Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,676)

Search Parameters:
Keywords = spectral noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1699 KiB  
Article
ATP, the 31P Spectral Modulus, and Metabolism
by Jack V. Greiner and Thomas Glonek
Metabolites 2024, 14(8), 456; https://doi.org/10.3390/metabo14080456 - 18 Aug 2024
Viewed by 187
Abstract
Adenosine triphosphate (ATP) has a high intracellular millimolar concentration (ca. 2.4 mM) throughout the phylogenetic spectrum of eukaryotes, archaea, and prokaryotes. In addition, the function of ATP as a hydrotrope in the prevention of protein aggregation and maintenance of protein solubilization [...] Read more.
Adenosine triphosphate (ATP) has a high intracellular millimolar concentration (ca. 2.4 mM) throughout the phylogenetic spectrum of eukaryotes, archaea, and prokaryotes. In addition, the function of ATP as a hydrotrope in the prevention of protein aggregation and maintenance of protein solubilization is essential to cellular, tissue, and organ homeostasis. The 31P spectral modulus (PSM) is a measure of the health status of cell, tissue, and organ systems, as well as of ATP, and it is based on in vivo 31P nuclear magnetic resonance (31P NMR) spectra. The PSM is calculated by dividing the area of the 31P NMR integral curve representing the high-energy phosphates by that of the low-energy phosphates. Unlike the difficulties encountered in measuring organophosphates such as ATP or any other phosphorylated metabolites in a conventional 31P NMR spectrum or in processed tissue samples, in vivo PSM measurements are possible with NMR surface-coil technology. The PSM does not rely on the resolution of individual metabolite signals but uses the total area derived from each of the NMR integral curves of the above-described spectral regions. Calculation is based on a simple ratio of the high- and low-energy phosphate bands, which are conveniently arranged in the high- and low-field portions of the 31P NMR spectrum. In practice, there is essentially no signal overlap between these two regions, with the dividing point being ca. −3 δ. ATP is the principal contributor to the maintenance of an elevated PSM that is typically observed in healthy systems. The purpose of this study is to demonstrate that (1) in general, the higher the metabolic activity, the higher the 31P spectral modulus, and (2) the modulus calculation does not require highly resolved 31P spectral signals and thus can even be used with reduced signal-to-noise spectra such as those detected as a result of in vivo analyses or those that may be obtained during a clinical MRI examination. With increasing metabolic stress or maturation of metabolic disease in cells, tissues, or organ systems, the PSM index declines; alternatively, with decreasing stress or resolution of disease states, the PSM increases. The PSM can serve to monitor normal homeostasis as a diagnostic tool and may be used to monitor disease processes with and without interventional treatment. Full article
Show Figures

Figure 1

12 pages, 3437 KiB  
Article
Analysis of 3D Channel Current Noise in Small Nanoscale MOSFETs Using Monte Carlo Simulation
by Wenpeng Zhang, Qun Wei, Xiaofei Jia and Liang He
Nanomaterials 2024, 14(16), 1359; https://doi.org/10.3390/nano14161359 - 18 Aug 2024
Viewed by 334
Abstract
As field effect transistors are reduced to nanometer dimensions, experimental and theoretical research has shown a gradual change in noise generation mechanisms. There are few studies on noise theory for small nanoscale transistors, and Monte Carlo (MC) simulations mainly focus on 2D devices [...] Read more.
As field effect transistors are reduced to nanometer dimensions, experimental and theoretical research has shown a gradual change in noise generation mechanisms. There are few studies on noise theory for small nanoscale transistors, and Monte Carlo (MC) simulations mainly focus on 2D devices with larger nanoscale dimensions. In this study, we employed MC simulation techniques to establish a 3D device simulation process. By setting device parameters and writing simulation programs, we simulated the raw data of channel current noise for a silicon-based metal–oxide–semiconductor field-effect transistor (MOSFET) with a 10 nm channel length and calculated the drain output current based on these data, thereby achieving static testing of the simulated device. Additionally, this study obtained a 3D potential distribution map of the device channel surface area. Based on the original data from the simulation analysis, this study further calculated the power spectral density of the channel current noise and analyzed how the channel current noise varies with gate voltage, source–drain voltage, temperature, and substrate doping density. The results indicate that under low-temperature conditions, the channel current noise of the 10 nm MOSFET is primarily composed of suppressed shot noise, with the proportion of thermal noise in the total noise slightly increasing as temperature rises. Under normal operating conditions, the channel current noise characteristics of the 10 nm MOSFET device are jointly characterized by suppressed shot noise, thermal noise, and cross-correlated noise. Among these noise components, shot noise is the main source of noise, and its suppression degree decreases as the bias voltage is reduced. These findings are consistent with experimental observations and theoretical analyses found in the existing literature. Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

