Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

tumor classification
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 225)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-30
Author(s):  
Rahul Kumar ◽  
Ankur Gupta ◽  
Harkirat Singh Arora ◽  
Balasubramanian Raman

Brain tumors are one of the critical malignant neurological cancers with the highest number of deaths and injuries worldwide. They are categorized into two major classes, high-grade glioma (HGG) and low-grade glioma (LGG), with HGG being more aggressive and malignant, whereas LGG tumors are less aggressive, but if left untreated, they get converted to HGG. Thus, the classification of brain tumors into the corresponding grade is a crucial task, especially for making decisions related to treatment. Motivated by the importance of such critical threats to humans, we propose a novel framework for brain tumor classification using discrete wavelet transform-based fusion of MRI sequences and Radiomics feature extraction. We utilized the Brain Tumor Segmentation 2018 challenge training dataset for the performance evaluation of our approach, and we extract features from three regions of interest derived using a combination of several tumor regions. We used wrapper method-based feature selection techniques for selecting a significant set of features and utilize various machine learning classifiers, Random Forest, Decision Tree, and Extra Randomized Tree for training the model. For proper validation of our approach, we adopt the five-fold cross-validation technique. We achieved state-of-the-art performance considering several performance metrics, 〈 Acc , Sens , Spec , F1-score , MCC , AUC 〉 ≡ 〈 98.60%, 99.05%, 97.33%, 99.05%, 96.42%, 98.19% 〉, where Acc , Sens , Spec , F1-score , MCC , and AUC represents the accuracy, sensitivity, specificity, F1-score, Matthews correlation coefficient, and area-under-the-curve, respectively. We believe our proposed approach will play a crucial role in the planning of clinical treatment and guidelines before surgery.


2022 ◽  
Vol 72 ◽  
pp. 103356
Author(s):  
Coşku Öksüz ◽  
Oğuzhan Urhan ◽  
Mehmet Kemal Güllü

2022 ◽  
Vol 11 (1) ◽  
pp. 73-94
Author(s):  
Munipraveena Rela ◽  
Suryakari Nagaraja Rao ◽  
P. Ramana Reddy

Author(s):  
Mengyun Qiao ◽  
Chengcheng Liu ◽  
Zeju Li ◽  
Jin Zhou ◽  
Qin Xiao ◽  
...  

Author(s):  
Ankita Kadam

Abstract: A Brain tumor is one aggressive disease. An estimated more than 84,000 people will receive a primary brain tumor diagnosis in 2021 and an estimated 18,600 people will die from a malignant brain tumor (brain cancer) in 2021.[8] The best technique to detect brain tumors is by using Magnetic Resonance Imaging (MRI). More than any other cancer, brain tumors can have lasting and life-altering physical, cognitive, and psychological impacts on a patient’s life and hence faster diagnosis and best treatment plan should be devised to improve the life expectancy and well-being of these patients. Neural networks have shown colossal accuracy in image classification and segmentation problems. In this paper, we propose comparative studies of various deep learning models based on different types of Neural Networks(ANN, CNN, TL) to firstly identify brain tumors and then classify them into Benign Tumor, Malignant Tumor or Pituitary Tumor. The data set used holds 3190 images on T1-weighted contrast-enhanced images which were cleaned and augmented. The best ANN model concluded with an accuracy of 78% and the best CNN model consisting of 3 convolution layers had an accuracy of 90%. The VGG16(retrained on the dataset) model surpasses other ANN, CNN, TL models for multi-class tumor classification. This proposed network achieves significantly better performance with a validation accuracy of 94% and an F1-Score of 91. Keywords: Artificial Neural Network(ANN), Convolution Neural Network (CNN), Transfer Learning(TL), Magnetic Resonance Imaging(MRI.)


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Guanghua Xiao ◽  
Huibin Wang ◽  
Jie Shen ◽  
Zhe Chen ◽  
Zhen Zhang ◽  
...  

Automatic brain tumor classification is a practicable means of accelerating clinical diagnosis. Recently, deep convolutional neural network (CNN) training with MRI datasets has succeeded in computer-aided diagnostic (CAD) systems. To further improve the classification performance of CNNs, there is still a difficult path forward with regards to subtle discriminative details among brain tumors. We note that the existing methods heavily rely on data-driven convolutional models while overlooking what makes a class different from the others. Our study proposes to guide the network to find exact differences among similar tumor classes. We first present a “dual suppression encoding” block tailored to brain tumor MRIs, which diverges two paths from our network to refine global orderless information and local spatial representations. The aim is to use more valuable clues for correct classes by reducing the impact of negative global features and extending the attention of salient local parts. Then we introduce a “factorized bilinear encoding” layer for feature fusion. The aim is to generate compact and discriminative representations. Finally, the synergy between these two components forms a pipeline that learns in an end-to-end way. Extensive experiments exhibited superior classification performance in qualitative and quantitative evaluation on three datasets.


2021 ◽  
Author(s):  
Rahul Ramesh Chakre ◽  
Dipak V Patil

Abstract Magnetic Resonance Images (MRI) is an imperative imaging modality employed in the medical diagnosis tool for detecting brain tumors. However, the major obstacle in MR images classification is the semantic gap between low-level visual information obtained by MRI machines and high-level information alleged by the clinician. Hence, this research article introduces a novel technique, namely Dendritic-Squirrel Search Algorithm-based Artificial immune classifier (Dendritic-SSA-AIC) using MRI for brain tumor classification. Initially the pre-processing is performed followed by segmentation is devised using sparse fuzzy-c-means (Sparse FCM) is employed for segmentation to extract statistical and texture features. Furthermore, the Particle Rider mutual information (PRMI) is employed for feature selection, which is devised by integrating Particle swarm optimization, Rider optimization algorithm and mutual information. AIC is employed to classify the brain tumor, in which the Dendritic-SSA algorithm designed by combining dendritic cell algorithm and Squirrel search algorithm (SSA). The proposed PRMI-Dendritic-SSA-AIC provides superior performance with maximal accuracy of 97.789%, sensitivity of 97.577% and specificity of 98%.


Export Citation Format

Share Document