Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural neural plasticity evoked by rapid-acting antidepressant interventions

A Publisher Correction to this article was published on 12 December 2024

This article has been updated

Abstract

A feature in the pathophysiology of major depressive disorder (MDD), a mood disorder, is the impairment of excitatory synapses in the prefrontal cortex. Intriguingly, different types of treatment with fairly rapid antidepressant effects (within days or a few weeks), such as ketamine, electroconvulsive therapy and non-invasive neurostimulation, seem to converge on enhancement of neural plasticity. However, the forms and mechanisms of plasticity that link antidepressant interventions to the restoration of excitatory synaptic function are still unknown. In this Review, we highlight preclinical research from the past 15 years showing that ketamine and psychedelic drugs can trigger the growth of dendritic spines in cortical pyramidal neurons. We compare the longitudinal effects of various psychoactive drugs on neuronal rewiring, and we highlight rapid onset and sustained time course as notable characteristics for putative rapid-acting antidepressant drugs. Furthermore, we consider gaps in the current understanding of drug-evoked in vivo structural plasticity. We also discuss the prospects of using synaptic remodelling to understand other antidepressant interventions, such as repetitive transcranial magnetic stimulation. Finally, we conclude that structural neural plasticity can provide unique insights into the neurobiological actions of psychoactive drugs and antidepressant interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Imaging dendritic spines in vivo.
Fig. 2: Effects of different psychoactive drugs on apical dendritic spines of cortical pyramidal neurons in mice.
Fig. 3: The life cycle of a dendritic spine.
Fig. 4: Time courses of antidepressant intervention-evoked structural neural plasticity in rodents and therapeutic onset in humans.

Similar content being viewed by others

Change history

References

  1. DeFelipe, J. & Farinas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Luscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, 33–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Phoumthipphavong, V., Barthas, F., Hassett, S. & Kwan, A. C. Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro 3, ENEURO.0133-0115.2016 (2016).

    Article  Google Scholar 

  6. Pryazhnikov, E. et al. Longitudinal two-photon imaging in somatosensory cortex of behaving mice reveals dendritic spine formation enhancement by subchronic administration of low-dose ketamine. Sci. Rep. 8, 6464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ng, L. H. L. et al. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Transl. Psychiatry 8, 272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moda-Sava, R. N. et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364, eaat8078 (2019). This study demonstrates that ketamine restores dendritic spines eliminated owing to chronic corticosterone treatment and that disrupting ketamine-induced new spines blocks the ability of the drug to alleviate motivated escape behaviour in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544.e4 (2021). This work demonstrates in vivo that a single dose of the classic psychedelic psilocybin has rapid and long-lasting effects on structural neural plasticity in the mouse medial frontal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jefferson, S. J. et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 48, 1257–1266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, J. et al. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol. Psychiatry 26, 6237–6252 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. & Duman, R. S. Ketamine: a paradigm shift for depression research and treatment. Neuron 101, 774–778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 21, 611–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. McClure-Begley, T. D. & Roth, B. L. The promises and perils of psychedelic pharmacology for psychiatry. Nat. Rev. Drug Discov. 21, 463–473 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Thompson, S. M. et al. An excitatory synapse hypothesis of depression. Trends Neurosci. 38, 279–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ousdal, O. T. et al. The neurobiological effects of electroconvulsive therapy studied through magnetic resonance: what have we learned, and where do we go? Biol. Psychiatry 91, 540–549 (2022).

    Article  PubMed  Google Scholar 

  19. Jannati, A., Oberman, L. M., Rotenberg, A. & Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 48, 191–208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zarate, C. A. Jr. et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Husain, M. M. et al. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. J. Clin. Psychiatry 65, 485–491 (2004).

    Article  PubMed  Google Scholar 

  22. Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiatry 179, 132–141 (2022).

    Article  PubMed  Google Scholar 

  23. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Oliva, H. N. P. et al. Substance use and spine density: a systematic review and meta-analysis of preclinical studies. Mol. Psychiatry 29, 2873–2885 (2024).

