Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals A compensation scheme applied on wind turbine blade pitch control for the reduction of non-torque main shaft loads

2021 ◽  
Vol 1201 (1) ◽  
pp. 012002
Author(s):  
R Balakrishna ◽  
Y Xing

Abstract It has been well established that non-torque main shaft loads influence the internal drive train loads. This paper proposes a scheme that compensates for non-torque loads in the blade pitch controller. The compensation scheme is implemented on a dynamic model developed in FAST/Simulink. Three wind conditions of 8, 11.4 and 20 m/s are examined. The dynamic analysis of the bending moment in the low-speed shaft showed a reduction in bending moment by 3 % for the rated wind speed (11.4 m/s) and 1.8 % for the above-rated wind speed (20 m/s), highlighting the effectiveness of the proposed scheme. However, a reduction in bending moment also slightly decreased the shaft’s speed by 2.3 % and 0.5 %, respectively. Similarly, the turbine power was decreased by 9 % and 1 %, respectively. In comparison, further gain scheduling within the compensation scheme reduces the power loss to as low as 0.3 %. The 2 to 3 % reduction in the low-speed shaft bending moment can significantly influence the drive train loads and easily outweigh any loss resulting in the shaft rotational speed and turbine power. Thus, this paper shows that using bending moment error as feedback within the compensation scheme positively affects the low-speed shaft’s bending moment with the eventual potential of reducing drivetrain loads.

2012 ◽  
Vol 622-623 ◽  
pp. 1188-1193 ◽  
Author(s):  
Hüseyin Çamur ◽  
Youssef Kassem

The purpose of this work is to determine the drag characteristics and the torque of three C-section blades wind car. Three C-section blades are directly connected to wheels by using of various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. Previous work on three vertical blades wind car resulted in discrepancies when compared to this work. Investigating these differences was the motivation for this series of work. The calculated values were compared to the data of three vertical blades wind car. The work was conducted in a low wind speed. The drag force acting on each model was calculated with an airflow velocity of 4 m/s and angular velocity of the blade of 13.056 rad/s.


2004 ◽  
Vol 126 (4) ◽  
pp. 1083-1091 ◽  
Author(s):  
Alan D. Wright ◽  
Mark J. Balas

The wind industry seeks to design wind turbines to maximize energy production and increase fatigue life. To achieve this goal, we must design wind turbines to extract maximum energy and reduce component and system loads. This paper applies modern state-space control design methods to a two-bladed teetering-hub upwind machine located at the National Wind Technology Center. The design objective is to regulate turbine speed in region 3 (above rated wind speed) and enhance damping in several low-damped flexible modes of the turbine. The controls approach is based on the Disturbance Accommodating Control method and provides accountability for wind-speed disturbances. First, controls are designed with the single control input rotor collective pitch to stabilize the first drive-train torsion as well as the tower first fore-aft bending modes. Generator torque is then incorporated as an additional control input. This reduces some of the demand placed on the rotor collective pitch control system and enhances first drive train torsion mode damping. Individual blade pitch control is then used to attenuate wind disturbances having spatial variation over the rotor and effectively reduces blade flap deflections caused by wind shear.


2012 ◽  
Vol 522 ◽  
pp. 364-368
Author(s):  
Ji Zhe Hai ◽  
Wen Lei Sun ◽  
Guo Yu Hu ◽  
An Wu

In this paper, we demonstrate the design and simulation of a baseline PID rotor collective pitch controller with a gain scheduling for WindPACT) operation. We use a FAST-Simulink model of the closed-loop system to describe simulating this controller.Through the simulation analysis and comparing the result, control effect with the control strategy of gain scheduling results in better power regulation. At the moment of wind speed make more close to the rated wind speed, the changes of pitch angle is more sensitive, and the output power is larger and more smoothly.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


1974 ◽  
Vol 96 (1) ◽  
pp. 226-232 ◽  
Author(s):  
C. Cusano ◽  
T. F. Conry

The design problem is formulated for multi-recess hydrostatic journal bearings with a design criterion of minimum total power loss. The design is subject to the constraints of constant ratio of the recess area to the total bearing area and maximum load capacity for a given recess geometry. The L/D ratio, eccentricity ratio, ratio of recess area to total bearing area, and shaft rotational speed are considered as parameters. The analysis is based on the bearing model of Raimondi and Boyd [1]. This model is generally valid for low-to-moderate speeds and a ratio of recess area-to-total bearing area of approximately 0.5 or greater. Design charts are presented for bearings having a ratio of recess area-to-total bearing area of 0.6 and employing capillary and orifice restrictors, these being the most common types of compensating elements. A design example is given to illustrate the use of the design charts.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Chetan Mistry ◽  
A. M. Pradeep

