Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

nitrate solution
Recently Published Documents


TOTAL DOCUMENTS

893
(FIVE YEARS 196)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Abolhassan Najafi ◽  
Mahdi Khoeini ◽  
Gholamreza Khalaj ◽  
Amirhossein Sahebgharan

Abstract In the present research, the use of electronic waste in the synthesis of silver nanoparticles was investigated. For this purpose, electronic scraps were used as a consumable part to synthesize silver nanoparticles. The results revealed that by optimizing the time and temperature of the dissolution process using nitric acid solution up to 90%, silver can be extracted from these parts. The temperature of 60°C and the duration of one hour were determined as the optimum conditions for this phase. Afterward, the synthesis of silver nanoparticles was checked using silver nitrate solution. The results indicated that the concentration of initial silver nitrate had a significant impact on the quality of the final product so that the best conditions for the synthesis of silver nanoparticles with suitable properties were provided at 1 molar concentration. Phase studies indicated that the main phase of the synthesized silver particles had an FCC structure and no unwanted phase was observed. Ultraviolet-visible analysis of the synthesized powder revealed that the main peak for the silver nanoparticles appeared in the wavelength range of 400 to 450 nm. DLS analysis revealed that precursor's particles inside the sol were below 15 nm. Based on AFM and TEM investigations, the particles synthesized under these conditions had nanometric spherical morphology with uniform particle size distribution.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
César F. Cayo-Rojas ◽  
Karen K. Hernández-Caba ◽  
Ana S. Aliaga-Mariñas ◽  
Marysela I. Ladera-Castañeda ◽  
Luis A. Cervantes-Ganoza

Abstract Background The contraction presented by resin composites causes an increase in stress at the tooth-resin interface, causing micro-gaps that allow microleakage. This study aims to evaluate the degree of in vitro marginal microleakage in class II restorations with two bulk fill resin composites compared to a conventional nanohybrid resin composite. Methods The present study was an in vitro experimental design. A total of 30 standardized class II cavities were prepared in 15 human molars (mesially and distally). These cavities were later distributed in 3 groups according to the type of resin. Groups A and B were restored with bulk fill resin composites (Filtek—3 M/ESPE and Tetric N-Ceram—Ivoclar/Vivadent respectively) in a single increment of 4 mm. Group C was restored with the Filtek Z350 XT – 3 M/ESPE resin composite and two increments of 2 mm. Later, the restorations were subjected to 10,000 thermocycles between 5 °C to 55 °C and immersed in a silver nitrate solution (1 M for 24 h). The crowns were then sectioned mesiodistally and observed under the stereomicroscope to determine the degree of marginal microleakage at the occlusal and cervical areas. The results were analyzed with the Kruskal–Wallis and the Mann–Whitney U statistical tests. Results There were no statistically significant differences regarding the degree of microleakage between the three types of resin composites in the occlusal and cervical areas (p > 0.05). Similarly, there were no significant differences after comparing each resin type in its occlusal and cervical area (p > 0.05). Conclusion Filtek Bulk Fill and Tetric N-Ceram Bulk Fill resin composites showed no statistically significant differences with the conventional nanohybrid resin composite Filtek Z350XT at both occlusal and cervical areas.


Author(s):  
V.G. Sozontov ◽  
◽  
I.V. Kravchenko ◽  
I.L. Kovalenko

The article presents the technology for production of granular calcium-ammonium nitrate, which is suitable for implementation into the existing production of complex mineral fertilizers. The paper considers the physicochemical foundations of manufacturing calcium-ammonium nitrate and provides the calculations of the equilibrium constants of the reactions occurring at the temperatures of 25–1700С. A new process flow diagram was proposed. It was shown that the production of calcium ammonium nitrate as a valuable agrochemical fertilizer is possible by mixing of 82–84% ammonium nitrate solution with solid carbonate raw materials with further granulation and drying in a drum granulator and dryer. The work determines the conditions for the interaction of reagents making it possible to reduce the losses of nitrogen. The density of aqueous suspensions of chalk and the rate of its precipitation are established. The obtained results allow improving an industrial plant based on the existing equipment for the production of complex mineral fertilizers. The technological parameters for the preparation of the product are optimized to meet the requirements of technical conditions. During commissioning and stabilization of the technological regime, a product was obtained containing 25.9–27.8% of total nitrogen, 15.6–16.8% of CaCO3, 0.01–0.64% of Ca(NO3)2, and 0.32–0.75% of H2O with the following particle size distribution: 95.3–96.3% of 1–5 mm particle size, and 3.7–4.8% of particle size of less than 1 mm with a granule hardness of 30 N per granule.


