Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

soil acidity
Recently Published Documents


TOTAL DOCUMENTS

993
(FIVE YEARS 144)

H-INDEX

48
(FIVE YEARS 2)

2021 ◽  
Vol 25 (2) ◽  
pp. 137
Author(s):  
Henri Henri ◽  
Rusidi Rusidi ◽  
Ratna Santi

The mosses growth is generally influenced by temperature, habitat humidity, light intensity, and soil acidity. This study aimed to determine the level of diversity of bryophytes species on various substrates in the Nenek Hills Natural Tourism Park of Mount Permisan, South Bangka Regency. The methods used in this study were exploration and observation. The results of this study are the types of mosses (Bryophytes) found Nenek Hills Natural Tourism Park of Mount Permisan, South Bangka Regency, are from the families Calymperaceae, Dicranaceae, Fissidentaceae, Leucobryaceae, Rhizogoniaceae, Sematophylaceae, Calypogeiaceae, Geocalyceae, Lejeuneaceae, Lepidoziaceae and Plagiochilaceae. The dominating family is Leucobryaceae, Lejeuneaceae and Calymperaceae. The type of substrate that moss prefers to grow is rock. Abiotic factors consist of light intensity with a value of 0,2-7,2 Klx (low), air temperature with a value of 25-29°C (medium-high), humidity with a value of 34-68% (medium-high), soil acidity with a value of 5,9-6,9 (slightly-neutral) and soil moisture with a value of 52-65% (moist).


2021 ◽  
Vol 14 (1) ◽  
pp. 50
Author(s):  
Camila Morais Fonseca ◽  
Veridiana Cardozo Gonçalves Cantão ◽  
Carlos Cesar Evangelista de Menezes ◽  
Simone Cristiane Brand ◽  
Gabriel Elias Soares de Araújo ◽  
...  

The soils of Brazilian Savanna, naturally, present acidity problems, making correction practices fundamental to ensure production. Even with so many years since the introduction of agriculture, some soil correction practices are still misused. Thus, the objective was to evaluate soybean yield and chemical changes in a Red Oxisol in the Brazilian Savanna with the use of limestone, associated or not with gypsum, applied superficially and incorporated by harrow and moldboard plow. The experiment was conducted under field conditions, in Rio Verde-GO, cultivating soybeans in the 2015/2016 and 2016/1017 harvests. The experimental design was in randomized blocks, with four replications, with treatments arranged in a 3 × 3 factorial scheme. The first factor refers to the application of superficial limestone and incorporated by harrow and moldboard plow. The second factor was the presence or absence of limestone and/or gypsum (0 + 0; 0.875 + 0 and 0.875 + 1.75 t ha-1). Plant height, number of pods per plant, productivity, pH, Al, CTC, Ca, Mg and V were evaluated, in soil depths of 0-0.2 and 0.2-0.4 m. In the 2016/2017 harvest, the characteristics of pH, CTC, V and contents of Ca, Mg and Al were influenced by the methods of application of limestone and by its use, associated or not with gypsum. There was an increase in pH on the soil surface with the use of limestone and on the subsurface with the use of limestone and gypsum. The moldboard plow provided increases in the contents of Ca and Mg in the soil in comparison to surface application. The moldboard plow incresed in soybean yield, in the second crop, with and without association of gypsum with limestone.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 159-167
Author(s):  
Jef DECKERS ◽  
Jasper VERHAEGEN ◽  
Ilse VERGAUWEN

