Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hydroclimate volatility on a warming Earth

Abstract

Hydroclimate volatility refers to sudden, large and/or frequent transitions between very dry and very wet conditions. In this Review, we examine how hydroclimate volatility is anticipated to evolve with anthropogenic warming. Using a metric of ‘hydroclimate whiplash’ based on the Standardized Precipitation Evapotranspiration Index, global-averaged subseasonal (3-month) and interannual (12-month) whiplash have increased by 31–66% and 8–31%, respectively, since the mid-twentieth century. Further increases are anticipated with ongoing warming, including subseasonal increases of 113% and interannual increases of 52% over land areas with 3 °C of warming; these changes are largest at high latitudes and from northern Africa eastward into South Asia. Extensive evidence links these increases primarily to thermodynamics, namely the rising water-vapour-holding capacity and potential evaporative demand of the atmosphere. Increases in hydroclimate volatility will amplify hazards associated with rapid swings between wet and dry states (including flash floods, wildfires, landslides and disease outbreaks), and could accelerate a water management shift towards co-management of drought and flood risks. A clearer understanding of plausible future trajectories of hydroclimate volatility requires expanded focus on the response of atmospheric circulation to regional and global forcings, as well as land–ocean–atmosphere feedbacks, using large ensemble climate model simulations, storm-resolving high-resolution models and emerging machine learning methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global hydroclimate whiplash events.
Fig. 2: Historical hydroclimate whiplash frequency trends.
Fig. 3: Projected hydroclimate whiplash trends in a warming climate.
Fig. 4: Temperature, humidity and the VPD.
Fig. 5: Cascading hydroclimate whiplash hazards in a warming climate.

Similar content being viewed by others

Data availability

All ERA5 data are publicly available via https://cds.climate.copernicus.eu. NCD20C data are available via https://rda.ucar.edu/datasets/d131003/dataaccess. All CESM2-LE data are available via https://www.cesm.ucar.edu/community-projects/lens2/data-sets. Hydroclimate whiplash data can be found via the Zenodo repository at https://doi.org/10.5281/zenodo.13381749 (ref. 188).

Code availability

Code used to generate hydroclimate whiplash data can be found via the Zenodo repository at https://doi.org/10.5281/zenodo.13381749 (ref. 188).

References

  1. Ficklin, D. L., Abatzoglou, J. T. & Novick, K. A. A new perspective on terrestrial hydrologic intensity that incorporates atmospheric water demand. Geophys. Res. Lett. 46, 8114–8124 (2019).

    Article  Google Scholar 

  2. Giorgi, F. et al. Higher hydroclimatic intensity with global warming. J. Clim. 24, 5309–5324 (2011).

    Article  Google Scholar 

  3. Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dynam. 10, 73–89 (2019).

    Article  Google Scholar 

  4. Zamora-Reyes, D. et al. The unprecedented character of California’s 20th century enhanced hydroclimatic variability in a 600-year context. Geophys. Res. Lett. https://doi.org/10.1029/2022GL099582 (2022).

  5. Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earths Future https://doi.org/10.1029/2021EF002487 (2022).

  6. Madakumbura, G. D. et al. Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Sci. Rep. 9, 3483 (2019).

    Article  Google Scholar 

  7. Chen, H. & Wang, S. Accelerated transition between dry and wet periods in a warming climate. Geophys. Res. Lett. 49, e2022GL099766 (2022).

    Article  Google Scholar 

  8. Cheng, L. & Liu, Z. Detectable increase in global land areas susceptible to precipitation reversals under the RCP8.5 scenario. Earths Future 10, e2022EF002948 (2022).

    Article  Google Scholar 

  9. Qing, Y., Wang, S., Yang, Z.-L. & Gentine, P. Soil moisture–atmosphere feedbacks have triggered the shifts from drought to pluvial conditions since 1980. Commun. Earth Environ. 4, 254 (2023).

    Article  Google Scholar 

  10. Rashid, M. M. & Wahl, T. Hydrologic risk from consecutive dry and wet extremes at the global scale. Environ. Res. Commun. 4, 071001 (2022).

    Article  Google Scholar 

  11. Fang, B. & Lu, M. Asia faces a growing threat from intraseasonal compound weather whiplash. Earths Future 11, e2022EF003111 (2023).

    Article  Google Scholar 

  12. Rezvani, R., Na, W. & Najafi, M. R. Lagged compound dry and wet spells in northwest North America under 1.5 °C–4 °C global warming levels. Atmos. Res. 290, 106799 (2023).

