Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

tool electrode
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 93)

H-INDEX

20
(FIVE YEARS 3)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 152
Author(s):  
Albert Wen-Jeng Hsue ◽  
Zih-Yuan Huang

An electrochemical machining (ECM) process for microcavity fabrication with deionized water (DI-water) and an ECM polishing hybrid with alumina powder of 1.0 μm grains on a single micro-EDM machine are proposed. The process adopts tungsten carbide as tool electrode and M-333 tool steel as the mold material. It reveals that employing the 30 μm/min feed rate with 50 mA and 0.2 ms of pulse-width is suitable for DI-water electrochemical machining. The DI-water ECM process can achieve an excellent surface roughness at Ra 0.169 µm on a semispherical round cavity. Combining the ECM with hybrid polishing with the alumina powder can achieve a better profile for a much deeper cavity than pure electrolytic discharge machining. The hybrid ECM polishing can efficiently finish a micro square insert of 0.6 mm length at 64 μm depth. Such ECM milling can achieve an S-shaped microchannel of radius 1.0 mm and a slot of 1.0 × 0.5 mm2 with 110 μm depth, demonstrating its feasibility and the surface integrity with accurate profile and roughness of Ra 0.227 μm. This study provides a cost-effective scheme for micro mold fabrication with a conventional micro-EDM machine tool and an intuitive and convenient optional process. However, some micro-electrical discharges occurred due to the breakdown of insulation, which creates micro craters on the surface of the parts.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 513
Author(s):  
Shoufa Liu ◽  
Muthuramalingam Thangaraj ◽  
Khaja Moiduddin ◽  
Abdulrahman M. Al-Ahmari

Titanium alloy is widely used for orthodontic technology and easily machined using the EDM process. In the EDM process, the workpiece and tool electrode must be separated by a continuous air gap during the machining operation to generate discharge energy in this method. In the present study, an endeavor was made to analyze the effects of a servo feed air gap control and tool electrode in the EDM process. The developed mechanical setup consists of a linear action movement with zero backlash along the X-axis, which can be controlled up to 0.03 mm. It was observed that the suggested air gap control scheme can enhance the servo feed mechanism on a machining titanium alloy. A tungsten carbide electrode can enhance the surface measures owing to its ability to produce tiny craters with uniform distribution. Since it produces a little crater and has a higher melting point, a tungsten carbide electrode can create lesser surface roughness than a copper tool and brass tool electrode.


2022 ◽  
Author(s):  
Shashank Shukla ◽  
Mangal Singh Sisodiya ◽  
Vivek Bajpai

Abstract At present, the machining performance of the existing EDM technology depends upon the commonly used pulsed power supply and gap control mechanism. The complexity and the higher cost of the above said vital components, reflected in the product cost. A simple electrical circuit has been applied to control the voltage and the electric magnet so that the tool electrode can levitate over the workpiece at the desired distance (electrode gap). A prototype is fabricated with the DC power supply and the maglev levitation mechanism. To evaluate novel maglev EDM technology with the existing EDM technology, experiments were conducted on Ti-6Al-4V alloy with a brass tool. The discharge waveform of maglev EDM has shown the discharge voltage and current and the absence of short-circuit at high duty factor. A predictive model is formulated by dimensional analysis based on MRR and average surface roughness. The experimental result of conventional EDM from the literature were used to prepare the model. The maglev EDM is showing higher MRR and surface roughness than the prediction. Surface morphology showed similar surfaces as formed in EDM. The specific energy analysis showed that the developed maglev EDM performs in reported data range. It is noted that the proposed technology is in its early stage and the performance is significantly comparable with the existing technology. Therefore, it is expected that the research in this area may help to develop an economically sustainable alternative to the existing costly and complex EDM technology.


