Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

coal deformation
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Can Zhao ◽  
Liang Chen ◽  
Bing Wu ◽  
Jingui Zhang ◽  
Dahe Yan ◽  
...  

In order to study the coal deformation and failure mechanism in fully mechanized caving face under the high-intensity mining, based on the equivalent mechanical model of transversely isotropic cylindrical coal with fractures, the equivalent equations for axial, radial, and volume strains of coal sample loaded in linear elastic and plastic stages were derived in this paper. The equivalent mechanical model shows good reliability through the conventional triaxial experiment. Taking the N1206 workface in Yuwu coal mine of Luan group as the example, we have simulated the stress concentration factor of the coal body ahead of the working face with FLAC and divided three regions according to stress distribution in coal mining. Mathematical equations were derived to express the horizontal and vertical stress, which provide theoretical guidance of the stress paths in triaxial experiment about real mining stress environment simulation. Experimental results show that the volume strain’s value is about 0.4% in the coal mass deformation progress of axial compression increasing slowly area. In axial compression increasing rapidly area, the volume strain’s value varies from 0.41% to 0.27%, and the radical strain changes from compression deformation to expansion deformation gradually. The volume strain of coal sample increases sharply in axial compression releasing rapidly area; meanwhile, there are good linear relationships between Poisson’s ratio and axial strain and radial strain.


2021 ◽  
Author(s):  
Wai Li ◽  
Jishan Liu ◽  
Jie Zeng ◽  
Yee-Kwong Leong ◽  
Derek Elsworth ◽  
...  

Abstract The process of extracting coalbed methane (CBM) is not only of significance for unconventional energy supply but also important in mine safety. The recent advance in fracking techniques, such as carbon dioxide (CO2) fracking, intensifies the complexity of stimulated coalbeds. This work focuses on developing a fully coupled multidomain model to describe and get insight into the process of CBM extraction, particularly from those compound-fractured coalbeds. A group of partial differential equations (PDEs) are derived to characterize gas transport from matrix to fractures and borehole. A stimulated coalbed is defined as an assembly of three interacting porous media: matrix, continuous fractures (CF) and radial primary hydraulic fracture (RF). Matrix and CF constitute a dual-porosity-dual-permeability system, while RF is simplified as an 1-D cracked medium. These media further form three distinct domains: non-stimulated reservoir domain (NSRD), stimulated reservoir domain (SRD) and RF. The effects of coal deformation, heat transfer, and non-thermal sorption are coupled into the model to reflect the multiple processes in CBM extraction. The finite element method is employed to numerically solve the PDEs. The proposed model is verified by comparing its simulation results to a set of well production data from Southern Qinshui Basin in Shanxi Province, China. Great consistency is observed, showing the satisfactory accuracy of the model for CBM extraction. After that, the difference between various stimulation patterns is presented by simulating the CBM extraction process with different stimulation patterns including (1) unstimulated coalbed; (2) double-wing fracture + NSRD; (3) multiple RFs + NSRD; (4) SRD + NSRD and (5) multiple RFs + SRD + NSRD. The results suggest that Pattern (5) (often formed by CO2 fracking) boosts the efficiency of CBM extraction because it generates a complex fracture network at various scales by both increasing the number of radial fractures and activating the micro-fractures in coal blocks. Sensitivity analysis is also performed to understand the influences of key factors on gas extraction from a stimulated coalbed with multiple domains. It is found that the distinct properties of different domains originate various evolutions, which in turn influences the CBM production. Ignoring thermal effects in CBM extraction will either overestimate or underestimate the production, which is the net effect of thermal strain and non-isothermal sorption. The proposed model provides a useful approach to accurately evaluate CBM extraction by taking the complex evolutions of coalbed properties and the interactions between different components and domains into account. The importance of multidomain and thermal effects for CBM reservoir simulation is also highlighted.


2021 ◽  
Vol 18 (5) ◽  
pp. 681-690
Author(s):  
Minglei Zhang ◽  
Yue Yang ◽  
Linsheng Gao

Abstract To address the problem of the concrete filling body (CFB) force failing to reach test strength in remaining roadways, the weakening effects due to aspect ratio and dimensional parameters on the actual CFB strength were investigated in this study. The geometric effects of CFB (including hoop and size effects) as well as the geometric effect coefficient determination method were analysed. Through laboratory tests and PFC numerical simulations, the hoop and size effect coefficients of the CFB in the Gaohe Coal Mine were studied. Furthermore, the calculation equations of actual strength and bearing capacity of the CFB were derived. Regarding the filling body failure and coal deformation in the remaining roadway located at the No. W1319 working face, the actual bearing capacity of CFB and surrounding rock stability during secondary exploitation were theoretically studied. The investigation suggests the adoption of a grouting reinforcement scheme for surrounding rock. The field applications performed have demonstrated that the deformation control effect in the remaining-roadway surrounding rock was effectively improved during second mining and the filling body beside the roadway suffered no additional damage. Studying the geometric effect of CFB can provide some theoretical guidance and industrial significance to accurately identify the filling body strength and reduce the failure risk of surrounding rock in remaining roadways.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wu Guodai ◽  
Pan Linhua ◽  
Huang Bingxiang ◽  
Luan Jinhua ◽  
Zhang Ye ◽  
...  