    Article  Google Scholar 

  13. Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    Article  Google Scholar 

  14. Chen, D., Norris, J., Thackeray, C. & Hall, A. Increasing precipitation whiplash in climate change hotspots. Environ. Res. Lett. 17, 124011 (2022).

    Article  Google Scholar 

  15. Tan, X. et al. Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions. Nat. Commun. 14, 2796 (2023).

    Article  CAS  Google Scholar 

  16. Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).

    Article  Google Scholar 

  17. Wood, R. R., Lehner, F., Pendergrass, A. G. & Schlunegger, S. Changes in precipitation variability across time scales in multiple global climate model large ensembles. Environ. Res. Lett. 16, 084022 (2021).

    Article  Google Scholar 

  18. Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021 (2021).

    Article  Google Scholar 

  19. Kumar, S., Dewes, C. F., Newman, M. & Duan, Y. Robust changes in North America’s hydroclimate variability and predictability. Earths Future 11, e2022EF003239 (2023).

    Article  Google Scholar 

  20. Francis, J. A., Skific, N. & Zobel, Z. Weather whiplash events in Europe and North Atlantic assessed as continental-scale atmospheric regime shifts. npj Clim. Atmos. Sci. 6, 216 (2023).

    Article  Google Scholar 

  21. Homann, J., Oster, J. L., de Wet, C. B., Breitenbach, S. F. M. & Hoffmann, T. Linked fire activity and climate whiplash in California during the early Holocene. Nat. Commun. 13, 7175 (2022).

    Article  CAS  Google Scholar 

  22. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  23. Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).

    Article  Google Scholar 

  24. De Luca, P., Messori, G., Wilby, R. L., Mazzoleni, M. & Di Baldassarre, G. Concurrent wet and dry hydrological extremes at the global scale. Earth Syst. Dynam. 11, 251–266 (2020).

    Article  Google Scholar 

  25. Lei, N., Gao, L., Liu, S. & Zhou, Z. The spatiotemporal clustering of short-duration rainstorms in Shanghai city using a sub-hourly gauge network. Earth Space Sci. 11, e2023EA003442 (2024).

    Article  Google Scholar 

  26. Herrera-Estrada, J. E. & Diffenbaugh, N. S. Landfalling droughts: global tracking of moisture deficits from the oceans onto land. Water Resour. Res. 56, e2019WR026877 (2020).

    Article  Google Scholar 

  27. Williams, A. P., Cook, B. I. & Smerdon, J. E. Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nat. Clim. Change 12, 232–234 (2022).

    Article  Google Scholar 

  28. Garreaud, R. D. et al. The Central Chile mega drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40, 421–439 (2020).

    Article  Google Scholar 

  29. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article  Google Scholar 

  30. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  31. Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. npj Clim. Atmos. Sci. 6, 205 (2023).

    Article  Google Scholar 

  32. Satoh, Y. et al. A quantitative evaluation of the issue of drought definition: a source of disagreement in future drought assessments. Environ. Res. Lett. 16, 104001 (2021).

    Article  Google Scholar 

  33. Lintner, B. R. et al. Amplification of wet and dry month occurrence over tropical land regions in response to global warming. J. Geophys. Res. Atmos.https://doi.org/10.1029/2012JD017499 (2012).

  34. Albano, C. M. et al. A multidataset assessment of climatic drivers and uncertainties of recent trends in evaporative demand across the continental United States. J. Hydrometeorol. 23, 505–519 (2022).

    Article  Google Scholar 

  35. McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R. & Abatzoglou, J. T. Projected changes in reference evapotranspiration in California and Nevada: implications for drought and wildland fire danger. Earths Future 8, e2020EF001736 (2020).

    Article  Google Scholar 

  36. Lloyd-Hughes, B. The impracticality of a universal drought definition. Theor. Appl. Climatol. 117, 607–611 (2014).

    Article  Google Scholar 

  37. Van Loon, A. F. et al. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol. Earth Syst. Sci. 20, 3631–3650 (2016).

    Article  Google Scholar 

  38. Mukherjee, S., Mishra, A. & Trenberth, K. E. Climate change and drought: a perspective on drought indices. Curr. Clim. Change Rep. 4, 145–163 (2018).

    Article  Google Scholar 

  39. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  40. Slivinski, L. C. et al. Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 145, 2876–2908 (2019).

    Article  Google Scholar 

  41. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dynam. 12, 1393–1411 (2021).

