Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

maximally monotone operators
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2415
Author(s):  
Jinjian Chen ◽  
Xingyu Luo ◽  
Yuchao Tang ◽  
Qiaoli Dong

This work proposes two different primal-dual splitting algorithms for solving structured monotone inclusion containing a cocoercive operator and the parallel-sum of maximally monotone operators. In particular, the parallel-sum is symmetry. The proposed primal-dual splitting algorithms are derived from two approaches: One is the preconditioned forward–backward splitting algorithm, and the other is the forward–backward–half-forward splitting algorithm. Both algorithms have a simple calculation framework. In particular, the single-valued operators are processed via explicit steps, while the set-valued operators are computed by their resolvents. Numerical experiments on constrained image denoising problems are presented to show the performance of the proposed algorithms.


Author(s):  
Juan Enrique Martínez-Legaz ◽  
Maryam Tamadoni Jahromi ◽  
Eskandar Naraghirad

AbstractWe investigate convergence properties of Bregman distances induced by convex representations of maximally monotone operators. We also introduce and study the projection mappings associated with such distances.


Author(s):  
E. M. Bednarczuk ◽  
R. N. Dhara ◽  
K. E. Rutkowski

AbstractWe introduce a dynamical system to the problem of finding zeros of the sum of two maximally monotone operators. We investigate the existence, uniqueness and extendability of solutions to this dynamical system in a Hilbert space. We prove that the trajectories of the proposed dynamical system converge strongly to a primal–dual solution of the considered problem. Under explicit time discretization of the dynamical system we obtain the best approximation algorithm for solving coupled monotone inclusion problem.


2021 ◽  
Vol 14 (3) ◽  
pp. 1206-1237
Author(s):  
Jean-Christophe Pesquet ◽  
Audrey Repetti ◽  
Matthieu Terris ◽  
Yves Wiaux

2020 ◽  
Vol 10 (1) ◽  
pp. 450-476
Author(s):  
Radu Ioan Boţ ◽  
Sorin-Mihai Grad ◽  
Dennis Meier ◽  
Mathias Staudigl

Abstract In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskiĭ-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.


Author(s):  
SCOTT B. LINDSTROM ◽  
BRAILEY SIMS

The Douglas–Rachford method is a splitting method frequently employed for finding zeros of sums of maximally monotone operators. When the operators in question are normal cone operators, the iterated process may be used to solve feasibility problems of the following form: Find $x\in \bigcap _{k=1}^{N}S_{k}$ . The success of the method in the context of closed, convex, nonempty sets $S_{1},\ldots ,S_{N}$ is well known and understood from a theoretical standpoint. However, its performance in the nonconvex context is less well understood, yet it is surprisingly impressive. This was particularly compelling to Jonathan M. Borwein who, intrigued by Elser, Rankenburg and Thibault’s success in applying the method to solving sudoku puzzles, began an investigation of his own. We survey the current body of literature on the subject, and we summarize its history. We especially commemorate Professor Borwein’s celebrated contributions to the area.


Export Citation Format

Share Document