Author(s):  
Gagandeep Singh ◽  
Partap Singh Samra ◽  
Amresh Kumar

2021 ◽  
Vol 29 (4) ◽  
pp. 260-265
Author(s):  
Ľuboslav Straka ◽  
Patrik Kuchta

Abstract Production in all industry fields is currently affected by new scientific and technical knowledge and the requirements for its rapid deployment. In many cases, the most modern and highly sophisticated technical systems are applied. Simultaneously, fully automated production systems are rather successfully used and progressive production technologies are implemented. In most cases, there is an integral part of a management system that operates the challenging technological processes. These processes would not be executable without the system’s precise control, which provides a suitable precondition for ensuring the high quality of manufactured products. However, the customer’s demanding requirements are not always met. These involve increased requests for the quality of the final product due to the reduction of the tolerance band and application of high-strength materials. This paper aims to describe one of the solutions by which it is possible to achieve a higher quality of the machined surface after wire electrical discharge machining (WEDM). The solution proposes that through dynamic management, the WEDM process eliminates the vibrations of the wire tool electrode and thereby achieves a substantial increase in the quality of the eroded area in terms of its geometric accuracy. With the support of an extensive database of information with precise exchange of information, the proposed system will allow to control the electro discharge process with regard to the optimal way of operation of the electro discharge machine on the basis of individually selected conditions.


Author(s):  
Duraisivam Saminatharaja ◽  
Suresh Periyakgounder ◽  
Mahalingam Selvaraj ◽  
Jamuna Elangandhi

Electrical discharge machines (EDM) are widely employed in machining components containing complex profiles of hard-to-cut and machining materials. However, the fabrication-of-tool time for the EDM process is excessively high in the traditional machining method, which significantly affects the machining rate. Therefore, in this paper, a powder metallurgy (PM) technique is employed to fabricate the tool electrode using copper (Cu), titanium carbide (TiC), and zirconium silicate (ZrSiO4) for different combinations. An L18 orthogonal array (OA) is planned using the following input parameters: three types of tools (Cu, Cu90, Cu80), peak current (PC) [A], pulse on time (PT) [µs], and gap voltage (GV) [V]. The performance of EDM is evaluated through the material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The process parameters are optimized using two different techniques: the technique for order of preference by similarity to the ideal solution (TOPSIS) and grey relational analysis (GRA). TOPSIS and GRA optimization techniques produce the same optimal parametric solution for less TWR, SR, and higher MRR with the combination of the Cu90 tool, E8 APC, 15 µs pulse PT, and 75 V GV. Based on the ANOVA table of TOPSIS, pulse on time plays a major role, contributing 46.8 % of the machining performance; peak current shows the most significant contribution of 39.3 % of the machining performance using GRA values. Furthermore, the scanning electron microscope (SEM) image analyses are carried out on the machined workpiece surface to understand the effect of tools on machining quality.


Author(s):  
Rahul Davis ◽  
Abhishek Singh ◽  
Kishore Debnath ◽  
Roberta Maia Sabino ◽  
Ketul Popat ◽  
...  

Abstract In the midst of a huge demand for high-precision miniaturized medical implants made up of potential biomaterials, the biomedical Ti-6Al-4V alloy meets the uncompromising standards for longevity, biocompatibility, and sterilizability required to interact with living cells in medical settings. This research tailored the existing capabilities of a traditional micro-electric discharge machining (μ-EDM) setup by adding 0, 2, 4, 6, 8, and 10 g/l bioactive zinc powder-particle-concentrations (PPCs) to the dielectric. A copper and brass micro-tool electrode (C-μ-TE and B-μ-TE) were employed in association with each PPC, and experiments were executed using one-variable-at-a-time (OVAT) approach. Machining time and dimensional deviation were chosen as the response variables of Zn powder mixed-micro-EDM (Zn-PM-μ-EDM). According to the analytical findings, the combination of C-μ-TE and 6 g/l Zn PPC achieved 23.52 %, 3.29 %, and 17.96 % lesser machining time, dimensional deviation, and recast layer thickness, respectively, compared to the B-μ-TE. The detailed study of this surface endorsed a significant modification in terms of improved recast layer thickness (26.44 μm), topography (Ra = 743.65 nm), and wettability (contact angle < 90°), suggesting its dental application. Additionally, the observation of ZnO and TiO in X-ray diffraction and appealing in vitro cytocompatibility encourage the subsequent biological and therapeutic studies to validate the anticipated anti-viral activity of the modified Ti-6Al-4V alloy surface against coronavirus (COVID-19).


Export Citation Format

Share Document