    Article  Google Scholar 

  42. Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article  Google Scholar 

  43. Zhang, W., Zhou, T. & Wu, P. Anthropogenic amplification of precipitation variability over the past century. Science 385, 427–432 (2024).

    Article  CAS  Google Scholar 

  44. Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water https://doi.org/10.1038/s44221-023-00040-5 (2023).

    Article  Google Scholar 

  45. Trenberth, K. E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Change 42, 327–339 (1999).

    Article  Google Scholar 

  46. Singh, J. et al. Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nat. Clim. Change 12, 163–170 (2022).

    Article  Google Scholar 

  47. Berg, N. & Hall, A. Increased interannual precipitation extremes over California under climate change. J. Clim. 28, 6324–6334 (2015).

    Article  Google Scholar 

  48. Scheff, J. & Frierson, D. M. W. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052910 (2012).

  49. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article  Google Scholar 

  50. IPCC Climate Change 2021: The Physical Science Basis 1513–1766 (Cambridge Univ. Press, 2023).

  51. Hermann, M., Wernli, H. & Röthlisberger, M. Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes. Nat. Commun. 15, 7022 (2024).

    Article  CAS  Google Scholar 

  52. Li, S. et al. Increasing vapor pressure deficit accelerates land drying. J. Hydrol. 625, 130062 (2023).

    Article  CAS  Google Scholar 

  53. Novick, K. A. et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. https://doi.org/10.1111/pce.14846 (2024).

  54. Clapeyron, B.-P. E. Memoir sur la puissance motrice de la chaleur. J. Éc. Polytech. 14, 153–190 (1834).

  55. Clausius, R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Phys. 155, 368–397 (1850).

    Article  Google Scholar 

  56. Allan, R. P., Willett, K. M., John, V. O. & Trent, T. Global changes in water vapor 1979–2020. J. Geophys. Res. Atmos. 127, e2022JD036728 (2022).

    Article  Google Scholar 

  57. Santer, B. D. et al. Identification of human-induced changes in atmospheric moisture content. Proc. Natl Acad. Sci. USA 104, 15248–15253 (2007).

    Article  CAS  Google Scholar 

  58. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  59. Emori, S. & Brown, S. J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. https://doi.org/10.1029/2005GL023272 (2005).

  60. O’Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Article  Google Scholar 

  61. Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).

    Article  CAS  Google Scholar 

  62. Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J. Clim. 29, 9045–9061 (2016).

    Article  Google Scholar 

  63. Vicente-Serrano, S. M. et al. Recent changes of relative humidity: regional connections with land and ocean processes. Earth Syst. Dynam. 9, 915–937 (2018).

    Article  Google Scholar 

  64. Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).

    Article  CAS  Google Scholar 

  65. Zhou, W., Leung, L. R. & Lu, J. The role of interactive soil moisture in land drying under anthropogenic warming. Geophys. Res. Lett. 50, e2023GL105308 (2023).

    Article  Google Scholar 

  66. Marvel, K. et al. Projected changes to hydroclimate seasonality in the continental United States. Earths Future 9, e2021EF002019 (2021).

    Article  Google Scholar 

  67. Breshears, D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00266 (2013).

  68. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  CAS  Google Scholar 

  69. Gamelin, B. L. et al. Projected US drought extremes through the twenty-first century with vapor pressure deficit. Sci. Rep. 12, 8615 (2022).

    Article  CAS  Google Scholar 

  70. Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. USA 118, e2111875118 (2021).

    Article  CAS  Google Scholar 

  71. Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).

    Article  CAS  Google Scholar 

  72. Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M. & Konings, A. G. Plant-water sensitivity regulates wildfire vulnerability. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01654-2 (2022).

    Article  Google Scholar 

  73. Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

    Article  CAS  Google Scholar 

  74. Lee, S. et al. On the future zonal contrasts of equatorial Pacific climate: perspectives from observations, simulations, and theories. npj Clim. Atmos. Sci. 5, 82 (2022).

    Article  Google Scholar 

  75. Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article  Google Scholar 

  76. Neelin, J. D. et al. Precipitation extremes and water vapor. Curr. Clim. Change Rep. https://doi.org/10.1007/s40641-021-00177-z (2022).

    Article  Google Scholar 

  77. IPCC Climate Change 2021: The Physical Science Basis, 1055–1210 (Cambridge Univ. Press, 2023).

  78. Patricola, C. M. et al. Maximizing ENSO as a source of western US hydroclimate predictability. Clim. Dyn. 54, 351–372 (2020).