With the motivation to investigate the role of coal physical structure on the adsorption performance of coal reservoir, 18 different types of coal samples with different coal structures were collected from six coal profiles of four production mines located at China. The adsorption characteristics of CH4 on coal samples with different coal structures were examined, and then experimental results were fitted and analyzed by the Langmuir model and the adsorption potential model (D-R and D-A). The prominent factors in terms of adsorption capacity of coal with different coal structures and its adaptability to the model were discussed. Results indicate the following: a) under the condition of a similar coal rank, the adsorption performance of coal is governed by coal rock composition and adsorption heat, the effect of structural deformation on the adsorption performance of coal is not obvious; b) the Langmuir model has a certain adaptability to coal samples with different coal structures, while the D-R model is evidently not suitable to describe coal samples with scaly coal, part of broken coal with small vitrinite content; c) the D-A model has a high adaptability to coal samples with various coal structure types, and the stronger the coal deformation is, the higher the accuracy is.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Teng Teng ◽  
Yuming Wang ◽  
Xiaoyan Zhu ◽  
Xiangyang Zhang ◽  
Sihai Yi ◽  
...  

Nuclear power has contributed humanity a lot since its successful usage in electricity power generation. According to the global statistics, nuclear power accounts for 16% of the total electricity generation in 2020. However, the rapid development of nuclear power also brings up some problems, in which the storage of nuclear waste is the thorny one. This work carries out a series of modeling and simulation analysis on the geological storage of nuclear waste in a gas-saturated deep coal seam. As the first step, a coupled heat-solid-gas model with three constitutional fields of heat transfer, coal deformation, and gas seepage that based on three governing conservation equations is proposed. The approved mechanical model covers series of interactive influences among temperature change, dual permeability of coal, thermal stress, and gas sorption. As the second step, a finite element numerical model and numerical simulation are developed to analyze the storage of nuclear waste in a gas-saturated deep coal seam based on the partial differential equations (PDE) solver of COMSOL Multiphysics with MATLAB. The numerical simulation is implemented and solved then to draw the following conclusions as the nuclear waste chamber heats up the surrounding coal seam firstly in the initial storage stage of 400 years and then be heated by the far-field reservoir. The initial velocity of gas flow decreases gradually with the increment of distance from the storage chamber. Coal gas flows outward from the central storage chamber to the outer area in the first 100 years when the gas pressure in the region nearby the central storage chamber is higher than that in the far region and flows back then while the temperature in the outer region is higher. The modeling and simulation studies are expected to provide a deep understanding on the geological storage of nuclear waste.


Author(s):  
Rui Zhang ◽  
Shimin Liu ◽  
Alfonso San-Miguel ◽  
Ralf Schweins ◽  
Sylvie Le Floch ◽  
...  

Energy ◽  
2021 ◽  
pp. 121161
Author(s):  
Yinbo Zhou ◽  
Hansheng Li ◽  
Jilei Huang ◽  
Ruilin Zhang ◽  
Shijie Wang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Gaofeng Li ◽  
...  

Coal mining involves numerous challenges and safety risks owing to the complex engineering properties of coal bodies, which include discontinuities, heterogeneity, and anisotropy. In this paper, the strain energy during the coal deformation process is redivided in combination with cyclic loading and unloading tests to determine the energy evolution law and discuss the rockburst tendency characteristics. The results show that the elastic strain energy, and particularly the base-material strain energy, consistently dominates during the energy adjustment process, which is an important indicator of rockburst tendency. The elastic energy index and rebound deformation index also show that moderate plastic deformation (e.g., crack expansion and local penetration) can reduce the rockburst tendency level and prevent rockburst accidents. On the basis of the obtained results, precracking and pressure relief measures of blasting are adopted on site in advance of the working face, and good safety and economic benefits are achieved. These findings, thus, provide an important engineering reference for mines under similar conditions.


2021 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xinyue Li ◽  
Yishan Pan

Abstract The slippage initiation and induced instability of roadway surrounding rock are highly likely to cause dynamic disasters, severely influencing the safety production of mining. With the optical-mechanical monitoring test of the deformation localization of energy dissipation, this study established the optical index of coal deformation equilibrium degree under load, and obtained the evolution law of coal deformation equilibrium degree. After analyzing the relationship between tensile-sliding effect and mechanical behavior of coal deformation field, it proposed the strain energy ratio coefficient. The results indicate that the strength reduction of coal body is affected by the deformation accumulation of loading displacement field. The sliding displacement of the stable sliding type specimen occurs 5.5s earlier than tensile displacement,which is 4.4s longer than the instantaneous instability type specimen. The instability type of coal is closely related to the tangent angle of the strain energy ratio coefficient and the damage persistence characteristics. The damage accumulation of stable equal amplitude contributes to the stable failure, and the damage accumulation of interval equal amplitude influences the instantaneous instability development. The fracture expansion stage is the main stage of energy consumption damage accumulation. That is, the main energy consumption damage accumulation stage of the stable slip coal is the stable crack expansion stage, with the damage proportion of 35.89%, while the damage proportion of instantaneous instability coal in the unsteady crack expansion stage is 84.226%. The study provides theoretical reference for the fracture law and risk monitoring of coal slippage.


Export Citation Format

Share Document