    Article  PubMed  Google Scholar 

  28. Kang, H. J. et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417 (2012). This study reports synapse loss and decreased expression of synapse-function-related genes in the dorsolateral prefrontal cortex of individuals with MDD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feyissa, A. M., Chandran, A., Stockmeier, C. A. & Karolewicz, B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 70–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Holmes, S. E. et al. Low synaptic density is associated with depression severity and network alterations. Nat. Commun. 10, 1529 (2019). This study provides the first in vivo evidence that decreased synaptic density, measured via PET imaging with the SV2A radioligand, is linked to altered network function and depressive symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hasler, G. et al. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 64, 193–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Auer, D. P. et al. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol. Psychiatry 47, 305–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Yüksel, C. & Öngür, D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol. Psychiatry 68, 785–794 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat. Neurosci. 23, 771–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. & Vannier, M. W. Hippocampal atrophy in recurrent major depression. Proc. Natl Acad. Sci. USA 93, 3908–3913 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fried, E. I. & Kievit, R. A. The volumes of subcortical regions in depressed and healthy individuals are strikingly similar: a reinterpretation of the results by Schmaal et al. Mol. Psychiatry 21, 724–725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rajkowska, G. et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45, 1085–1098 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G. & Classen, J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. 543, 699–708 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Player, M. J. et al. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 38, 2101–2108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuhn, M. et al. State-dependent partial occlusion of cortical LTP-like plasticity in major depression. Neuropsychopharmacology 41, 1521–1529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Noda, Y. et al. Impaired neuroplasticity in the prefrontal cortex in depression indexed through paired associative stimulation. Depress. Anxiety 35, 448–456 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Y.-Z. et al. Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin. Neurophysiol. 128, 2318–2329 (2017).

    Article  PubMed  Google Scholar 

  51. Yan, C.-G. et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl Acad. Sci. USA 116, 9078–9083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Javaheripour, N. et al. Altered resting-state functional connectome in major depressive disorder: a mega-analysis from the PsyMRI consortium. Transl. Psychiatry 11, 511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brandl, F. et al. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology 47, 1071–1080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dunlop, K. et al. Dimensional and categorical solutions to parsing depression heterogeneity in a large single-site sample. Biol. Psychiatry 96, 422–434 (2024).

    Article  PubMed  Google Scholar 

  57. Tozzi, L. et al. Personalized brain circuit scores identify clinically distinct biotypes in depression and anxiety. Nat. Med. 30, 2076–2087 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Winter, N. R. et al. Quantifying deviations of brain structure and function in major depressive disorder across neuroimaging modalities. JAMA Psychiatry 79, 879–888 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Siegel, J. S. et al. Psilocybin desynchronizes the human brain. Nature 632, 131–138 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lynch, C. J. et al. Frontostriatal salience network expansion in individuals in depression. Nature 633, 624–633 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O’Reardon, J. P. et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatry 62, 1208–1216 (2007).

    Article  PubMed  Google Scholar 

  62. van Rooij, S. J. H., Arulpragasam, A. R., McDonald, W. M. & Philip, N. S. Accelerated TMS — moving quickly into the future of depression treatment. Neuropsychopharmacology 49, 128–137 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Oliveira-Maia, A. J., Press, D. & Pascual-Leone, A. Modulation of motor cortex excitability predicts antidepressant response to prefrontal cortex repetitive transcranial magnetic stimulation. Brain Stimul. 10, 787–794 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cole, J. et al. Efficacy of adjunctive D-cycloserine to intermittent theta-burst stimulation for major depressive disorder. JAMA Psychiatry 79, 1153–1161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Abdallah, C. G. et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43, 2154–2160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Erchinger, V. J., Ersland, L., Aukland, S. M., Abbott, C. C. & Oltedal, L. Magnetic resonance spectroscopy in depressed subjects treated with electroconvulsive therapy — a systematic review of literature. Front. Psychiatry 12, 608857 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Njau, S. et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. J. Psychiatry Neurosci. 42, 6–16 (2017).

    Article  PubMed  Google Scholar 

  68. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010). This study reveals that ketamine rapidly activates the mTOR pathway, enhancing synaptic signalling and promoting the formation and function of new spine synapses in the rat prefrontal cortex, and that blocking mTOR signalling negates the effects of ketamine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018). This study demonstrates that the application of a wide range of serotonergic psychedelics can cause neurite formation and spine growth in cultured cortical neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de la Fuente Revenga, M. et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 37, 109836 (2021).

    Article  PubMed  Google Scholar 

  71. Maynard, K. R., Hobbs, J. W., Rajpurohit, S. K. & Martinowich, K. Electroconvulsive seizures influence dendritic spine morphology and BDNF expression in a neuroendocrine model of depression. Brain Stimul. 11, 856–859 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cambiaghi, M. et al. High-frequency repetitive transcranial magnetic stimulation enhances layer II/III morphological dendritic plasticity in mouse primary motor cortex. Behav. Brain Res. 410, 113352 (2021).