    Article  Google Scholar 

  79. Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  80. Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

    Article  Google Scholar 

  81. Zhou, W., Yang, D., Xie, S.-P. & Ma, J. Amplified Madden–Julian oscillation impacts in the Pacific–North America region. Nat. Clim. Change 10, 654–660 (2020).

    Article  CAS  Google Scholar 

  82. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article  Google Scholar 

  83. Wang, J., Kim, H. & DeFlorio, M. J. Future changes of PNA-like MJO teleconnections in CMIP6 models: underlying mechanisms and uncertainty. J. Clim. 35, 3459–3478 (2022).

    Article  Google Scholar 

  84. Chen, G. Diversity of the global teleconnections associated with the Madden–Julian Oscillation. J. Clim. 34, 397–414 (2021).

    Article  Google Scholar 

  85. Jenney, A. M., Randall, D. A. & Barnes, E. A. Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections. Weather. Clim. Dyn. 2, 653–673 (2021).

    Article  Google Scholar 

  86. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article  CAS  Google Scholar 

  87. Donat, M. G., Lowry, A. L., Alexander, L. V., Ogorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

  88. Kirchmeier-Young, M. C. & Zhang, X. Human influence has intensified extreme precipitation in North America. Proc. Natl Acad. Sci. USA 117, 13308 (2020).

    Article  CAS  Google Scholar 

  89. Pendergrass, A. G. et al. Nonlinear response of extreme precipitation to warming in CESM1. Geophys. Res. Lett. 46, 10551–10560 (2019).

    Article  Google Scholar 

  90. Swain, D. L. et al. Increased flood exposure due to climate change and population growth in the United States. Earths Future 8, e2020EF001778 (2020).

    Article  Google Scholar 

  91. Gründemann, G. J., van de Giesen, N., Brunner, L. & van der Ent, R. Rarest rainfall events will see the greatest relative increase in magnitude under future climate change. Commun. Earth Environ. 3, 235 (2022).

    Article  Google Scholar 

  92. Mallakpour, I., Sadegh, M. & AghaKouchak, A. A new normal for streamflow in California in a warming climate: wetter wet seasons and drier dry seasons. J. Hydrol. 567, 203–211 (2018).

    Article  Google Scholar 

  93. Chou, C., Neelin, J. D., Chen, C.-A. & Tu, J.-Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    Article  Google Scholar 

  94. Thackeray, C. W., DeAngelis, A. M., Hall, A., Swain, D. L. & Qu, X. On the connection between global hydrologic sensitivity and regional wet extremes. Geophys. Res. Lett. 45, 11,343–311,351 (2018).

    Article  Google Scholar 

  95. O’Gorman, P. A. & Muller, C. J. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett. 5, 025207 (2010).

    Article  Google Scholar 

  96. Martinez-Villalobos, C. & Neelin, J. D. Regionally high risk increase for precipitation extreme events under global warming. Sci. Rep. 13, 5579 (2023).

    Article  CAS  Google Scholar 

  97. Kotz, M., Lange, S., Wenz, L. & Levermann, A. Constraining the pattern and magnitude of projected extreme precipitation change in a multimodel ensemble. J. Clim. 37, 97–111 (2024).

    Article  Google Scholar 

  98. Pendergrass, A. G. & Hartmann, D. L. The atmospheric energy constraint on global-mean precipitation change. J. Clim. 27, 757–768 (2014).

    Article  Google Scholar 

  99. Gu, G. & Adler, R. F. Precipitation intensity changes in the tropics from observations and models. J. Clim. 31, 4775–4790 (2018).

    Article  Google Scholar 

  100. Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A. & Dettinger, M. D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 4, 4364 (2014).

  101. Wainwright, C. M., Black, E. & Allan, R. P. Future changes in wet and dry season characteristics in CMIP5 and CMIP6 simulations. J. Hydrometeorol. 22, 2339–2357 (2021).

    Google Scholar 

  102. Lenderink, G. et al. Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. Philos. Trans. R. Soc. A 379, 20190544 (2021).

    Article  Google Scholar 

  103. Lenderink, G., Barbero, R., Loriaux, J. M. & Fowler, H. J. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 30, 6037–6052 (2017).

    Article  Google Scholar 

  104. Pendergrass, A. G. What precipitation is extreme? Science 360, 1072 (2018).

    Article  CAS  Google Scholar 

  105. Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article  Google Scholar 

  106. Liu, M., Vecchi, G. A., Smith, J. A. & Knutson, T. R. Causes of large projected increases in hurricane precipitation rates with global warming. npj Clim. Atmos. Sci. 2, 38 (2019).

