Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

histopathological image
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 96)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

A new deep learning-based classification model called the Stochastic Dilated Residual Ghost (SDRG) was proposed in this work for categorizing histopathology images of breast cancer. The SDRG model used the proposed Multiscale Stochastic Dilated Convolution (MSDC) model, a ghost unit, stochastic upsampling, and downsampling units to categorize breast cancer accurately. This study addresses four primary issues: first, strain normalization was used to manage color divergence, data augmentation with several factors was used to handle the overfitting. The second challenge is extracting and enhancing tiny and low-level information such as edge, contour, and color accuracy; it is done by the proposed multiscale stochastic and dilation unit. The third contribution is to remove redundant or similar information from the convolution neural network using a ghost unit. According to the assessment findings, the SDRG model scored overall 95.65 percent accuracy rates in categorizing images with a precision of 99.17 percent, superior to state-of-the-art approaches.


2021 ◽  
Author(s):  
Jiangbo Shi ◽  
Chang Jia ◽  
Zeyu Gao ◽  
Tieliang Gong ◽  
Chunbao Wang ◽  
...  

2021 ◽  
Vol 2129 (1) ◽  
pp. 012049
Author(s):  
Lei Huang ◽  
Azlan Mohd Zain ◽  
Kai-Qing Zhou ◽  
Chang-Feng Chen

Abstract Breast Cancer (BC) is the most common malignant tumor for women in the world. Histopathological examination serves as basis for breast cancer diagnosis. Due to the low accuracy of histopathological images through manual judgment, the classification of histopathological images of breast cancer has become a research hotspot in the field of medical image processing. Accurate classification of images can help doctors to properly diagnoses and improve the survival rate of patients. This paper reviews the existing works on histopathological image classification of breast cancer and analysis the advantages and disadvantages of related algorithms. Findings of the histopathological image classification of the Breast Cancer study are drawn, and the possible future directions are also discussed.


Export Citation Format

Share Document