    Article  PubMed  Google Scholar 

  73. Vlachos, A. et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J. Neurosci. 32, 17514–17523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi, Y. et al. Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nat. Neurosci. 25, 317–329 (2022). This study reports the effects of diazepam treatments on structural plasticity of dendritic spines, which could explain why long-term use of the drug leads to cognitive decline.

    Article  CAS  PubMed  Google Scholar 

  75. Munoz-Cuevas, F. J., Athilingam, J., Piscopo, D. & Wilbrecht, L. Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference. Nat. Neurosci. 16, 1367–1369 (2013). This work demonstrates that cocaine administration leads to an increase in the formation of new dendritic spines in the frontal cortex, which correlates with cocaine-induced conditioned place preference, suggesting that these structural changes might have a role in stimulant-related learning and drug-seeking behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shapovalov, Y. et al. Fluoxetine modulates breast cancer metastasis to the brain in a murine model. BMC Cancer 14, 598 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bowling, H. et al. Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Sci. Signal. 7, ra4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang, G., Chang, P. C., Bekker, A., Blanck, T. J. & Gan, W. B. Transient effects of anesthetics on dendritic spines and filopodia in the living mouse cortex. Anesthesiology 115, 718–726 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Lai, B., Li, M., Hu, W., Li, W. & Gan, W. B. The phosphodiesterase 9 inhibitor PF-04449613 promotes dendritic spine formation and performance improvement after motor learning. Dev. Neurobiol. 78, 859–872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Komorowska-Muller, J. A. et al. Chronic low-dose Delta(9)-tetrahydrocannabinol (THC) treatment stabilizes dendritic spines in 18-month-old mice. Sci. Rep. 13, 1390 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zanos, P. et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol. Rev. 70, 621–660 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Popova, V. et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am. J. Psychiatry 176, 428–438 (2019).

    Article  PubMed  Google Scholar 

  83. Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264–355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grof, S., Goodman, L. E., Richards, W. A. & Kurland, A. LSD-assisted psychotherapy in patients with terminal cancer. Int. Pharmacopsychiatry 8, 129–144 (1973).

    Article  CAS  PubMed  Google Scholar 

  86. Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 387, 1637–1648 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Raison, C. L. et al. Single-dose psilocybin treatment for major depressive disorder: a randomized clinical trial. JAMA 330, 843–853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reckweg, J. et al. A phase 1, dose-ranging study to assess safety and psychoactive effects of a vaporized 5-methoxy-N, N-dimethyltryptamine formulation (GH001) in healthy volunteers. Front. Pharmacol. 12, 760671 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Reddy, D. S. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 186, 113–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nestler, E. J., Hyman, S. E. & Malenka, R. C. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd edn (McGraw-Hill, 2009).

  91. Wu, M., Minkowicz, S., Dumrongprechachan, V., Hamilton, P. & Kozorovitskiy, Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol. Psychiatry 89, 1096–1105 (2021). Using two-photon uncaging in mouse brain slices, this study shows that ketamine increases the likelihood for glutamate-evoked spinogenesis, which precedes the changes in dendritic spine density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sequeira, M. K., Swanson, A. M., Kietzman, H. W. & Gourley, S. L. Cocaine and habit training cause dendritic spine rearrangement in the prelimbic cortex. iScience 26, 106240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124 (2006). This work shows that in the barrel cortex of adult mice, new dendritic spines initially form without synapses, but if the new spines persist for more than 4 days, then they tend to develop synapses.

    Article  CAS  PubMed  Google Scholar 

  95. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Stepanyants, A., Hof, P. R. & Chklovskii, D. B. Geometry and structural plasticity of synaptic connectivity. Neuron 34, 275–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Liao, D., Scannevin, R. H. & Huganir, R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J. Neurosci. 21, 6008–6017 (2001). This study demonstrates that spontaneous synaptic activity activates NMDAR in silent synapses, leading to the rapid (within minutes) recruitment of AMPA receptors and increased frequency of miniature excitatory postsynaptic currents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vardalaki, D., Chung, K. & Harnett, M. T. Filopodia are a structural substrate for silent synapses in adult neocortex. Nature 612, 323–327 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Savalia, N. K., Shao, L. X. & Kwan, A. C. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. Trends Neurosci. 44, 260–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Kavalali, E. T. & Monteggia, L. M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron 106, 715–726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Holtmaat, A. J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Hill, T. C. & Zito, K. LTP-induced long-term stabilization of individual nascent dendritic spines. J. Neurosci. 33, 678–686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Gyles, T. M., Nestler, E. J. & Parise, E. M. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 49, 215–226 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tanaka, M., Szabó, Á. & Vécsei, L. Preclinical modeling in depression and anxiety: current challenges and future research directions. Adv. Clin. Exp. Med. 32, 505–509 (2023).