14 pages, 723 KiB  
Article
Dynamic Injection and Permutation Coding for Enhanced Data Transmission
by Kehinde Ogunyanda, Opeyemi O. Ogunyanda and Thokozani Shongwe
Entropy 2024, 26(8), 685; https://doi.org/10.3390/e26080685 (registering DOI) - 13 Aug 2024
Viewed by 264
Abstract
In this paper, we propose a novel approach to enhance spectral efficiency in communication systems by dynamically adjusting the mapping between cyclic permutation coding (CPC) and its injected form. By monitoring channel conditions such as interference levels and impulsive noise strength, the system [...] Read more.
In this paper, we propose a novel approach to enhance spectral efficiency in communication systems by dynamically adjusting the mapping between cyclic permutation coding (CPC) and its injected form. By monitoring channel conditions such as interference levels and impulsive noise strength, the system optimises the coding scheme to maximise data transmission reliability and efficiency. The CPC method employed in this work maps information bits onto non-binary symbols in a cyclic manner, aiming to improve the Hamming distance between mapped symbols. To address challenges such as low data rates inherent in permutation coding, injection techniques are introduced by removing δ column(s) from the CPC codebook. Comparative analyses demonstrate that the proposed dynamic adaptation scheme outperforms conventional permutation coding and injection schemes. Additionally, we present a generalised mathematical expression to describe the relationship between the spectral efficiencies of both coding schemes. This dynamic approach ensures efficient and reliable communication in environments with varying levels of interference and impulsive noise, highlighting its potential applicability to systems like power line communications. Full article
(This article belongs to the Special Issue New Advances in Error-Correcting Codes)
Show Figures

Figure 1

7 pages, 8641 KiB  
Communication
Performance Characterization of an Illumination-Based Low-Cost Multispectral Camera
by Hedde van Hoorn, Angel Schraven, Hugo van Dam, Joshua Meijer, Roman Sillé, Arjan Lock and Steven van den Berg
Sensors 2024, 24(16), 5229; https://doi.org/10.3390/s24165229 (registering DOI) - 13 Aug 2024
Viewed by 284
Abstract
Spectral imaging has many applications, from methane detection using satellites to disease detection on crops. However, spectral cameras remain a costly solution ranging from 10 thousand to 100 thousand euros for the hardware alone. Here, we present a low-cost multispectral camera (LC-MSC) with [...] Read more.
Spectral imaging has many applications, from methane detection using satellites to disease detection on crops. However, spectral cameras remain a costly solution ranging from 10 thousand to 100 thousand euros for the hardware alone. Here, we present a low-cost multispectral camera (LC-MSC) with 64 LEDs in eight different colors and a monochrome camera with a hardware cost of 340 euros. Our prototype reproduces spectra accurately when compared to a reference spectrometer to within the spectral width of the LEDs used and the ±1σ variation over the surface of ceramic reference tiles. The mean absolute difference in reflectance is an overestimate of 0.03 for the LC-MSC as compared to a spectrometer, due to the spectral shape of the tiles. In environmental light levels of 0.5 W m−2 (bright artificial indoor lighting) our approach shows an increase in noise, but still faithfully reproduces discrete reflectance spectra over 400 nm–1000 nm. Our approach is limited in its application by LED bandwidth and availability of specific LED wavelengths. However, unlike with conventional spectral cameras, the pixel pitch of the camera itself is not limited, providing higher image resolution than typical high-end multi- and hyperspectral cameras. For sample conditions where LED illumination bands provide suitable spectral information, our LC-MSC is an interesting low-cost alternative approach to spectral imaging. Full article
(This article belongs to the Collection Advances in Spectroscopy and Spectral Imaging)
Show Figures