    Article  Google Scholar 

  107. Prein, A. F. et al. Increased rainfall volume from future convective storms in the US. Nat. Clim. Change 7, 880–884 (2017).

    Article  Google Scholar 

  108. Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J. & Kirchner, J. W. The relative importance of different flood-generating mechanisms across Europe. Water Resour. Res. 55, 4582–4593 (2019).

    Article  Google Scholar 

  109. Brunner, M. I. et al. An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Commun. Earth Environ. 2, 173 (2021).

    Article  Google Scholar 

  110. Davenport, F. V., Herrera-Estrada, J. E., Burke, M. & Diffenbaugh, N. S. Flood size increases nonlinearly across the western United States in response to lower snow-precipitation ratios. Water Resour. Res. 56, e2019WR025571 (2020).

    Article  Google Scholar 

  111. Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. https://doi.org/10.1029/2018GL080768 (2019).

  112. Wilhelm, B. et al. Impact of warmer climate periods on flood hazard in the European Alps. Nat. Geosci. 15, 118–123 (2022).

    Article  CAS  Google Scholar 

  113. Wasko, C., Guo, D., Ho, M., Nathan, R. & Vogel, E. Diverging projections for flood and rainfall frequency curves. J. Hydrol. 620, 129403 (2023).

    Article  Google Scholar 

  114. Quintero, F., Villarini, G., Prein, A. F., Zhang, W. & Krajewski, W. F. Discharge and floods projected to increase more than precipitation extremes. Hydrol. Process. 36, e14738 (2022).

    Article  Google Scholar 

  115. Feng, L. et al. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 5, 631–644 (2024).

    Article  Google Scholar 

  116. Loecke, T. D. et al. Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133, 7–15 (2017).

    Article  CAS  Google Scholar 

  117. Paul, M. J. et al. Wildfire induces changes in receiving waters: a review with considerations for water quality management. Water Resour. Res. 58, e2021WR030699 (2022).

    Article  Google Scholar 

  118. Zhu, R. et al. Cumulative effects of drought–flood abrupt alternation on the photosynthetic characteristics of rice. Environ. Exp. Bot. 169, 103901 (2020).

    Article  Google Scholar 

  119. Chen, H. & Wang, S. Compound dry and wet extremes lead to an increased risk of rice yield loss. Geophys. Res. Lett. 50, e2023GL105817 (2023).

    Article  Google Scholar 

  120. Vadez, V. et al. Crop traits and production under drought. Nat. Rev. Earth Environ. 5, 211–225 (2024).

    Article  Google Scholar 

  121. Matanó, A., de Ruiter, M. C., Koehler, J., Ward, P. J. & Van Loon, A. F. Caught between extremes: understanding human–water interactions during drought-to-flood events in the Horn of Africa. Earths Future 10, e2022EF002747 (2022).

    Article  Google Scholar 

  122. Sloat, L. L. et al. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    Article  Google Scholar 

  123. Reed, C. et al. The impact of flooding on food security across Africa. Proc. Natl Acad. Sci. USA 119, e2119399119 (2022).

    Article  CAS  Google Scholar 

  124. Liu, X., Zhang, D. & He, X. Unveiling the role of climate in spatially synchronized locust outbreak risks. Sci. Adv. 10, eadj1164 (2024).

    Article  Google Scholar 

  125. Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).

    Article  Google Scholar 

  126. Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 1436, 157–173 (2019).

    Article  Google Scholar 

  127. Rieckmann, A., Tamason, C. C., Gurley, E. S., Rod, N. H. & Jensen, P. K. M. Exploring droughts and floods and their association with cholera outbreaks in sub-Saharan Africa: a register-based ecological study from 1990 to 2010. Am. J. Trop. Med. Hyg. 98, 1269–1274 (2018).

    Article  Google Scholar 

  128. Head, J. R. et al. Effects of precipitation, heat, and drought on incidence and expansion of coccidioidomycosis in western USA: a longitudinal surveillance study. Lancet Planet. Health 6, e793–e803 (2022).

    Article  Google Scholar 

  129. Tichavský, R., Ballesteros-Cánovas, J. A., Šilhán, K., Tolasz, R. & Stoffel, M. Dry spells and extreme precipitation are the main trigger of landslides in Central Europe. Sci. Rep. 9, 14560 (2019).

    Article  Google Scholar 

  130. Vahedifard, F., Williams, J. & AghaKouchak, A. Geotechnical engineering in the face of climate change: role of multi-physics processes in partially saturated soils. In International Foundation Congress and Equipment Expo 2018 (American Society of Civil Engineers, 2018); https://doi.org/10.1061/9780784481585.035.

