Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

monotone operators
Recently Published Documents


TOTAL DOCUMENTS

858
(FIVE YEARS 93)

H-INDEX

39
(FIVE YEARS 2)

Author(s):  
Minh N. Bùi ◽  
Patrick L. Combettes

We propose a novel approach to monotone operator splitting based on the notion of a saddle operator. Under investigation is a highly structured multivariate monotone inclusion problem involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators, as well as various monotonicity-preserving operations among them. This model encompasses most formulations found in the literature. A limitation of existing primal-dual algorithms is that they operate in a product space that is too small to achieve full splitting of our problem in the sense that each operator is used individually. To circumvent this difficulty, we recast the problem as that of finding a zero of a saddle operator that acts on a bigger space. This leads to an algorithm of unprecedented flexibility, which achieves full splitting, exploits the specific attributes of each operator, is asynchronous, and requires to activate only blocks of operators at each iteration, as opposed to activating all of them. The latter feature is of critical importance in large-scale problems. The weak convergence of the main algorithm is established, as well as the strong convergence of a variant. Various applications are discussed, and instantiations of the proposed framework in the context of variational inequalities and minimization problems are presented.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2415
Author(s):  
Jinjian Chen ◽  
Xingyu Luo ◽  
Yuchao Tang ◽  
Qiaoli Dong

This work proposes two different primal-dual splitting algorithms for solving structured monotone inclusion containing a cocoercive operator and the parallel-sum of maximally monotone operators. In particular, the parallel-sum is symmetry. The proposed primal-dual splitting algorithms are derived from two approaches: One is the preconditioned forward–backward splitting algorithm, and the other is the forward–backward–half-forward splitting algorithm. Both algorithms have a simple calculation framework. In particular, the single-valued operators are processed via explicit steps, while the set-valued operators are computed by their resolvents. Numerical experiments on constrained image denoising problems are presented to show the performance of the proposed algorithms.


2021 ◽  
Vol 66 (4) ◽  
pp. 769-781
Author(s):  
Sihem Smata ◽  
◽  
Nemira Lebri ◽  

We consider a mathematical model which describes the dynamic pro- cess of contact between a piezoelectric body and an electrically conductive foun- dation. We model the material's behavior with a nonlinear electro-viscoelastic constitutive law with thermal e ects. Contact is described with the Signorini condition, a version of Coulomb's law of dry friction. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear rst order evolution inequali- ties, the equations with monotone operators, and the xed point arguments.


Author(s):  
Juan Enrique Martínez-Legaz ◽  
Maryam Tamadoni Jahromi ◽  
Eskandar Naraghirad

AbstractWe investigate convergence properties of Bregman distances induced by convex representations of maximally monotone operators. We also introduce and study the projection mappings associated with such distances.


Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

In this paper, we consider a new system of absolute value variational inclusions. Some interesting and extensively problems such as absolute value equations, difference of monotone operators, absolute value complementarity problem and hemivariational inequalities as special case. It is shown that variational inclusions are equivalent to the fixed point problems. This alternative formulation is used to study the existence of a solution of the system of absolute value inclusions. New iterative methods are suggested and investigated using the resolvent equations, dynamical system and nonexpansive mappings techniques. Convergence analysis of these methods is investigated under monotonicity. Some special cases are discussed as applications of the main results.


Author(s):  
E. M. Bednarczuk ◽  
R. N. Dhara ◽  
K. E. Rutkowski

AbstractWe introduce a dynamical system to the problem of finding zeros of the sum of two maximally monotone operators. We investigate the existence, uniqueness and extendability of solutions to this dynamical system in a Hilbert space. We prove that the trajectories of the proposed dynamical system converge strongly to a primal–dual solution of the considered problem. Under explicit time discretization of the dynamical system we obtain the best approximation algorithm for solving coupled monotone inclusion problem.


Author(s):  
Pattanapong Tianchai

AbstractIn this paper, we introduce a new iterative forward-backward splitting method with an error for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters such that another strong convergence theorem for these problem is obtained. We also apply our main result to improve the fast iterative shrinkage thresholding algorithm (IFISTA) with an error for solving the image deblurring problem. Finally, we provide numerical experiments to illustrate the convergence behavior and show the effectiveness of the sequence constructed by the inertial technique to the fast processing with high performance and the fast convergence with good performance of IFISTA.


2021 ◽  
Vol 26 (6) ◽  
pp. 1144-1165
Author(s):  
Emilio Vilches ◽  
Shengda Zeng

In this paper, we propose a new methodology to study evolutionary variational-hemivariational inequalities based on the theory of evolution equations governed by maximal monotone operators. More precisely, the proposed approach, based on a hidden maximal monotonicity, is used to explore the well-posedness for a class of evolutionary variational-hemivariational inequalities involving history-dependent operators and related problems with periodic and antiperiodic boundary conditions. The applicability of our theoretical results is illustrated through applications to a fractional evolution inclusion and a dynamic semipermeability problem.


Author(s):  
Luigi C. Berselli ◽  
Alex Kaltenbach ◽  
Michael Růžička

In this paper, we consider fully discrete approximations of abstract evolution equations, by means of a quasi non-conforming spatial approximation and finite differences in time (Rothe–Galerkin method). The main result is the convergence of the discrete solutions to a weak solution of the continuous problem. Hence, the result can be interpreted either as a justification of the numerical method or as an alternative way of constructing weak solutions. We set the problem in the very general and abstract setting of pseudo-monotone operators, which allows for a unified treatment of several evolution problems. The examples — which fit into our setting and which motivated our research — are problems describing the motion of incompressible fluids, since the quasi non-conforming approximation allows to handle problems with prescribed divergence. Our abstract results for pseudo-monotone operators allow to show convergence just by verifying a few natural assumptions on the operator time-by-time and on the discretization spaces. Hence, applications and extensions to several other evolution problems can be easily performed. The results of some numerical experiments are reported in the final section.


Export Citation Format

Share Document