The sandy Zandvliet Member represents a particular, decalcified facies in the top of the Pliocene Lillo Formation in northern Belgium. Based on the correlation with nearby boreholes at the type locality of the Zandvliet Member, we were able to characterize this unit on Cone Penetration Tests. Compared to the underlying Merksem Member, the Zandvliet Member generally shows markedly lower cone resistance values. Since besides the decalcification, the Zandvliet Member is lithologically nearly identical to the underlying Merksem Member, the lower cone resistance values in the Zandvliet Member compared to the Merksem Member can only be the result of the decalcification of the Zandvliet Member. Indeed, the partly decalcified top of the Merksem Member also gives similar cone resistance values as the Zandvliet Member. Decalcification of the Eocene Brussel Sand in central Belgium is also known to have resulted in lower cone resistance values. Our Cone Penetration Test interpretations show that the thickness of the Zandvliet Member strongly varies across short distances (>10 m across 1 km). As the Zandvliet Member thickens, the underlying Merksem Member thins and vice versa. This trend is not in line with that of the under- and overlying strata, i.e. intraformational, nor with the depositional environment of these units. The thickness changes of the Zandvliet Member therefore purely reflect changes in depth of the post-depositional decalcification into the original shell-bearing sand (i.e. original Merksem Member). This confirms the existing hypothesis that the Zandvliet Member actually represents the decalcified part of the Merksem Member. The anomalous heavy mineralogy of the Zandvliet Member compared to the other members of the Lillo Formation cannot be readily explained by the acid chemical weathering which caused the decalcification. This may rather be related to a change in the primary heavy mineral signal of the upper part of the Merksem Member and equivalent Zandvliet Member compared to the underlying sequences of the Lillo Formation. The reason for the post-depositional decalcification could be similar to the Pleistocene changes in soil acidity invoked for decalcification of time-equivalent Red Crag sand in England.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gedefa Sori ◽  
Birhanu Iticha ◽  
Chalsissa Takele

Abstract Background Understanding the spatial variability of soil properties is useful to tailor site-specific agricultural inputs to enhance crop production on a sustainable basis. This study was aimed to assess and map the spatial patterns of soil acidity and nutrients using geostatistical methods and support site-specific lime and fertilizer recommendations in Bedele district, Southwestern Ethiopia. Methods Soil samples were collected from agricultural land at a depth of 20 cm using grid sampling technique. The semivariogram analysis was performed for accurate spatial prediction and the kriging technique was used for interpolation of soil parameters. Results Soil pH varied between 4.5 and 6.8. Soil organic carbon (OC) content ranged from 0.3 to 5.6% and the mean soil OC density was 0.81 kg m−2. Available phosphorus (AvP) ranged from 0.8 to 38.6 mg kg−1 and nearly 80.23% of the soils exhibited very low to low AvP that could be due to fixation by strong acidity. Soils of the study area exhibited very high exchangeable potassium (K), but very low exchangeable calcium (Ca) and magnesium (Mg). The potassium to magnesium ratio (K:Mg) ranged from 0.2:1 to 10.9:1, while the values of calcium to magnesium ratio (Ca:Mg) varied between 0.3 and 3.4. Among the soil parameters, exchangeable Ca (CV = 54%) and K:Mg ratio (CV = 57.62%) were more variable than other soil parameters. Spatial variability was lowest for soil pH (CV = 10%). Conclusions Major portions of the study site were affected by strong acidity (pH ≤ 5.5). Accordingly, about 89% of the soils require lime that varied between 0.09 and 3.6 tons ha−1. In addition to soil acidity, deficiency of available P, Ca, and Mg were the major liming factors affecting crop production in the study area. Digital soil mapping was used to show the spatial variability of soil acidity and nutrients across agricultural land and applied for efficient lime and nutrients advisory works.


2021 ◽  
Vol 937 (3) ◽  
pp. 032070
Author(s):  
E S Malysheva ◽  
A V Malyshev ◽  
I G Kostin

Abstract The article describes a comprehensive analysis of agrochemical and soil erosion monitoring data, using the example of the Alekseevsky district of the Belgorod region with the use of a geoinformation system. The GIS automatically generates tables with data grouped by various characteristics: soil type, degree of erosion, slope steepness and exposure. The content of mobile forms of phosphorus and potassium, organic matter, and the level of soil acidity in the context of the district in areas with different exposures, the degree of erosion and the steepness of the slope was analyzed. The most productive soils are located on the plain, followed by the slopes of the northern exposure, neutral, then southern. Erosion processes occur more strongly mainly on the slopes of the southern exposure, and the northern slopes are characterized by humidity. Down the slope, the nutrient content decreases, the level of soil acidity increases.