    Article  PubMed  Google Scholar 

  107. Cook, S. C. & Wellman, C. L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol. 60, 236–248 (2004).

    Article  PubMed  Google Scholar 

  108. Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Radley, J. J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    Article  PubMed  Google Scholar 

  110. Liu, R. J. & Aghajanian, G. K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl Acad. Sci. USA 105, 359–364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, C. C., Lu, J., Yang, R., Ding, J. B. & Zuo, Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol. Psychiatry 23, 1614–1625 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Dromard, Y., Arango-Lievano, M., Fontanaud, P., Tricaud, N. & Jeanneteau, F. Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress. Neurobiol. Stress 15, 100402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liston, C. & Gan, W. B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc. Natl Acad. Sci. USA 108, 16074–16079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ali, F. et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat. Commun. 11, 72 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009). This protocol details the method for creating a chronic cranial window in mice that enables long-term and high-resolution two-photon imaging of dendritic spines in the cerebral cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hennig, M. H., Fernholz, M. H. P., Guggiana Nilo, D. A., Bonhoeffer, T. & Kist, A. M. DeepD3, an open framework for automated quantification of dendritic spines. PLoS Comput. Biol. 20, e1011774 (2024).

    Article  Google Scholar 

  118. Vidaurre-Gallart, I. et al. A deep learning-based workflow for dendritic spine segmentation. Front. Neuroanat. 16, 817903 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Verstraelen, P. et al. Image-based profiling of synaptic connectivity in primary neuronal cell culture. Front. Neurosci. 12, 389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Savage, J. T. et al. SynBot is an open-source image analysis software for automated quantification of synapses. Cell Rep. Methods 4, 100861 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Avior, Y. et al. Depression patient-derived cortical neurons reveal potential biomarkers for antidepressant response. Transl. Psychiatry 11, 201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sadakane, O. et al. In vivo two-photon imaging of dendritic spines in marmoset neocortex. eNeuro 2, ENEURO.0019-15.2015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen, M., Qi, J., Poo, M. & Yang, Y. Stability and dynamics of dendritic spines in macaque prefrontal cortex. Natl Sci. Rev. 9, nwac125 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Holmes, S. E. et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Mol. Psychiatry 27, 2273–2281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vande Casteele, T. et al. Preliminary evidence for preserved synaptic density in late-life depression. Transl. Psychiatry 14, 145 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Asch, R. H., Abdallah, C. G., Carson, R. E. & Esterlis, I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology https://doi.org/10.1038/s41386-024-01913-3 (2024).

  127. Johansen, A. et al. Effects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial. Mol. Psychiatry 28, 4272–4279 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Angarita, G. A. et al. Lower prefrontal cortical synaptic vesicle binding in cocaine use disorder: an exploratory 11C‐UCB‐J positron emission tomography study in humans. Addiction Biol. 27, e13123 (2021).

    Article  Google Scholar 

  129. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kozyrev, V., Eysel, U. T. & Jancke, D. Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc. Natl Acad. Sci. USA 111, 13553–13558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Romero, M. C., Davare, M., Armendariz, M. & Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10, 2642 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Murphy, S. C., Palmer, L. M., Nyffeler, T., Müri, R. M. & Larkum, M. E. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. eLife 5, e13598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Tang, A. D. et al. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul. 14, 1498–1507 (2021).

    Article  PubMed  Google Scholar 

  135. Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3, 472–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  137. Nestler, E. J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Yuen, E. Y. et al. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73, 962–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Patel, D., Anilkumar, S., Chattarji, S. & Buwalda, B. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus. Behav. Brain Res. 347, 314–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Cerniauskas, I. et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 104, 899–915.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shansky, R. M., Hamo, C., Hof, P. R., McEwen, B. S. & Morrison, J. H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 19, 2479–2484 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Barrientos, C. et al. Cocaine-induced structural plasticity in input regions to distinct cell types in nucleus accumbens. Biol. Psychiatry 84, 893–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McAvoy, K., Russo, C., Kim, S., Rankin, G. & Sahay, A. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age. Hippocampus 25, 1429–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ali, F. et al. Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Mol. Psychiatry 26, 1945–1966 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Beier, K. T. et al. Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature 549, 345–350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J. Neurosci. 40, 3250–3267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Anastasiades, P. G. & Carter, A. G. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 44, 550–563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baker, A. et al. Specialized subpopulations of deep-layer pyramidal neurons in the neocortex: bridging cellular properties to functional consequences. J. Neurosci. 38, 5441–5455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guo, C. et al. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. Sci. Rep. 7, 2846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Graybuck, L. T. et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron 109, 1449–1464.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Chiu, C. Q. et al. Compartmentalization of GABAergic inhibition by dendritic spines. Science 340, 759–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Chen, J. L. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  158. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J. & Gan, W. B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183, 1592–1593 (1959).

