Background and Objectives:The neuropathological changes underlying Alzheimer´s disease (AD) start before overt cognitive symptoms arise, but it is not well-known how they relate to the first subtle cognitive changes. The objective for this study was to examine the independent associations of the AD hallmarks β-amyloid (Aβ), tau, and neurodegeneration with different cognitive domains in cognitively unimpaired (CU) individuals.Methods:In this cross-sectional study, CU participants from the prospective BioFINDER-2 study were included. All had CSF biomarkers (Aβ42 and P-tau181), MRI (cortical thickness of AD-susceptible regions), Aβ-PET (neocortical uptake), tau-PET (entorhinal uptake), and cognitive test data for i) memory, ii) executive function, iii) verbal function, iv), and visuospatial function. Multivariable linear regression models were performed, using either CSF Aβ42, P-tau181 and cortical thickness or Aβ-PET, tau-PET, and cortical thickness, as predictors of cognitive function. The results were validated in an independent cohort (ADNI).Results:316 CU participants were included from the BioFINDER-2 study. Abnormal Aβ-status was independently associated with the executive measure, regardless of modality (CSF Aβ42 β=0.128, p=0.024; Aβ-PET β=0.124, p=0.049), while tau was independently associated with memory (CSF P-tau181 β=0.132, p=0.018; tau-PET β=0.189, p=0.002). Cortical thickness was independently associated with the executive measure and verbal fluency in both models (p=0.005-0.018). To examine the relationships in the earliest stage of preclinical AD, only participants with normal biomarkers of tau and neurodegeneration were included (n=217 CSF-based; n=246 PET-based). Again, Aβ-status was associated with executive function (CSF Aβ42, β=0.189, p=0.005; Aβ-PET, β=0.146, p=0.023), but not with other cognitive domains. The results were overall replicated in the ADNI cohort (n=361).Discussion:These findings suggest that Aβ is independently associated with worse performance on an executive measure but not with memory performance, which instead is associated with tau pathology. This may have implications for early preclinical AD screening and outcome measures in AD trials targeting Aβ pathology.