Figure 1

24 pages, 7806 KiB  
Article
Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials
by Jesús Manuel Jáquez-Muñoz, Citlalli Gaona-Tiburcio, Ce Tochtli Méndez-Ramírez, Cynthia Martínez-Ramos, Miguel Angel Baltazar-Zamora, Griselda Santiago-Hurtado, Francisco Estupinan-Lopez, Laura Landa-Ruiz, Demetrio Nieves-Mendoza and Facundo Almeraya-Calderon
Materials 2024, 17(16), 4013; https://doi.org/10.3390/ma17164013 - 12 Aug 2024
Viewed by 725
Abstract
Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a [...] Read more.
Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a corrosion technique used to characterize the behavior of different alloys and determine the type of corrosion in a system. The objective of this research is to characterize by EN technique different aeronautical alloys (Al, Ti, steels, and superalloys) using different analysis methods such as time domain (visual analysis, statistical), frequency domain (power spectral density (PSD)), and frequency–time domain (wavelet decomposition, Hilbert Huang analysis, and recurrence plots (RP)) related to the corrosion process. Optical microscopy (OM) is used to observe the surface of the tested samples. The alloys were exposed to 3.5 wt.% NaCl and H2SO4 solutions at room temperature. The results indicate that HHT and recurrence plots are the best options for determining the corrosion type compared with the other methods due to their ability to analyze dynamic and chaotic systems, such as corrosion. Corrosion processes such as passivation and localized corrosion can be differentiated when analyzed using HHT and RP methods when a passive system presents values of determinism between 0.5 and 0.8. Also, to differentiate the passive system from the localized system, it is necessary to see the recurrence plot due to the similarity of the determinism value. Noise impedance (Zn) is one of the best options for determining the corrosion kinetics of one system, showing that Ti CP2 and Ti-6Al-4V presented 742,824 and 939,575 Ω·cm2, while Rn presented 271,851 and 325,751 Ω·cm2, being the highest when exposed to H2SO4. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Graphical abstract

16 pages, 2897 KiB  
Article
Frequency Estimation Algorithm for FMCW Beat Signal Based on Spectral Refinement and Phase Angle Interpolation
by Guoqing Jia, Minglong Cheng, Weidong Fang and Shanshan Guo
Appl. Sci. 2024, 14(16), 7067; https://doi.org/10.3390/app14167067 - 12 Aug 2024
Viewed by 379
Abstract
The beat signal obtained from frequency-modulated continuous-wave (FMCW) radar is a waveform that is corrupted by noise and requires filtering out interference components for frequency calibration. Traditional FFT methods are affected by the fence effect and spectral leakage, leading to a reduction in [...] Read more.
The beat signal obtained from frequency-modulated continuous-wave (FMCW) radar is a waveform that is corrupted by noise and requires filtering out interference components for frequency calibration. Traditional FFT methods are affected by the fence effect and spectral leakage, leading to a reduction in frequency estimation accuracy. Therefore, an improved double-spectrum-line interpolation frequency estimation algorithm is proposed in this paper, utilizing spectral refinement and phase interpolation. Firstly, the post-FFT spectral signal is refined to narrow the frequency search range and enhance frequency resolution, thereby separating the noise signal. Then, a frequency deviation factor is defined based on the relationship between adjacent phase angles. Finally, the signal’s phase angles are interpolated using the frequency deviation factor to estimate the frequency of the beat signal. Experimental results demonstrate that the proposed algorithm reduces the impact of quantization on the frequency distribution and increases the signal’s noise resistance. The proposed algorithm has a higher accuracy and lower standard deviation compared to the recently proposed algorithm. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 4327 KiB  
Article
A Modified EMD Technique for Broken Rotor Bar Fault Detection in Induction Machines
by Md. Shamsul Arifin, Wilson Wang and Mohammad Nasir Uddin
Sensors 2024, 24(16), 5186; https://doi.org/10.3390/s24165186 - 11 Aug 2024
Viewed by 400
Abstract
Induction machines (IMs) are commonly used in various industrial sectors. It is essential to recognize IM defects at their earliest stage so as to prevent machine performance degradation and improve production quality and safety. This work will focus on IM broken rotor bar [...] Read more.
Induction machines (IMs) are commonly used in various industrial sectors. It is essential to recognize IM defects at their earliest stage so as to prevent machine performance degradation and improve production quality and safety. This work will focus on IM broken rotor bar (BRB) fault detection, as BRB fault could generate extra heating, vibration, acoustic noise, or even sparks in IMs. In this paper, a modified empirical mode decomposition (EMD) technique, or MEMD, is proposed for BRB fault detection using motor current signature analysis. A smart sensor-based data acquisition (DAQ) system is developed by our research team and is used to collect current signals wirelessly. The MEMD takes several processing steps. Firstly, correlation-based EMD analysis is undertaken to select the most representative intrinsic mode function (IMF). Secondly, an adaptive window function is suggested for spectral operation and analysis to detect the BRB fault. Thirdly, a new reference function is proposed to generate the fault index for fault severity diagnosis analytically. The effectiveness of the proposed MEMD technique is verified experimentally. Full article
(This article belongs to the Special Issue Sensors for Predictive Maintenance of Machines)
Show Figures

Figure 1

17 pages, 12036 KiB  
Article
Inversion Uncertainty of OH Airglow Rotational Temperature Based on Fine Spectral Measurement
by Baichuan Jiang, Haiyang Gao, Shuqi Niu, Ke Ren and Shaoyang Sun
Remote Sens. 2024, 16(16), 2940; https://doi.org/10.3390/rs16162940 - 11 Aug 2024
Viewed by 359
Abstract
The inversion of temperature by detecting the ratio of the intensity of airglow vibrational and rotational spectral lines is a traditional method for obtaining mesopause temperature. However, previous studies have shown that there is significant uncertainty in the temperature inversion using this technology. [...] Read more.
The inversion of temperature by detecting the ratio of the intensity of airglow vibrational and rotational spectral lines is a traditional method for obtaining mesopause temperature. However, previous studies have shown that there is significant uncertainty in the temperature inversion using this technology. A spectrograph instrument called the Mesosphere Airglow Fine Spectrometer (MAFS) was previously developed by our research team. Based on the MAFS, this work systematically evaluated the impact of the spectral line extraction methods and residual background noise elimination methods on temperature inversion results of the OH (6-2) Q-branch as the target. The fitting of residual background noise using different numbers of sampling points can cause the inverted temperature to vary by 5 K to 10 K without changing the overall trend. The temperature inversion results obtained using the three-region single-fit method were generally 3 K to 5 K higher than those obtained using the two-region double-fit method. Moreover, the temperature obtained using the Gaussian fitting area varied by approximately 15 K, with changes in the residual background noise fitting method; however, when using a spectrum peak instead of the Gaussian fitting area, this variation decreased to approximately 10 K. When the temperature is higher, both the residual background noise fitting and the spectral line intensity extraction methods have a more significant impact on the uncertainty of temperature inversion. Full article
Show Figures

Figure 1

12 pages, 2569 KiB  
Article
Improved Non-Negative Matrix Factorization-Based Noise Reduction of Leakage Acoustic Signals
by Yongsheng Yu, Yongwen Hu, Yingming Wang and Zhuoran Cai
Sensors 2024, 24(16), 5146; https://doi.org/10.3390/s24165146 - 9 Aug 2024
Viewed by 305
Abstract
The detection of gas leaks using acoustic signals is often compromised by environmental noise, which significantly impacts the accuracy of subsequent leak identification. Current noise reduction algorithms based on non-negative matrix factorization (NMF) typically utilize the Euclidean distance as their objective function, which [...] Read more.
The detection of gas leaks using acoustic signals is often compromised by environmental noise, which significantly impacts the accuracy of subsequent leak identification. Current noise reduction algorithms based on non-negative matrix factorization (NMF) typically utilize the Euclidean distance as their objective function, which can exacerbate noise anomalies. Moreover, these algorithms predominantly rely on simple techniques like Wiener filtering to estimate the amplitude spectrum of pure signals. This approach, however, falls short in accurately estimating the amplitude spectrum of non-stationary signals. Consequently, this paper proposes an improved non-negative matrix factorization (INMF) noise reduction algorithm that enhances the traditional NMF by refining both the objective function and the amplitude spectrum estimation process for reconstructed signals. The improved algorithm replaces the conventional Euclidean distance with the Kullback–Leibler (KL) divergence and incorporates noise and sparse constraint terms into the objective function to mitigate the adverse effects of signal amplification. Unlike traditional methods such as Wiener filtering, the proposed algorithm employs an adaptive Minimum Mean-Square Error-Log Spectral Amplitude (MMSE-LSA) method to estimate the amplitude spectrum of non-stationary signals adaptively across varying signal-to-noise ratios. Comparative experiments demonstrate that the INMF algorithm significantly outperforms existing methods in denoising leakage acoustic signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 863 KiB  
Article
Interferometrically Enhanced Intensity and Wavelength Modulation in Tunable Diode Laser Spectroscopy
by Sander Vervoort and Marcus Wolff
Photonics 2024, 11(8), 740; https://doi.org/10.3390/photonics11080740 - 8 Aug 2024
Viewed by 430
Abstract
Tunable diode laser spectroscopy (TDLS) is a measurement technique with high spectral resolution. It is based on tuning the emission wavelength of a semiconductor laser by altering its current and/or its temperature. However, adjusting the wavelength leads to a change in emission intensity. [...] Read more.
Tunable diode laser spectroscopy (TDLS) is a measurement technique with high spectral resolution. It is based on tuning the emission wavelength of a semiconductor laser by altering its current and/or its temperature. However, adjusting the wavelength leads to a change in emission intensity. For applications that rely on modulated radiation, the challenge is to isolate the true spectrum from the influence of extraneous instrumental contributions, particularly residual intensity and wavelength modulation. We present a novel approach combining TDLS with interferometric techniques, exemplified by the use of a Mach–Zehnder interferometer, to enable the separation of intensity and wavelength modulation. With interferometrically enhanced intensity modulation, we reduced the residual wavelength modulation by 83%, and with interferometrically enhanced wavelength modulation, we almost completely removed the residual derivative of the signal. A reduction in residual wavelength modulation enhances the spectral resolution of intensity-modulated measurements, whereas a reduction in residual intensity modulation improves the signal-to-noise ratio and the sensitivity of wavelength-modulated measurements. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

21 pages, 13401 KiB  
Article
Virtual Restoration of Ancient Mold-Damaged Painting Based on 3D Convolutional Neural Network for Hyperspectral Image
by Sa Wang, Yi Cen, Liang Qu, Guanghua Li, Yao Chen and Lifu Zhang
Remote Sens. 2024, 16(16), 2882; https://doi.org/10.3390/rs16162882 - 7 Aug 2024
Viewed by 480
Abstract
Painted cultural relics hold significant historical value and are crucial in transmitting human culture. However, mold is a common issue for paper or silk-based relics, which not only affects their preservation and longevity but also conceals the texture, patterns, and color information, hindering [...] Read more.
Painted cultural relics hold significant historical value and are crucial in transmitting human culture. However, mold is a common issue for paper or silk-based relics, which not only affects their preservation and longevity but also conceals the texture, patterns, and color information, hindering cultural value and heritage. Currently, the virtual restoration of painting relics primarily involves filling in the RGB based on neighborhood information, which might cause color distortion and other problems. Another approach considers mold as noise and employs maximum noise separation for its removal; however, eliminating the mold components and implementing the inverse transformation often leads to more loss of information. To effectively acquire virtual restoration for mold removal from ancient paintings, the spectral characteristics of mold were analyzed. Based on the spectral features of mold and the cultural relic restoration philosophy of maintaining originality, a 3D CNN artifact restoration network was proposed. This network is capable of learning features in the near-infrared spectrum (NIR) and spatial dimensions to reconstruct the reflectance of visible spectrum, achieving the virtual restoration for mold removal of calligraphic and art relics. Using an ancient painting from the Qing Dynasty as a test subject, the proposed method was compared with the Inpainting, Criminisi, and inverse MNF transformation methods across three regions. Visual analysis, quantitative evaluation (the root mean squared error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MEA), and a classification application were used to assess the restoration accuracy. The visual results and quantitative analyses demonstrated that the proposed 3D CNN method effectively removes or mitigates mold while restoring the artwork to its authentic color in various backgrounds. Furthermore, the color classification results indicated that the images restored with 3D CNN had the highest classification accuracy, with overall accuracies of 89.51%, 92.24%, and 93.63%, and Kappa coefficients of 0.88, 0.91, and 0.93, respectively. This research provides technological support for the digitalization and restoration of cultural artifacts, thereby contributing to the preservation and transmission of cultural heritage. Full article
Show Figures

Figure 1

19 pages, 6568 KiB  
Article
Quantitative Analysis of Pb in Soil Using Laser-Induced Breakdown Spectroscopy Based on Signal Enhancement of Conductive Materials
by Shefeng Li, Qi Zheng, Xiaodan Liu, Peng Liu and Long Yu
Molecules 2024, 29(15), 3699; https://doi.org/10.3390/molecules29153699 - 5 Aug 2024
Viewed by 401
Abstract
Studying efficient and accurate soil heavy-metal detection technology is of great significance to establishing a modern system for monitoring soil pollution, early warning and risk assessment, which contributes to the continuous improvement of soil quality and the assurance of food safety. Laser-induced breakdown [...] Read more.
Studying efficient and accurate soil heavy-metal detection technology is of great significance to establishing a modern system for monitoring soil pollution, early warning and risk assessment, which contributes to the continuous improvement of soil quality and the assurance of food safety. Laser-induced breakdown spectroscopy (LIBS) is considered to be an emerging and effective tool for heavy-metal detection, compared with traditional detection technologies. Limited by the soil matrix effect, the LIBS signal of target elements for soil heavy-metal detection is prone to interference, thereby compromising the accuracy of quantitative detection. Thus, a series of signal-enhancement methods are investigated. This study aims to explore the effect of conductive materials of NaCl and graphite on the quantitative detection of lead (Pb) in soil using LIBS, seeking to find a reliable signal-enhancement method of LIBS for the determination of soil heavy-metal elements. The impact of the addition amount of NaCl and graphite on spectral intensity and parameters, including the signal-to-background ratio (SBR), signal-to-noise ratio (SNR), and relative standard deviation (RSD), were investigated, and the mechanism of signal enhancement by NaCl and graphite based on the analysis of the three-dimensional profile data of ablation craters and plasma parameters (plasmatemperature and electron density) were explored. Univariate and multivariate quantitative analysis models including partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and extreme learning machine (ELM) were developed for the quantitative detection of Pb in soil with the optimal amount of NaCl and graphite, and the performance of the models was further compared. The PLSR model with the optimal amount of graphite obtained the best prediction performance, with an Rp that reached 0.994. In addition, among the three spectral lines of Pb, the univariate model of Pb I 405.78 nm showed the best prediction performance, with an Rp of 0.984 and the lowest LOD of 26.142 mg/kg. The overall results indicated that the LIBS signal-enhancement method based on conductive materials combined with appropriate chemometric methods could be a potential tool for the accurate quantitative detection of Pb in soil and could provide a reference for environmental monitoring. Full article
Show Figures

Figure 1

21 pages, 1347 KiB  
Article
Diagnostics on Power Electronics Converters by Means of Autoregressive Modelling
by Roberto Diversi, Leonardo Sandrolini, Mattia Simonazzi, Nicolò Speciale and Andrea Mariscotti
Electronics 2024, 13(15), 3083; https://doi.org/10.3390/electronics13153083 - 4 Aug 2024
Viewed by 417
Abstract
Power conversion systems for wireless power transfer (WPT) applications have demanding requirements for continuity of service, besides being operated with stressing environmental conditions. Diagnostic and prognostic programs are thus quite useful and this work shows a novel approach based on the analysis of [...] Read more.
Power conversion systems for wireless power transfer (WPT) applications have demanding requirements for continuity of service, besides being operated with stressing environmental conditions. Diagnostic and prognostic programs are thus quite useful and this work shows a novel approach based on the analysis of spectra of an autoregressive (AR) model to recognize a wide range of faulty devices, including incipient faults, when deviations from nominal parameters begin to manifest. AR modeling provides cleaner and easier to interpret spectra, where only the salient features remain, and they are more sensitive to variations in the corresponding time domain waveforms. A log spectral distance is calculated that successfully separates healthy and faulty states of the feeding single-phase inverter, even in challenging scenarios of poor signal-to-noise ratio. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