  131. Robinson, J. D. & Vahedifard, F. Weakening mechanisms imposed on California’s levees under multiyear extreme drought. Clim. Change 137, 1–14 (2016).

    Article  Google Scholar 

  132. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  133. DeGraff, J. V., Cannon, S. H. & Gartner, J. E. The timing of susceptibility to post-fire debris flows in the western United States. Environ. Eng. Geosci. 21, 277–292 (2015).

    Article  Google Scholar 

  134. Oakley, N. S. A warming climate adds complexity to post-fire hydrologic hazard planning. Earths Future 9, e2021EF002149 (2021).

    Article  Google Scholar 

  135. Hubbert, K. R., Wohlgemuth, P. M., Beyers, J. L., Narog, M. G. & Gerrard, R. Post-fire soil water repellency, hydrologic response, and sediment yield compared between grass-converted and chaparral watersheds. Fire Ecol. 8, 143–162 (2012).

    Article  Google Scholar 

  136. Jacobs, L. et al. Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda. Nat. Hazards 84, 851–876 (2016).

    Article  Google Scholar 

  137. Touma, D. et al. Climate change increases risk of extreme rainfall following wildfire in the western United States. Sci. Adv. 8, eabm0320 (2022).

    Article  Google Scholar 

  138. Mallakpour, I., AghaKouchak, A. & Sadegh, M. Climate-induced changes in the risk of hydrological failure of major dams in California. Geophys. Res. Lett. https://doi.org/10.1029/2018GL081888 (2019).

  139. Lopez-Cantu, T., Webber, M. K. & Samaras, C. Incorporating uncertainty from downscaled rainfall projections into climate resilience planning in US cities. Environ. Res. Infrastruct. Sustain. 2, 045006 (2022).

    Article  Google Scholar 

  140. Schlef, K. E. et al. Review: incorporating non-stationarity from climate change into rainfall frequency and intensity–duration–frequency (IDF) curves. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2022.128757 (2022).

  141. Ward, P. J. et al. The need to integrate flood and drought disaster risk reduction strategies. Water Secur. 11, 100070 (2020).

    Article  Google Scholar 

  142. Ebi, K. L. et al. Extreme weather and climate change: population health and health system implications. Annu. Rev. Public Health 42, 293–315 (2021).

    Article  Google Scholar 

  143. Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A. & Berg, N. California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. J. Clim. 26, 6238–6256 (2013).

    Article  Google Scholar 

  144. Persad, G. G., Swain, D. L., Kouba, C. & Ortiz-Partida, J. P. Inter-model agreement on projected shifts in California hydroclimate characteristics critical to water management. Clim. Change 162, 1493–1513 (2020).

    Article  Google Scholar 

  145. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article  Google Scholar 

  146. Opperman, J. et al. Sustainable floodplains through large-scale reconnection to rivers. Science 326, 1487–1488 (2009).

    Article  CAS  Google Scholar 

  147. He, X. et al. Climate-informed hydrologic modeling and policy typology to guide managed aquifer recharge. Sci. Adv. 7, eabe6025 (2021).

    Article  Google Scholar 

  148. Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in Northern California. Water Resour. Res. 56, e2019WR026604 (2020).

    Article  Google Scholar 

  149. Chan, F. K. S. et al. ‘Sponge City’ in China — a breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778 (2018).

    Article  Google Scholar 

  150. Armour, K. C. et al. Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity. Proc. Natl Acad. Sci. USA 121, e2312093121 (2024).

    Article  CAS  Google Scholar 

  151. Maher, N. et al. The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dynam. 14, 413–431 (2023).

    Article  Google Scholar 

  152. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Article  Google Scholar 

  153. Lamptey, B. et al. Challenges and ways forward for sustainable weather and climate services in Africa. Nat. Commun. 15, 2664 (2024).

    Article  CAS  Google Scholar 

  154. Tzachor, A. et al. How to reduce Africa’s undue exposure to climate risks. Nature 620, 488–491 (2023).

    Article  CAS  Google Scholar 

  155. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Article  Google Scholar 

  156. Fosser, G. et al. Convection-permitting climate models offer more certain extreme rainfall projections. npj Clim. Atmos. Sci. 7, 51 (2024).

    Article  Google Scholar 

  157. Zhao, M., A, G., Liu, Y. & Konings, A. G. Evapotranspiration frequently increases during droughts. Nat. Clim. Change 12, 1024–1030 (2022).