2021 ◽  
Vol 13 (23) ◽  
pp. 13220
Author(s):  
Faisal Ali ◽  
Zahid Ali ◽  
Umer Younas ◽  
Awais Ahmad ◽  
Ghulam Mooin-ud-din ◽  
...  

Herrin, a simple and eco-friendly method for the synthesis of silver nanowires (Ag-NWs) has been reported. Silver nanowires were synthesized using Psidium guajava seed extract that acted as a reducing agent as well as a stabilizing agent for silver nitrate solution. Synthesis was carried out at 50 °C temperature under continuous UV-irradiation. Silver nanowires were initially characterized by a UV-visible and FTIR spectrophotometer. In addition, morphology and particle size of synthesized Ag-NWs were determined using Field Emission Scanning Electron Microscopy and X-ray diffraction (XRD) techniques. Nanowires were found to have 12.8 μm length and 200–500 nm diameter and cubic phase morphology. Furthermore, the catalytic potential of Ag-NWs for the degradation of methyl orange dye (MO) was determined. The selected dye was degraded successfully that confirmed the catalytic potential of Ag-NWs. The authors concluded that Ag-NWs can be synthesized using plant extract having excellent morphological features as well as impressive catalytic potential.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7284
Author(s):  
Piya Roychoudhury ◽  
Aleksandra Golubeva ◽  
Przemysław Dąbek ◽  
Michał Gloc ◽  
Renata Dobrucka ◽  
...  

Fabrication of flower-like nanostructures are gaining attention because of their high surface/volume ratio and extensive adsorption capacity. In the present investigation, flower-shaped, autofluorescent silver-silica (Ag-SiO2) hybrid nanoparticles have been fabricated exploiting diatoms as a source of nanosilica. Two different species of Gedaniella including G. flavovirens and G. mutabilis showed their efficacy in synthesizing fluorescent Ag-SiO2 nanoflowers (NFs) and nanospheres (NSs) against 9 mM silver nitrate solution, respectively. The biogenic nanoconjugate (Ag-SiO2) was characterized by Uv-vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), scanning (SEM) and transmission (TEM) electron microscopy. Production of Ag-SiO2 hybrid nanoparticle was confirmed by observing both Ag and Si signals from a single nanoparticle in an EDS study. The broad and single absorption band at ~420 nm in Uv-vis spectroscopy confirmed proper miscibility and production of hybrid nanoparticles. The Ag-SiO2 nanohybrids revealed autofluorescent property under the blue light region (excitation ~450–490 nm). SEM images of particles synthesized by G. flavovirens revealed the production of microscopic flower shaped Ag-SiO2 particles with several layers of petals. A TEM study confirmed that the synthesized Ag-SiO2 NFs are variable in size with 100–500 nm in diameter. Decolorization of methylene blue after exposure to Ag-SiO2 particles confirmed catalytic activity of synthesized nanostructures. This eco-friendly method provides a new dimension in nanobiotechnology for biogenesis of such hierarchical nanostructure in a cost-effective way.