2021 ◽  
Author(s):  
Daba Etana ◽  
Amsalu Nebiyu ◽  
Zeleke Wondimmu ◽  
Morgan L. Ruelle

Abstract Aims Common bean is an important source of food and fodder and is used to improve soil fertility when integrated in cropping systems through intercropping or rotation. Although widely grown by smallholders in Ethiopia, its productivity is constrained by several factors including soil acidity, which limits nutrient availability and uptake. The negative effects of soil acidity may be mediated by root system morphology and structure. Therefore, the aim of this study was to determine if root traits in common bean are associated with tolerance to soil acidity. Methodology The study was laid out in a split-plot design, whereby soil amendment practices with phosphorus (+P or -P) and liming (+lime or –lime) and their combinations were assigned to main plots and varieties to subplots. Two improved varieties (Nasir and Deme) and two farmers’ varieties (Polpole and Pantarkin) of common bean were evaluated under each soil amendment practice. Results Farmers’ variety Polpole produced significantly (p< 0.05) more hypocotyl roots (14.17) with a wider hypocotyls angle (5.87°) than other varieties. In addition, Polpole had a larger tap root diameter (2.57 mm) and length (34.10 cm) in plots amended with P. The improved variety Deme showed a higher number of basal roots (14.0) and basal root whorls (4.20) as well as lower basal root angle (0-15°) in plots amended with P and lime. Analyses demonstrate that common bean varieties differ in their ability to tolerate soil acidity due to differences in their root morphological and structural traits. Conclusion The results suggest an opportunity to identify and further develop acid tolerant varieties for low input farming systems to improve and enhance bean productivity and efficiency of the agro ecosystem at large.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2605
Author(s):  
Miguel Ángel Olego ◽  
Miguel Javier Quiroga ◽  
Roberto López ◽  
Enrique Garzón-Jimeno

Aluminium phytotoxicity is considered the main limiting factor for crop productivity in agricultural acid soils. Liming is a common practice used to improve acidic soil properties, but an appropriate liming material is essential for both agricultural productivity and environmental sustainability. A long-term field experiment with two liming amendments (dolomitic limestone and limestone) was developed during 10 years to determine the changes in soil acidity and assess the effects on crop (rye) yields. Although the adverse effects of the soil acidity conditions were alleviated with both amendments tested, dolomitic limestone was the most effective in the short- and long-term period. In terms of the saturation of exchange complex, dolomitic limestone had a better efficiency, likely based on its rate of dissolution. No significant changes in soil organic matter and exchangeable potassium levels between the treatments tested were found. Both liming materials significantly increased the rye total biomass, but interestingly, significant correlations were showed between tissue levels of magnesium and biomass production, but not between the latter and calcium. The increases in rye biomass production compared with control soils at the end of the research were the following: dolomitic limestone, 47%, and limestone, 32%. A link between an increase in magnesium bioavailability and biomass production was found, as well as between magnesium rye content and total, spike and stem biomass. Hence, it could conceivably be hypothesized that since magnesium is crucial for the transport of assimilates from source leaves to sink organs, alleviating its deficiency leads to avoiding the reducing growth rate of sink organs. Although further investigations are needed to gain a better understanding of liming on the biological, chemical and physical soil properties in the long term, our research provides support for the conceptual premise that an appropriate selection of liming material is crucial for the productivity of acid soils.


2021 ◽  
Vol 2021 (2/2021) ◽  
pp. 37-43
Author(s):  
Svetla Marinova ◽  
Elena Zlatareva

The issues of acidity and liming of soils were raised in Bulgaria more than 60-70 years ago. „Devnya Cement“ produces the Restart product, as an integral part of the process in the installation of cement clinker in a dry way and contains a high amount of calcium oxide (lime material). The aim of the study is to establish the effect of the studied product RESTART and possibilities for its use as an ameliorant on acid soils. A vegetation experiment was performed with a test crops of corn with different percentages of ameliorant. The chemical and physico-mechanical parameters of the treated soil were studied and the changes in the degree of soil acidity were established. Preliminary consumption rates of the ameliorant have been determined, when it is used for amelioration of acid soils. The chemical characteristics of the plant samples show, that the values of the chemical elements are in optimal concentrations and cannot have a harmful effect, when used as animal feed. To correct the acidity of soils with similar acidic properties as in the Devnya region, it may be recommended to apply about 1-2t/daa of the studied ameliorant.


Export Citation Format

Share Document