    Article  Google Scholar 

  158. Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models. Proc. Natl Acad. Sci. USA 121, e2302480120 (2024).

    Article  CAS  Google Scholar 

  159. Mann, M. E. et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).

  160. White, R. H., Kornhuber, K., Martius, O. & Wirth, V. From atmospheric waves to heatwaves: a waveguide perspective for understanding and predicting concurrent, persistent, and extreme extratropical weather. Bull. Am. Meteorol. Soc. 103, E923–E935 (2022).

    Article  Google Scholar 

  161. Kautz, L. A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector — a review. Weather Clim. Dyn. 3, 305–336 (2022).

    Article  Google Scholar 

  162. Qiao, L. et al. Soil moisture–atmosphere coupling accelerates global warming. Nat. Commun. 14, 4908 (2023).

    Article  CAS  Google Scholar 

  163. Bartusek, S., Kornhuber, K. & Ting, M. 2021 North American heatwave amplified by climate change-driven nonlinear interactions. Nat. Clim. Change 12, 1143–1150 (2022).

    Article  Google Scholar 

  164. Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M. & Seneviratne, S. I. Identifying key driving processes of major recent heat waves. J. Geophys. Res. Atmos. 124, 11746–11765 (2019).

    Article  Google Scholar 

  165. Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vilà-Guerau de Arellano, J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Article  CAS  Google Scholar 

  166. Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article  CAS  Google Scholar 

  167. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).

    Article  Google Scholar 

  168. Wion, A. P. et al. Dead again: predictions of repeat tree die-off under hotter droughts confirm mortality thresholds for a dryland conifer species. Environ. Res. Lett. 17, 074031 (2022).

    Article  Google Scholar 

  169. Haszpra, T., Herein, M. & Bódai, T. Investigating ENSO and its teleconnections under climate change in an ensemble view — a new perspective. Earth Syst. Dynam. 11, 267–280 (2020).

    Article  Google Scholar 

  170. IPCC Climate Change 2021: The Physical Science Basis 553–672 (Cambridge Univ. Press, 2023).

  171. Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article  CAS  Google Scholar 

  172. Dong, B. & Sutton, R. T. Recent trends in summer atmospheric circulation in the North Atlantic/European region: is there a role for anthropogenic aerosols? J. Clim. 34, 6777–6795 (2021).

    Google Scholar 

  173. Wang, Y. et al. Reduced European aerosol emissions suppress winter extremes over northern Eurasia. Nat. Clim. Change 10, 225–230 (2020).

    Article  CAS  Google Scholar 

  174. Ban, N. et al. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Clim. Dyn. 57, 275–302 (2021).

    Article  Google Scholar 

  175. de Burgh-Day, C. O. & Leeuwenburg, T. Machine learning for numerical weather and climate modelling: a review. Geosci. Model. Dev. 16, 6433–6477 (2023).

    Article  Google Scholar 

  176. Molina, M. J. et al. A review of recent and emerging machine learning applications for climate variability and weather phenomena. Artif. Intell. Earth Syst. 2, 220086 (2023).

    Google Scholar 

  177. Schneider, T., Leung, L. R. & Wills, R. C. J. Opinion: optimizing climate models with process knowledge, resolution, and artificial intelligence. Atmos. Chem. Phys. 24, 7041–7062 (2024).

    Article  CAS  Google Scholar 

  178. Davenport, F. V., Barnes, E. A. & Gordon, E. M. Combining neural networks and CMIP6 simulations to learn windows of opportunity for skillful prediction of multiyear sea surface temperature variability. Geophys. Res. Lett. 51, e2023GL108099 (2024).

    Article  Google Scholar 

  179. Wong, C. How AI is improving climate forecasts. Nature https://doi.org/10.1038/d41586-024-00780-8 (2024).

    Article  Google Scholar 

  180. Biancamaria, S., Lettenmaier, D. P. & Pavelsky, T. M. The SWOT mission and its capabilities for land hydrology. Surv. Geophys. 37, 307–337 (2016).

    Article  Google Scholar 

  181. Koldunov, N. et al. Emerging AI-based weather prediction models as downscaling tools. Preprint at https://doi.org/10.48550/arXiv.2406.17977 (2024).

  182. Carlson, C. J., Alam, M. S., North, M. A., Onyango, E. & Stewart-Ibarra, A. M. The health burden of climate change: a call for global scientific action. PLoS Clim. 2, e0000126 (2023).