Author(s):  
Chih-Yu Hung ◽  
Naseer Hussain ◽  
Barry Husk ◽  
Joann K. Whalen

Ammonia (NH3) volatilization from ammonia-based fertilizer and animal manure reduces their nitrogen fertilizer value and is a source of environmental pollution. Mixing manure with biochar may lower NH3 volatilization from manure by adding H+, adsorbing mineral nitrogen (N), or increasing N immobilization in microbial biomass. The objective of this study was to determine whether wood-based biochar could lower NH3 volatilization from vented pails containing manure (liquid swine, dairy slurry, and solid poultry manure) or a urea ammonium nitrate solution (UAN). Two types of wood-based biochar (BlueLeaf and Dynamotive) were mixed with three types of manure and UAN fertilizer solution at 0, 2.5, 5, 10, and 25 % biochar by volume in vented pails. After 21 d storage in an outdoor shaded area, the greatest NH3 volatilization was from poultry manure, which had pH 9.4 on average and low water content regardless of the biochar source and application rate. There was less NH3 volatilization from UAN fertilizer solution when mixed with 25% (v/v) of Dynamotive biochar compared to NH3 volatilization from UAN fertilizer solution mixed with 0–10% (%) of Dynamotive biochar, probably because pH decreased from 7.0 to 6.4 after 21 d contact. Mixing wood-based biochar with manure had no impact on NH3 volatilization, suggesting that these biochar sources did not appreciably change the pH and N dynamics in stored manure after 21 d.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3978
Author(s):  
Oana Steluta Serbanescu ◽  
Andreea Madalina Pandele ◽  
Madalina Oprea ◽  
Augustin Semenescu ◽  
Vijay Kumar Thakur ◽  
...  

This study presents a new, revolutionary, and easy method of separating Gd (III). For this purpose, a cellulose acetate membrane surface was modified in three steps, as follows: firstly, with aminopropyl triethoxysylene; then with glutaraldehyde; and at the end, by immobilization of crown ethers. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), through which the synthesis of membranes with Gd (III) separation properties is demonstrated. In addition, for the Gd (III) separating process, a gadolinium nitrate solution, with applications of moderator poison in nuclear reactors, was used. The membranes retention performance has been demonstrated by inductively coupled plasma mass spectrometry (ICP-MS), showing a separation efficiency of up to 91%, compared with the initial feed solution.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6862
Author(s):  
Krzysztof Moraczewski ◽  
Andrzej Trafarski ◽  
Rafał Malinowski

The paper presents the results of copper electroless metallization of cellulose paper with the use of a polydopamine coating and silver catalyst. The polydopamine coating was deposited via a simple dip method using a dopamine hydrochloride solution in 10 mM TRIS-HCl buffer with a pH of 8.5. The research showed that as a result of this process, cellulose fibers were covered with a homogeneous layer of polydopamine. The unique properties of the polydopamine coating allowed the reduction of silver ions from silver nitrate solution and the deposition of silver atoms on the paper surface. Deposited silver served as a catalyst in the autocatalytic electroless copper-plating process. The copper layer covered the entire surface of the paper sheet after 5 min of metallization, favorably affecting the electrical properties of this material by lowering the surface resistivity. The deposited copper layer was further characterized by good adhesive strength and high susceptibility to deformation.


2021 ◽  
Author(s):  
W Moon ◽  
SH Chung ◽  
J Chang

SUMMARY The aim of this study was to evaluate interfacial gap formation of CAD/CAM lithium disilicate inlay margins before and after thermomechanical loading. Methods and Materials: Mesio-occlusal-distal cavities were prepared on 12 extracted mandibular molars. The gingival margin of one proximal box was elevated with resin modified glass ionomer (RMGI) by a height of 2 mm (Group E [elevation]), and the margin of the other side served as a control (Group NE [no elevation]). Lithium disilicate computer-aided design and computer-aided manufacturing (CAD/CAM) inlays were fabricated and bonded with a self-adhesive resin cement. An aging process was simulated on the specimens under thermomechanical cycling by using a chewing simulator. Marginal integration was evaluated under scanning electron miscroscopy (SEM) using epoxy resin replicas before and after cycling. Marginal areas were stained with silver nitrate solution, and the volumetric gap was measured at the bonded interfaces using microcomputed tomography (CT) before and after cycling. Statistical analyses were performed using paired t-tests, the Wilcoxon signed rank test, and the Mann–Whitney test (a<0.05). Results: SEM showed marginal discontinuities in Group NE that increased after thermomechanical cycling. Micro-computed tomography exhibited three-dimensional dye-penetrating patterns at the interfaces before and after cycling. Interfacial disintegration was larger in Group NE before cycling (p<0.05). Thermomechanical cycling increased the gaps in both Groups NE and E (p<0.05). The gap increment from thermomechanical cycling was larger in Group NE (p<0.05). Conclusions: Thermomechanical cycling induced interfacial disintegration at the lithium disilicate CAD/CAM inlays, with deep proximal margins. Margin elevation with RMGI placement reduced the extent of the interfacial gap formation before and after the aging simulation.


Export Citation Format

Share Document