22 pages, 13897 KiB  
Article
Estimation of Leaf Water Content of a Fruit Tree by In Situ Vis-NIR Spectroscopy Using Multiple Machine Learning Methods in Southern Xinjiang, China
by Jintao Cui, Mamat Sawut, Nuerla Ailijiang, Asiya Manlike and Xin Hu
Agronomy 2024, 14(8), 1664; https://doi.org/10.3390/agronomy14081664 - 29 Jul 2024
Viewed by 328
Abstract
Water scarcity is one of the most significant environmental factors that inhibits photosynthesis and decreases the growth and productivity of plants. Using the deep learning convolutional neural network (CNN) model, this study evaluates the ability of spectroscopy to estimate leaf water content (LWC) [...] Read more.
Water scarcity is one of the most significant environmental factors that inhibits photosynthesis and decreases the growth and productivity of plants. Using the deep learning convolutional neural network (CNN) model, this study evaluates the ability of spectroscopy to estimate leaf water content (LWC) in fruit trees. During midday, spectral data were acquired from leaf samples obtained from three distinct varieties of fruit trees, encompassing the spectral range spanning from 350 to 2500 nm. Then, for spectral preprocessing, the fractional order derivative (FOD) and continuous wavelet transform (CWT) algorithms were used to reduce the effects of scattering and noise on the collected spectra. Finally, the CNN model was developed to predict LWC in different fruit trees. The results showed that: (1) The spectra treated with CWT and FOD could improve the spectrum expression ability by improving the correlation between spectra and LWC. The correlation level of FOD treatment was higher than that of CWT treatment. (2) The CNN model was developed using FOD 1.2, and CWT 3 performed better than other traditional machine learning methods, such as RFR, SVR, and PLSR. (3) Further validation using additional samples demonstrated that the CNN model had good stability and quantitative prediction capability for the LWC of fruit trees (R2 > 0.95, root mean square error (RMSE) < 1.773%, and relative percentage difference (RPD) > 4.26). The results may provide an effective way to predict fruit LWC using a CNN-based model. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

15 pages, 9097 KiB  
Article
Acoustic Analysis of a Hybrid Propulsion System for Drone Applications
by Mădălin Dombrovschi, Marius Deaconu, Laurentiu Cristea, Tiberius Florian Frigioescu, Grigore Cican, Gabriel-Petre Badea and Andrei-George Totu
Acoustics 2024, 6(3), 698-712; https://doi.org/10.3390/acoustics6030038 - 25 Jul 2024
Viewed by 646
Abstract
This paper aims to conduct an acoustic analysis through noise measurements of a hybrid propulsion system intended for implementation on a drone, from which the main noise sources can be identified for further research on noise reduction techniques. Additionally, the noise was characterized [...] Read more.
This paper aims to conduct an acoustic analysis through noise measurements of a hybrid propulsion system intended for implementation on a drone, from which the main noise sources can be identified for further research on noise reduction techniques. Additionally, the noise was characterized by performing spectral analysis and identifying the tonal components that contribute to the overall noise. The propelling force system consists of a micro-turboshaft coupled with a gearbox connected to an electric generator. The propulsion system consists of a micro-turboshaft coupled with a gearbox connected to an electric generator. The electric current produced by the generator powers an electric ducted fan (EDF). The engineturbo-engine was tested in free-field conditions for noise generation at different speeds, and for this, an array of microphones was installed, positioned polarly around the system and near the intake and exhaust. Consequently, based on the test results, the acoustic directivity was plotted, revealing that the highest noise levels are at the front and rear of the engine. The noise level at a distance of 1.5 m from the turboengine exceeds 90 dBA at all tested speeds. Spectral analyses of both the far-field acoustic signals (measured with a polar microphone array) and the near-field signals (microphones positioned near the intake and exhaust) revealed that the primary contributors to the overall noise are the micromotor’s compressor, specifically the gas dynamic phenomena in the fan (BPF and 2× BPF). Thus, it was determined that at the intake level, the main noise contribution comes from the high-frequency components of the compressor, while at the exhaust level, the noise mainly originates from the combustion chamber, characterized by low-frequency components (up to 2 kHz). The findings from this study have practical applications in the design and development of quieter drone propulsion systems. By identifying and targeting the primary noise sources, engineers can implement effective noise reduction strategies, leading to drones that are less disruptive in urban environments and other noise-sensitive areas. This can enhance the acceptance and deployment of drone technology in various sectors, including logistics, surveillance, and environmental monitoring. Full article
(This article belongs to the Special Issue Machinery Noise: Emission, Modelling and Control)
Show Figures

Figure 1

Back to TopTop