    Article  Google Scholar 

  183. Ayyub, B., DeAngelo, B., Walker, D. & Barsugli, J. ASCE–NOAA workshops on leveraging Earth system science and modeling to inform civil engineering design. NOAA https://doi.org/10.25923/e8kn-n884 (2023).

  184. Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S. & Gillett, N. P. Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl Acad. Sci. USA 118, e2016549118 (2021).

    Article  CAS  Google Scholar 

  185. Kendon, E. J., Prein, A. F., Senior, C. A. & Stirling, A. Challenges and outlook for convection-permitting climate modelling. Philos. Trans. R. Soc. A 379, 20190547 (2021).

    Article  CAS  Google Scholar 

  186. McKinnon, K. A., Poppick, A., Dunn-Sigouin, E. & Deser, C. An ‘Observational Large Ensemble’ to compare observed and modeled temperature trend uncertainty due to internal variability. J. Clim. 30, 7585–7598 (2017).

    Article  Google Scholar 

  187. Tian, T., Yang, S., Høyer, J. L., Nielsen-Englyst, P. & Singha, S. Cooler Arctic surface temperatures simulated by climate models are closer to satellite-based data than the ERA5 reanalysis. Commun. Earth Environ. 5, 111 (2024).

    Article  Google Scholar 

  188. Swain, D. L. et al. Zenodo https://doi.org/10.5281/zenodo.13381749 (2024).

  189. Pendergrass, A. G. & Knutti, R. The uneven nature of daily precipitation and its change. Geophys. Res. Lett. https://doi.org/10.1029/2018GL080298 (2018).

  190. Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 16063 (2019).

    Article  CAS  Google Scholar 

  191. Zeder, J. & Fischer, E. M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 29, 100266 (2020).

    Article  Google Scholar 

  192. Sun, Q., Zhang, X., Zwiers, F., Westra, S. & Alexander, L. V. A global, continental, and regional analysis of changes in extreme precipitation. J. Clim. 34, 243–258 (2021).

    Article  Google Scholar 

  193. Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N. & Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 12, 3944 (2021).

    Article  CAS  Google Scholar 

  194. Slater, L. et al. Global changes in 20-year, 50-year, and 100-year river floods. Geophys. Res. Lett. 48, e2020GL091824 (2021).

    Article  Google Scholar 

  195. Bertola, M., Viglione, A., Lun, D., Hall, J. & Blöschl, G. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth Syst. Sci. 24, 1805–1822 (2020).

    Article  Google Scholar 

  196. Blöschl et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article  Google Scholar 

  197. Archfield, S. A., Hirsch, R. M., Viglione, A. & Blöschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett. 43, 10,232–210,239 (2016).

    Article  CAS  Google Scholar 

  198. Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).

    Article  Google Scholar 

  199. Brunner, M. I. & Slater, L. J. Extreme floods in Europe: going beyond observations using reforecast ensemble pooling. Hydrol. Earth Syst. Sci. 26, 469–482 (2022).

    Article  Google Scholar 

  200. Wasko, C., Nathan, R., Stein, L. & O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 603, 126994 (2021).

    Article  Google Scholar 

  201. Wasko, C. & Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 575, 432–441 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

D.L.S. was supported through a collaboration between UCLA, the NSF National Science Foundation National Center for Atmospheric Research and The Nature Conservancy of California. M.B. acknowledges funding from the Swiss National Science Foundation SNSF through the ‘Consecutive drought-flood events in a warming world’ project (ConDF, grant number 200021_214907). This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the US National Science Foundation under Cooperative Agreement No. 1852977.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization by D.L.S., A.F.P., J.T.A., C.M.A., M.B., N.S.D., D.S., C.B.S. and D.T. Methodology by D.L.S., A.F.P., J.T.A., C.M.A., M.B., N.S.D., D.S., C.B.S. and D.T. Data acquisition and curation by D.L.S., A.F.P. and J.T.A. Investigation by D.L.S., A.F.P. and J.T.A. Visualization by D.L.S., A.F.P., J.T.A., D.S. and C.B.S. Writing — original draft by D.L.S. Writing — review and editing by D.L.S., A.F.P., J.T.A., C.M.A., M.B., N.S.D., D.S., C.B.S. and D.T. Project administration by D.L.S.

Corresponding author

Correspondence to Daniel L. Swain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Paolo de Luca, Xuezhi Tan, Shuo Wang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, D.L., Prein, A.F., Abatzoglou, J.T. et al. Hydroclimate volatility on a warming Earth. Nat Rev Earth Environ 6, 35–50 (2025). https://doi.org/10.1038/s43017-024-00624-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00624-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing