Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

edge detection
Recently Published Documents


TOTAL DOCUMENTS

6764
(FIVE YEARS 1315)

H-INDEX

82
(FIVE YEARS 12)

Author(s):  
Prof. F. S. Ghodichor

Abstract: Counterfeit money has always existed an issue that has caused many problems in the market. Technological growth development has made it possible to create extra counterfeit items which are distributed in the mitigation market the global economy. Bangui existing banking equipment and so on trading sites to check the authenticity of funds. But the average person does not do that have access to such systems and that is why they are needed in order for the software to receive counterfeit money, which can be used by ordinary people. This the proposed system uses image processing to find out if the money is real or fake. System built uses the Python system completely language. It contains similar steps grayscale modification, edge detection, separation, etc. made using appropriate methods. Keyword: Counterfeit currency, Image Processing, Python programming language, grayscale conversion, edge detection, segmentation.


Information ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Gang Sun ◽  
Hancheng Yu ◽  
Xiangtao Jiang ◽  
Mingkui Feng

Edge detection is one of the fundamental computer vision tasks. Recent methods for edge detection based on a convolutional neural network (CNN) typically employ the weighted cross-entropy loss. Their predicted results being thick and needing post-processing before calculating the optimal dataset scale (ODS) F-measure for evaluation. To achieve end-to-end training, we propose a non-maximum suppression layer (NMS) to obtain sharp boundaries without the need for post-processing. The ODS F-measure can be calculated based on these sharp boundaries. So, the ODS F-measure loss function is proposed to train the network. Besides, we propose an adaptive multi-level feature pyramid network (AFPN) to better fuse different levels of features. Furthermore, to enrich multi-scale features learned by AFPN, we introduce a pyramid context module (PCM) that includes dilated convolution to extract multi-scale features. Experimental results indicate that the proposed AFPN achieves state-of-the-art performance on the BSDS500 dataset (ODS F-score of 0.837) and the NYUDv2 dataset (ODS F-score of 0.780).


Author(s):  
Matthias Busch ◽  
Tino Hausotte

AbstractSurface determination is an essential step of the measurement process in industrial X-ray computed tomography (XCT). The starting point of the surface determination process step is a single grey value threshold within a voxel volume in conventional surface determination methods. However, this value is not always found in the reconstructed volume in the local environment of the surface of the measurement object due to various artefacts, so that none or incorrect surfaces are determined. In order to find surfaces independently of a single grey value, a three-dimensional approach of the initial contour determination based on a Prewitt edge detection algorithm is presented in this work. This method is applied to different test specimens and specimen compositions which, due to their material or material constellation, their geometric properties with regard to surfaces and interfaces as well as their calibrated size and length dimensions, embody relevant properties in the examination of joining connections. It is shown that by using the surface determination method in the measurement process, both a higher metrological structure resolution and interface structure resolution can be achieved. Surface artefacts can be reduced by the application and it is also an approach to improved surface finding for the multi-material components that are challenging for XCT.


Author(s):  
Rachael C Tighe ◽  
Jonathon Hill ◽  
Tom Vosper ◽  
Cody Taylor ◽  
Tairongo Tuhiwai

Abstract Thermographic inspection provides opportunity to tailor non-destructive evaluation to specific applications. The paper discusses the opportunities this presents through consideration of adhesive bonds between composites, such as those joining structural members and outer skins, where access is restricted to a single side. To date, literature focusses on the development of either an experimental procedure or data processing approach. This research aims to demonstrate the importance of tailoring both of these aspects to an application to obtain improved defect detection and robust quantification. Firstly, the heating stimulus is optimised to maximise the thermal contrast created between defect and non-defect regions using a development panel. Traditional flash heating is compared to longer square pulse heating, using a developed shutter system, compromising between experimental duration and heat input. A pulse duration of 4 seconds using two 130 W halogen bulbs was found double the detection depth from 1 mm to 2 mm, revealing all defects in the development panel. Temporal processing was maintained for all data using thermal signal reconstruction. Spatial defect detection routines were then implemented to provide robust defect/feature detection. Spatial defect detection encompassed a combination of image enhancement and edge detection algorithms. A two-stage kernel filter/binary enhancement method followed by the use of Canny edge detection was found most robust, providing a sizing error of 1.8 % on the development panel data. This process was then implemented on adhesive bonds with simulated bond line defects. The simulated defects are based on target detection threshold of 10 mm diameter void found at 1- 2 mm depth. All simulated void defects were detected in the representative bonded joint down to the minimum diameter tested of 5 mm. By considering the tailoring of multiple aspects of the inspection routine independently, an overall optimised approach for the application of interest has been defined.


2022 ◽  
Author(s):  
◽  
Mahdi Setayesh

<p>Detection of continuous and connected edges is very important in many applications, such as detecting oil slicks in remote sensing and detecting cancers in medical images. The detection of such edges is a hard problem particularly in noisy images and most edge detection algorithms suffer from producing broken and thick edges in such images. The main goal of this thesis is to reduce broken edges by proposing an optimisation model and a solution method in order to detect edges in noisy images. This thesis suggests a newapproach in the framework of particle swarm optimisation (PSO) to overcome noise and reduce broken edges through exploring a large area and extracting the global structure of the edges. A fitness function is developed based on the possibility score of a curve being fitted on an edge and the curvature cost of the curve with two constraints. Unlike traditional algorithms, the new method can detect edges with greater continuity in noisy images. Furthermore, a new truncation method within PSO is proposed to truncate the real values of particle positions to integers in order to increase the diversity of the particles. This thesis also proposes a local thresholding technique for the PSObased edge detection algorithm to overcome the problem of detection of edges in noisy images with illuminated areas. The local thresholding technique is proposed based on themain idea of the Sauvola-Pietkinenmethod which is a way of binarisation of illuminated images. It is observed that the new local thresholding can improve the performance of the PSO-based edge detectors in the illuminated noisy images.  Since the performance of using static topologies in various applications and in various versions of PSO is different , the performance of six different static topologies (fully connected, ring, star, tree-based, von Neumann and toroidal topologies)within threewell-known versions of PSO (Canonical PSO, Bare Bones PSO and Fully Informed PSO) are also investigated in the PSO-based edge detector. It is found that different topologies have different effects on the accuracy of the PSO-based edge detector. This thesis also proposes a novel dynamic topology called spatial random meaningful topology (SRMT) which is an adoptation version of a gradually increasing directed neighbourhood (GIDN). The new dynamic topology uses spatial meaningful information to compute the neighbourhood probability of each particle to be a neighbour of other particles. It uses this probability to randomly select the neighbours of each particle at each iteration of PSO. The results show that the performance of the proposed method is higher than that of other topologies in noisy images in terms of the localisation accuracy of edge detection.</p>


2022 ◽  
Author(s):  
◽  
Mahdi Setayesh

<p>Detection of continuous and connected edges is very important in many applications, such as detecting oil slicks in remote sensing and detecting cancers in medical images. The detection of such edges is a hard problem particularly in noisy images and most edge detection algorithms suffer from producing broken and thick edges in such images. The main goal of this thesis is to reduce broken edges by proposing an optimisation model and a solution method in order to detect edges in noisy images. This thesis suggests a newapproach in the framework of particle swarm optimisation (PSO) to overcome noise and reduce broken edges through exploring a large area and extracting the global structure of the edges. A fitness function is developed based on the possibility score of a curve being fitted on an edge and the curvature cost of the curve with two constraints. Unlike traditional algorithms, the new method can detect edges with greater continuity in noisy images. Furthermore, a new truncation method within PSO is proposed to truncate the real values of particle positions to integers in order to increase the diversity of the particles. This thesis also proposes a local thresholding technique for the PSObased edge detection algorithm to overcome the problem of detection of edges in noisy images with illuminated areas. The local thresholding technique is proposed based on themain idea of the Sauvola-Pietkinenmethod which is a way of binarisation of illuminated images. It is observed that the new local thresholding can improve the performance of the PSO-based edge detectors in the illuminated noisy images.  Since the performance of using static topologies in various applications and in various versions of PSO is different , the performance of six different static topologies (fully connected, ring, star, tree-based, von Neumann and toroidal topologies)within threewell-known versions of PSO (Canonical PSO, Bare Bones PSO and Fully Informed PSO) are also investigated in the PSO-based edge detector. It is found that different topologies have different effects on the accuracy of the PSO-based edge detector. This thesis also proposes a novel dynamic topology called spatial random meaningful topology (SRMT) which is an adoptation version of a gradually increasing directed neighbourhood (GIDN). The new dynamic topology uses spatial meaningful information to compute the neighbourhood probability of each particle to be a neighbour of other particles. It uses this probability to randomly select the neighbours of each particle at each iteration of PSO. The results show that the performance of the proposed method is higher than that of other topologies in noisy images in terms of the localisation accuracy of edge detection.</p>


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Hui Li

Multilevel image edge repair results directly affect the follow-up image quality evaluation and recognition. Current edge detection algorithms have the problem of unclear edge detection. In order to detect more accurate edge contour information, a multilevel image edge detection algorithm based on visual perception is proposed. Firstly, the digital image is processed by double filtering and fuzzy threshold segmentation; Through the analysis of the contour features of the moving image, the threshold of the moving image features is set, and the latest membership function is obtained to complete the multithreshold optimization. Adaptive smoothing is used to process the contour of the object in the moving image, and the geometric center values of the two adjacent contour points within the contour range are calculated. According to the calculation results, the curvature angle is further calculated, and the curvature symbol is obtained. According to the curvature symbol, the contour features of the moving image are detected. The experimental results show that the proposed algorithm can effectively and accurately detect the edge contour of the image and shorten the reconstruction time, and the detection image resolution is high.


Author(s):  
Yuan Chao ◽  
Fan Shi ◽  
Wentao Shan ◽  
Dong Liang

The position identification of SMD electronic components mainly uses Canny edge detection algorithm to detect the edges of specific elements, benefited from its computational simplicity. The traditional Canny algorithm lacks the adaptability in gradient calculation and double thresholds selection, which may affect the location and identification accuracy of specific elements in electronic components. In this paper, an improved canny edge detection algorithm is proposed. The gradient magnitude is calculated in four directions, i.e., horizontal, vertical, and diagonal. Both the high and low thresholds can be adaptively determined based on the grayscale distribution information, to increase the adaptability of edge identification. The experimental results show that the proposed method can better locate the true edges of specific elements in electronic components with a reasonable processing speed, compared with the traditional Canny algorithm, and has been successfully applied on practical real-time vision inspection on SMD electronic components.


Export Citation Format

Share Document