    Article  CAS  PubMed  Google Scholar 

  160. Larkman, A. U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J. Comp. Neurol. 306, 332–343 (1991).

    Article  CAS  PubMed  Google Scholar 

  161. Turner, N. L. et al. Reconstruction of neocortex: organelles, compartments, cells, circuits, and activity. Cell 185, 1082–1100.e24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nishiyama, J. & Yasuda, R. Biochemical computation for spine structural plasticity. Neuron 87, 63–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Koch, C. & Zador, A. The function of dendritic spines — devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Huttenlocher, P. R. Synaptic density in human frontal cortex — developmental changes and effects of aging. Brain Res. 163, 195–205 (1979).

    Article  CAS  PubMed  Google Scholar 

  165. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Arellano, J. I., Espinosa, A., Fairen, A., Yuste, R. & DeFelipe, J. Non-synaptic dendritic spines in neocortex. Neuroscience 145, 464–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Holler, S., Kostinger, G., Martin, K. A. C., Schuhknecht, G. F. P. & Stratford, K. J. Structure and function of a neocortical synapse. Nature 591, 111–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Ofer, N., Berger, D. R., Kasthuri, N., Lichtman, J. W. & Yuste, R. Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies. Dev. Neurobiol. 81, 746–757 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 810–812 (2002).

    Article  Google Scholar 

  174. Holtmaat, A., De Paola, V., Wilbrecht, L. & Knott, G. W. Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav. Brain Res. 192, 20–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Attardo, A., Fitzgerald, J. E. & Schnitzer, M. J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523, 592–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Davoudian, P. A., Shao, L. X. & Kwan, A. C. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. ACS Chem. Neurosci. 14, 468–480 (2023). This study uses whole-brain imaging to map the effects of ketamine and psilocybin administration on c-Fos expression in mice, highlighting numerous cortical and subcortical brain regions with similar or distinct changes.

    Article  CAS  PubMed  Google Scholar 

  177. Rijsketic, D. R. et al. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. Neuropsychopharmacology 48, 1798–1807 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chenani, A. et al. Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning. Transl. Psychiatry 12, 381 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82, 444–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Harward, S. C. et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538, 99–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sun, C. et al. The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Sci. Adv. 7, eabj0790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Butko, M. T. et al. Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy. Nat. Neurosci. 15, 1742–1751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Stein, I. S. & Zito, K. Dendritic spine elimination: molecular mechanisms and implications. Neuroscientist 25, 27–47 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Duman, R. et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Savalia (Yale University, New Haven, CT, USA) for the feedback and L.-X. Shao (Cornell University, Ithaca, NY, USA) for the help with making the figures. The authors acknowledge the support of National Institutes of Health (NIH) grants R01MH121848, R01MH128217 and R01MH137047 (A.C.K.), One Mind–COMPASS Rising Star Award (A.C.K.), NIH training grant T32NS041228 (C. Liao), NIH training grant T32GM152349 (A.N.D.), NIH grants MH123154, MH118451 and MH109685 (C. Liston), NIH grant DA047851 (C. Liston), and grants from One Mind, Hartwell Foundation, Rita Allen Foundation, Klingenstein-Simons Foundation Fund, Brain and Behaviour Research Foundation, Hope for Depression Research Foundation, and Pritzker Neuropsychiatric Disorders Research Consortium (C. Liston).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to the discussion of the content. C. Liao and A.C.K. wrote the article. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Alex C. Kwan.

Ethics declarations

Competing interests

A.C.K. has been a scientific adviser or consultant for Boehringer Ingelheim, Empyrean Neuroscience, Freedom Biosciences, and Psylo. A.C.K. has received research support from Intra-Cellular Therapies. C. Liston has served as a scientific adviser or consultant for Brainify.AI, Compass Pathways, Delix Therapeutics, and Magnus Medical. The other authors report no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Joseph Coyle, Huaye Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Dua, A.N., Wojtasiewicz, C. et al. Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nat. Rev. Neurosci. 26, 101–114 (2025). https://doi.org/10.1038/s41583-024-00876-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00876-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing