-Tracing-Assisted SAR Image Simulation under Range Doppler Imaging Geometry
by Junjie Li, Gaohao Zhu, Chen Hou, Wenya Zhang, Kang Du, Chuanxiang Cheng and Ke Wu
Electronics 2024, 13(18), 3591; https://doi.org/10.3390/electronics13183591 - 10 Sep 2024
Viewed by 304
Abstract
In order to achieve an effective balance between SAR image simulation fidelity and efficiency, we proposed a ray-tracing-assisted SAR image simulation method under range doppler (RD) imaging geometry. This method utilizes the spatial traversal mode of RD imaging geometry to transmit discrete electromagnetic [...] Read more.
In order to achieve an effective balance between SAR image simulation fidelity and efficiency, we proposed a ray-tracing-assisted SAR image simulation method under range doppler (RD) imaging geometry. This method utilizes the spatial traversal mode of RD imaging geometry to transmit discrete electromagnetic (EM) waves into the SAR radiation area and follows the Nyquist sampling law to set the density of transmitted EM waves to effectively identify the beam radiation area. The ray-tracing algorithm is used to obtain the backscatter amplitude and real-time slant range of the transmitted EM wave, which can effectively record the multiple backscattering among the components of the distributed target so that the backscattering subfields of each component can be correlated. According to the RD condition equation, the backscattering amplitude is assigned to the corresponding range gate, and the three-dimensional (3D) target is mapped into the two-dimensional (2D) SAR slant-range coordinate system, and the SAR target simulated image is directly obtained. Finally, the simulation images of the proposed method are compared qualitatively and quantitatively with those obtained by commercial simulation software, and the effectiveness of the proposed method is verified. Full article
(This article belongs to the Special Issue SAR Image and Signal Processing)
Show Figures

Figure 1

26 pages, 15162 KiB  
Article
Research on SAR Active Anti-Jamming Imaging Based on Joint Random Agility of Inter-Pulse Multi-Parameters in the Presence of Active Deception
by Shilong Chen, Lin Liu, Xiaobei Wang, Luhao Wang and Guanglei Yang
Remote Sens. 2024, 16(17), 3303; https://doi.org/10.3390/rs16173303 - 5 Sep 2024
Viewed by 521
Abstract
Synthetic aperture radar (SAR) inter-pulse parameter agility technology involves dynamically adjusting parameters such as the pulse width, chirp rate, carrier frequency, and pulse repetition interval within a certain range; this effectively increases the complexity and uncertainty of radar waveforms, thereby countering active deceptive [...] Read more.
Synthetic aperture radar (SAR) inter-pulse parameter agility technology involves dynamically adjusting parameters such as the pulse width, chirp rate, carrier frequency, and pulse repetition interval within a certain range; this effectively increases the complexity and uncertainty of radar waveforms, thereby countering active deceptive interference signals from multiple dimensions. With the development of active deceptive interference technology, single-parameter agility can no longer meet the requirements, making multi-parameter joint agility one of the main research directions. However, inter-pulse carrier frequency agility can cause azimuth Doppler chirp rate variation, making azimuth compression difficult and compensation computationally intensive, thus hindering imaging. Additionally, pulse repetition interval (PRI) agility leads to non-uniform azimuth sampling, severely deteriorating image quality. To address these issues, this paper proposes a multi-parameter agile SAR imaging scheme based on traditional frequency domain imaging algorithms. This scheme can handle joint agility of pulse width, chirp rate polarity, carrier frequency, and PRI, with relatively low computational complexity, making it feasible for engineering implementation. By inverting SAR images, the echoes with multi-parameter joint agility are obtained, and active deceptive interference signals are added for processing. The interference-suppressed imaging results verify the effectiveness of the proposed method. Furthermore, simulation results of point targets with multiple parameters under the proposed processing algorithm show that the peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) are improved by 12 dB and 10 dB, respectively, compared to the traditional fixed waveform scheme. Full article
Show Figures

Graphical abstract

17 pages, 9836 KiB  
Article
An Algorithm to Retrieve Range Ocean Current Speed under Tropical Cyclone Conditions from Sentinel-1 Synthetic Aperture Radar Measurements Based on XGBoost
by Yuhang Zhou, Weizeng Shao, Ferdinando Nunziata, Weili Wang and Cheng Li
Remote Sens. 2024, 16(17), 3271; https://doi.org/10.3390/rs16173271 - 3 Sep 2024
Viewed by 388
Abstract
In this study, a novel algorithm to retrieve the current speed along the range direction under extreme sea states is developed from C-band synthetic aperture radar imagery. To this aim, a Sentinel-1 (S-1) dual-polarized synthetic aperture radar (SAR) dataset consisting of 2300 images [...] Read more.
In this study, a novel algorithm to retrieve the current speed along the range direction under extreme sea states is developed from C-band synthetic aperture radar imagery. To this aim, a Sentinel-1 (S-1) dual-polarized synthetic aperture radar (SAR) dataset consisting of 2300 images is collected during 200 tropical cyclones (TCs). The dataset is complemented with collocated wave simulations from the Wavewatch-III (WW3) model and reanalysis currents from the HYbrid Coordinate Ocean Model (HYCOM). The corresponding TC winds are officially released by IFRMER, while the Stokes drift following the wave propagation direction is estimated from the waves simulated by WW3. In this study, first the dependence of wind, Stokes drift, and range current on the Doppler centroid anomaly is investigated, and then the extreme gradient boosting (XGBoost) machine learning model is trained on 87% of the S-1 dataset for range current retrieval purposes. The rest of the dataset is used for testing the retrieval algorithm, showing a root mean square error (RMSE) and a correlation coefficient (r) of 0.11 m/s and 0.97, respectively, with the HYCOM outputs. A validation against measurements collected from two high-frequency (HF) phased-array radars is also performed, resulting in an RMSE and r of 0.12 m/s and 0.75, respectively. Those validation results are better than the 0.22 m/s RMSE and 0.28 r achieved by the empirical CDOP model. Hence, the experimental results confirm the soundness of the XGBoost, exhibiting a certain improvement over the empirical model. Full article
(This article belongs to the Special Issue SAR Monitoring of Marine and Coastal Environments)
Show Figures

Figure 1

18 pages, 9719 KiB  
Article
Detection and Retrieval of Supercooled Water in Stratocumulus Clouds over Northeastern China Using Millimeter-Wave Radar and Microwave Radiometer
by Hao Hu, Yan Yin, Jing Yang, Xinghua Bao, Bo Zhang and Wei Gao
Remote Sens. 2024, 16(17), 3232; https://doi.org/10.3390/rs16173232 - 31 Aug 2024
Viewed by 442
Abstract
Supercooled water in mixed-phase clouds plays a significant role in precipitation formation, atmospheric radiation, weather modification, and aircraft flight safety. Identifying supercooled water in mixed-phase clouds is a crucial-frontier scientific issue in atmospheric detection research. In this study, we propose a new algorithm [...] Read more.
Supercooled water in mixed-phase clouds plays a significant role in precipitation formation, atmospheric radiation, weather modification, and aircraft flight safety. Identifying supercooled water in mixed-phase clouds is a crucial-frontier scientific issue in atmospheric detection research. In this study, we propose a new algorithm for identifying supercooled water based on the multi-spectral peak characteristics in cloud radar power spectra, combined with radar reflectivity factor and mean Doppler velocity. Using microwave radiometer data, we conducted retrieval analyses on two stratocumulus cases in the spring over the northeastern Daxing’anling region, China. The retrieval results show that the supercooled water in the spring stratocumulus clouds over the region is widespread, with liquid water content (LWC) ranging around 0.1 ± 0.05 g/m3, and particle sizes not exceeding 10 μm. The influence of updrafts on supercooled water is evident, with both showing good consistency in spatiotemporal variation trends. Comparing the liquid water path (LWP) variations retrieved from cloud radar and microwave radiometer, both showed good consistency in variation trends and high LWC areas, indicating the reliability of the identification algorithm developed in this study. Full article
Show Figures

Figure 1

17 pages, 7115 KiB  
Article
Moving Real-Target Imaging of a Beam-Broaden ISAL Based on Orthogonal Polarization Receiver and Along-Track Interferometry
by Jinghan Gao, Daojing Li, Jiang Wu, Anjing Cui and Shumei Wu
Remote Sens. 2024, 16(17), 3201; https://doi.org/10.3390/rs16173201 - 29 Aug 2024
Viewed by 353
Abstract
In response to the application requirement of wide-range high-resolution imaging of non-cooperative moving real targets by inverse synthetic-aperture ladar (ISAL), experiments were conducted on the depolarization effect of target materials, and the polarization selection of ISAL receiving and transmitting channels was discussed. Considering [...] Read more.
In response to the application requirement of wide-range high-resolution imaging of non-cooperative moving real targets by inverse synthetic-aperture ladar (ISAL), experiments were conducted on the depolarization effect of target materials, and the polarization selection of ISAL receiving and transmitting channels was discussed. Considering the impact of target depolarization and the demand for along-track interferometry, combined with beam-broaden and high-gain amplifiers, an ISAL system design method that can stably image multiple non-cooperative real targets has been proposed. Under the condition of broadening the transmitting and receiving beams to 3° in the elevation direction for non-cooperative moving vehicles, echo data with a duration of 1 s is obtained. The spatial correlation algorithm combined with along-track interferometry is used to estimate the vibration phase error. The sub-aperture Range-Doppler algorithm is used for imaging. The ISAL imaging results of the moving vehicle validated the high-resolution imaging ability of ISAL and its potential for stable imaging of non-cooperative moving real targets. Full article
Show Figures

Graphical abstract

16 pages, 1464 KiB  
Article
SARDIMM: High-Speed Near-Memory Processing Architecture for Synthetic Aperture Radar Imaging
by Haechan Kim, Jinmoo Heo, Seongjoo Lee and Yunho Jung
Appl. Sci. 2024, 14(17), 7601; https://doi.org/10.3390/app14177601 - 28 Aug 2024
Viewed by 415
Abstract
The range-Doppler algorithm (RDA), a key technique for generating synthetic aperture radar (SAR) images, offers high-resolution images but requires significant memory resources and involves complex signal processing. Moreover, the multitude of fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) operations in [...] Read more.
The range-Doppler algorithm (RDA), a key technique for generating synthetic aperture radar (SAR) images, offers high-resolution images but requires significant memory resources and involves complex signal processing. Moreover, the multitude of fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) operations in RDA necessitates high bandwidth and lacks data reuse, leading to bottlenecks. This paper introduces a synthetic aperture radar dual in-line memory module (SARDIMM), which executes RDA operations near memory via near-memory processing (NMP), thereby effectively reducing memory accesses, execution time, and energy consumption. The embedded NMP module in SARDIMM optionally supports a combination of FFT, IFFT, and matched filter operations of the RDA for range and azimuth compression. The operator within the NMP module accelerates the FFT by performing two radix-2 single butterfly operations in parallel. The NMP module was implemented and validated on a Xilinx UltraScale+ field-programmable gate array (FPGA) using Verilog-HDL. The acceleration performance of RDA for images of various sizes was evaluated through a simulator modified with gem5 and DRAMSim3 and achieved a 6.34–6.93× speedup and 41.9–48.2% energy savings. Full article
Show Figures

Figure 1

24 pages, 3759 KiB  
Article
Artificial Intelligence-Empowered Doppler Weather Profile for Low-Earth-Orbit Satellites
by Ekta Sharma, Ravinesh C. Deo, Christopher P. Davey and Brad D. Carter
Sensors 2024, 24(16), 5271; https://doi.org/10.3390/s24165271 - 14 Aug 2024
Viewed by 659
Abstract
Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehensively examines the operational efficiency of [...] Read more.
Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehensively examines the operational efficiency of LEO satellites concerning the Doppler weather effect, with state-of-the-art artificial intelligence techniques. Two LEO satellite constellations—Globalstar and the International Space Station (ISS)—were detected and tracked using ground radars in Perth and Brisbane, Australia, for 24 h starting 1 January 2024. The study involves modelling the constellation, calculating latency, and frequency offset and designing a hybrid Iterative Input Selection–Long Short-Term Memory Network (IIS-LSTM) integrated model to predict the Doppler weather profile for LEO satellites. The IIS algorithm selects relevant input variables for the model, while the LSTM algorithm learns and predicts patterns. This model is compared with Convolutional Neural Network and Extreme Gradient Boosting (XGBoost) models. The results show that the packet delivery rate is above 91% for the sensitive spread factor 12 with a bandwidth of 11.5 MHz for Globalstar and 145.8 MHz for ISS NAUKA. The carrier frequency for ISS orbiting at 402.3 km is 631 MHz and 500 MHz for Globalstar at 1414 km altitude, aiding in combating packet losses. The ISS-LSTM model achieved an accuracy of 97.51% and a loss of 1.17% with signal-to-noise ratios (SNRs) ranging from 0–30 dB. The XGB model has the fastest testing time, attaining ≈0.0997 s for higher SNRs and an accuracy of 87%. However, in lower SNR, it proves to be computationally expensive. IIS-LSTM attains a better computation time for lower SNRs at ≈0.4651 s, followed by XGB at ≈0.5990 and CNN at ≈0.6120 s. The study calls for further research on LoRa Doppler analysis, considering atmospheric attenuation, and relevant space parameters for future work. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 3295 KiB  
Article
Realizing Small UAV Targets Recognition via Multi-Dimensional Feature Fusion of High-Resolution Radar
by Wen Jiang, Zhen Liu, Yanping Wang, Yun Lin, Yang Li and Fukun Bi
Remote Sens. 2024, 16(15), 2710; https://doi.org/10.3390/rs16152710 - 24 Jul 2024
Viewed by 636
Abstract
For modern radar systems, small unmanned aerial vehicles (UAVs) belong to a typical types of targets with ‘low, slow, and small’ characteristics. In complex combat environments, the functional requirements of radar systems are not only limited to achieving stable detection and tracking performance [...] Read more.
For modern radar systems, small unmanned aerial vehicles (UAVs) belong to a typical types of targets with ‘low, slow, and small’ characteristics. In complex combat environments, the functional requirements of radar systems are not only limited to achieving stable detection and tracking performance but also to effectively complete the recognition of small UAV targets. In this paper, a multi-dimensional feature fusion framework for small UAV target recognition utilizing a small-sized and low-cost high-resolution radar is proposed, which can fully extract and combine the geometric structure features and the micro-motion features of small UAV targets. For the performance analysis, the echo data of different small UAV targets was measured and collected with a millimeter-wave radar, and the dataset consists of high-resolution range profiles (HRRP) and micro-Doppler time–frequency spectrograms was constructed for training and testing. The effectiveness of the proposed method was demonstrated by a series of comparison experiments, and the overall accuracy of the proposed method can reach 98.5%, which demonstrates that the proposed multi-dimensional feature fusion method can achieve better recognition performance than that of classical algorithms and higher robustness than that of single features for small UAV targets. Full article
Show Figures

Graphical abstract

12 pages, 654 KiB  
Article
5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite
by Tong Zhang, Xin Zhang, Xiangyuan Wang and Qiang Yang
Electronics 2024, 13(14), 2874; https://doi.org/10.3390/electronics13142874 - 22 Jul 2024
Viewed by 514
Abstract
With the development of 5th-Generation Mobile Communication (5G) technology and the deployment of low-Earth orbit satellites, using satellites to locate 5G radiation sources is of great significance in commerce and the military as an important task of integrated sensing and communication. Recently, passive [...] Read more.
With the development of 5th-Generation Mobile Communication (5G) technology and the deployment of low-Earth orbit satellites, using satellites to locate 5G radiation sources is of great significance in commerce and the military as an important task of integrated sensing and communication. Recently, passive virtual aperture technology has been introduced into passive location to improve accuracy, but the existing method, using matched filters to search the Doppler information to realize the location, has the disadvantages of high complexity and poor range resolution. In this paper, an improved 5G radiation source location based on a virtual aperture is proposed, which uses the improved Golden Section search-fractional Fourier algorithm (GSS-FRFT) to improve the existing passive virtual aperture location methods. First, the received signals are coherently accumulated to convert the time gain into spatial gain, and the subcarrier phase information is extracted by Fast Fourier Transform based on the 5G signal characteristics to obtain the azimuth signal. Then, an improved high-order GSS-FRFT algorithm is proposed to analyze the Doppler information, and signal focusing and satellite ephemeris data are used to estimate the effective velocity and solve the radiation source location. The simulation results show that the proposed method can improve the location accuracy compared with other single-satellite location methods and has high resolution, high accuracy and low complexity compared with the existing passive virtual aperture location method. Full article
(This article belongs to the Special Issue Satellite-Terrestrial Integrated Internet of Things)
Show Figures

Figure 1

34 pages, 756 KiB  
Article
Dynamic Programming-Based Track-before-Detect Algorithm for Weak Maneuvering Targets in Range–Doppler Plane
by Xinghui Wu, Jieru Ding, Zhiyi Wang and Min Wang
Remote Sens. 2024, 16(14), 2639; https://doi.org/10.3390/rs16142639 - 18 Jul 2024
Viewed by 512
Abstract
This paper focuses on detecting and tracking maneuvering weak targets in the range–Doppler (RD) plane with the track-before-detect (TBD) algorithm based on dynamic programming (DP). Traditional DP-TBD algorithms integrate target detection and tracking in their framework while searching the paths provided by a [...] Read more.
This paper focuses on detecting and tracking maneuvering weak targets in the range–Doppler (RD) plane with the track-before-detect (TBD) algorithm based on dynamic programming (DP). Traditional DP-TBD algorithms integrate target detection and tracking in their framework while searching the paths provided by a predefined model of the kinematic properties within the constraints allowed. However, both the approximate motion model used in the RD plane and the model mismatch caused when the target undergoes a maneuver can degrade the TBD performance sharply. To address these issues, this paper accurately describes the evolution of the RD equation based on Constant Acceleration (CA) and Coordinated Turn (CT) motion models with the process noise in the Cartesian coordinate system, and it also employs a recursive method to estimate the parameters in the equations for efficient energy accumulation and path searches. Facing the situation that targets energy accumulation during the DP iteration process will lead to an expansion of the target energy accumulation process. This paper designs a more efficient Optimization Function (OF) to inhibit the expansion effect, improve the resolution of the nearby targets, and increase the detection probability of the weak targets simultaneously. In addition, to search the trajectory more efficiently and accurately, we improved the process of DP multi-frame accumulation, thus reducing the computation amount of large-scale searches. Finally, the effectiveness of the proposed method for CA and CT motion target detection and tracking is verified by many of the simulation experiments that were conducted in this paper. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

20 pages, 560 KiB  
Article
Deep Learning Soft-Decision GNSS Multipath Detection and Mitigation
by Fernando Nunes and Fernando Sousa
Sensors 2024, 24(14), 4663; https://doi.org/10.3390/s24144663 - 18 Jul 2024
Viewed by 727
Abstract
A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of [...] Read more.
A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of C/N0 values, with a realistic dataset constituted by the synthetic noisy outputs of a 2D grid of correlators associated with different Doppler frequencies and code delays (time-domain dataset). Multipath-disturbed signals are generated in agreement with the various scenarios encompassed by the adopted multipath model. It was found that pre-processing the outputs of the correlators grid with the two-dimensional Discrete Fourier Transform (frequency-domain dataset) enables the CNN to improve the accuracy relative to the time-domain dataset. Depending on the kind of CNN outputs, two strategies can then be devised to solve the equation of navigation: either remove the disturbed signal from the equation (hard decision) or process the pseudoranges with a weighted least-squares algorithm, where the entries of the weighting matrix are computed using the analog outputs of the neural network (soft decision). Full article
Show Figures

Figure 1

17 pages, 5481 KiB  
Article
Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA
by Paul J. Kinzel, Carl J. Legleiter and Christopher L. Gazoorian
Water 2024, 16(13), 1870; https://doi.org/10.3390/w16131870 - 29 Jun 2024
Viewed by 755
Abstract
An innovative payload containing a sensitive mid-wave infrared camera was flown on an uncrewed aircraft system (UAS) to acquire thermal imagery along a reach of the Sacramento River, California, USA. The imagery was used as input for an ensemble particle image velocimetry (PIV) [...] Read more.
An innovative payload containing a sensitive mid-wave infrared camera was flown on an uncrewed aircraft system (UAS) to acquire thermal imagery along a reach of the Sacramento River, California, USA. The imagery was used as input for an ensemble particle image velocimetry (PIV) algorithm to produce near-continuous maps of surface flow velocity along a reach approximately 1 km in length. To assess the accuracy of PIV velocity estimates, in situ measurements of flow velocity were obtained with an acoustic Doppler current profiler (ADCP). ADCP measurements were collected along pre-planned cross-section lines within the area covered by the imagery. The PIV velocities showed good agreement with the depth-averaged velocity measured by the ADCP, with R2 values ranging from 0.59–0.97 across eight transects. Velocity maps derived from the thermal image sequences acquired on consecutive days during a period of steady flow were compared. These maps showed consistent spatial patterns of velocity vector magnitude and orientation, indicating that the technique is repeatable and robust. PIV of thermal imagery can yield velocity estimates in situations where natural water-surface textures or tracers are either insufficient or absent in visible imagery. Future work could be directed toward defining optimal environmental conditions, as well as limitations for mapping flow velocities based on thermal images acquired via UAS. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

Back to TopTop