The influence of circumferential inflow distorted on the performance and flow behavior of a high aspect ratio, low speed contra rotating fan is reported in this paper. The total pressure at the inlet is artificially distorted by means of 90 deg mesh sector with a porosity of 0.70. The performance of the contra rotating fan was studied under different speed combinations of the two rotors under clean and distorted inflow conditions. Detailed flow analyses were conducted under design and off-design conditions. In order to understand the effect of distortion and its extent, the distortion sector was rotated circumferentially at intervals of 15 deg to cover the entire annulus. Detailed measurements of the total pressure, velocity components, and flow angles were carried out at the inlet of the first rotor, between the two rotors, and at the exit of the second rotor. The study reveals a few interesting aspects on the effect of inflow distortion on the performance of a contra-rotating stage. For the design speed combination and lower rotational speed of rotor-2, a reduction in the overall operating range with a shift of the peak pressure point towards higher mass flow rate, was observed. It is observed that the effect of inflow distortion at the inlet of rotor-1 gets transferred in the direction of rotor-1 rotation and spreads across the entire annulus. The opposite sense of rotation of rotor-2 causes the distortion effect to get transferred in the direction of rotation of rotor-2 with an associated reduction in the total pressure near the hub. It is observed that a higher rotational speed of the second rotor has a beneficial effect on the overall performance due to the strong suction by generated higher rotational speed of rotor-2.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2031
Author(s):  
Jongmin Cheon ◽  
Jinwook Kim ◽  
Joohoon Lee ◽  
Kichang Lee ◽  
Youngkiu Choi

This paper deals with the development of a wind turbine pitch control system and the construction of a Hardware-in-the-Loop-Simulation (HILS) testbed for the performance test of the pitch control system. When the wind speed exceeds the rated wind speed, the wind turbine pitch controller adjusts the blade pitch angles collectively to ensure that the rotor speed maintains the rated rotor speed. The pitch controller with the individual pitch control function can add individual pitch angles into the collective pitch angles to reduce the mechanical load applied to the blade periodically due to wind shear. Large wind turbines often experience mechanical loads caused by wind shear phenomena. To verify the performance of the pitch control system before applying it to an actual wind turbine, the pitch control system is tested on the HILS testbed, which acts like an actual wind turbine system. The testbed for evaluating the developed pitch control system consists of the pitch control system, a real-time unit for simulating the wind and the operations of the wind turbine, an operational computer with a human–machine interface, a load system for simulating the actual wind load applied to each blade, and a real pitch bearing. Through the several tests based on HILS test bed, how well the pitch controller performed the given roles for each area in the entire wind speed area from cut-in to cut-out wind speed can be shown.


2005 ◽  
Vol 128 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Dong-Ho Rhee ◽  
Hyung Hee Cho

The local heat/mass transfer characteristics on the tip and shroud were investigated using a low speed rotating turbine annular cascade. Time-averaged mass transfer coefficients on the tip and shroud were measured using a naphthalene sublimation technique. A low speed wind tunnel with a single stage turbine annular cascade was used. The turbine stage is composed of sixteen guide plates and blades. The chord length of blade is 150 mm and the mean tip clearance is about 2.5% of the blade chord. The tested Reynolds number based on inlet flow velocity and blade chord is 1.5×105 and the rotational speed of the blade is 255.8 rpm at design condition. The results were compared with the results for a stationary blade and the effects of incidence angle of incoming flow were examined for incidence angles ranging from −15 to +7deg. The off-design test conditions are obtained by changing the rotational speed with a fixed incoming flow velocity. Flow reattachment on the tip near the pressure side edge dominates the heat transfer on the tip surface. Consequently, the heat/mass transfer coefficients on the blade tip are about 1.7 times as high as those on the blade surface and the shroud. However, the heat transfer on the tip is about 10% lower than that for the stationary case due to reduced leakage flow with the relative motion. The peak regions due to the flow reattachment are reduced and shifted toward the trailing edge and additional peaks are formed near the leading edge region with decreasing incidence angles. But, quite uniform and high values are observed on the tip with positive incidence angles. The time-averaged heat/mass transfer on the shroud surface has a level similar to that of the stationary cases.


Author(s):  
Mohammad Javad Shahriyari ◽  
Hossein Khaleghi ◽  
Martin Heinrich

This paper reports on a theory for poststall transients in contra-rotating fans, which is developed from the basic Moore–Greitzer theory. A second-order hysteresis term is assumed for the fan pressure rise, which gives the theory more capabilities in predicting the fan instabilities. The effect of the rotational speed ratio of the two counter rotating rotors on the fan performance during the occurrence of surge and rotating stall are studied (the rotational speed of the front rotor is assumed to be kept constant whereas the speed of the rear rotor is variable). One of the new capabilities of the current model is the possibility of investigating the effect of the initial slope on the fan characteristic. Results reveal that unlike the conventional fans and compressors, in the current contra-rotating fan stall cannot be initiated from the negative slope portion of the fan pressure rise characteristic curve. One of the important advantages of the developed model is that it enables investigation of the effect of the rate of throttling on the instabilities. Results show that more the rotational speed of the rear rotor, the more robust to surge (caused by throttling) the fan is.


Export Citation Format

Share Document