Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

residual force enhancement
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 6)

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12729
Author(s):  
Jasmin Frischholz ◽  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Daniel Hahn

Background Following stretch of an active muscle, muscle force is enhanced, which is known as residual force enhancement (rFE). As earlier studies found apparent corticospinal excitability modulations in the presence of rFE, this study aimed to test whether corticospinal excitability modulations contribute to rFE. Methods Fourteen participants performed submaximal plantar flexion stretch-hold and fixed-end contractions at 30% of their maximal voluntary soleus muscle activity in a dynamometer. During the steady state of the contractions, participants either received subthreshold or suprathreshold transcranial magnetic stimulation (TMS) of their motor cortex, while triceps surae muscle responses to stimulation were obtained via electromyography (EMG), and net ankle joint torque was recorded. B-mode ultrasound imaging was used to confirm muscle fascicle stretch during stretch-hold contractions in a subset of participants. Results Following stretch of the plantar flexors, an average rFE of 7% and 11% was observed for contractions with subthreshold and suprathreshold TMS, respectively. 41–46 ms following subthreshold TMS, triceps surae muscle activity was suppressed by 19–25%, but suppression was not significantly different between stretch-hold and fixed-end contractions. Similarly, the reduction in plantar flexion torque following subthreshold TMS was not significantly different between contraction conditions. Motor evoked potentials, silent periods and superimposed twitches following suprathreshold TMS were also not significantly different between contraction conditions. Discussion As TMS of the motor cortex did not result in any differences between stretch-hold and fixed-end contractions, we conclude that rFE is not linked to changes in corticospinal excitability.


2021 ◽  
Vol 22 (16) ◽  
pp. 8526
Author(s):  
Venus Joumaa ◽  
Ian C. Smith ◽  
Atsuki Fukutani ◽  
Timothy R. Leonard ◽  
Weikang Ma ◽  
...  

Our purpose was to use small-angle X-ray diffraction to investigate the structural changes within sarcomeres at steady-state isometric contraction following active lengthening and shortening, compared to purely isometric contractions performed at the same final lengths. We examined force, stiffness, and the 1,0 and 1,1 equatorial and M3 and M6 meridional reflections in skinned rabbit psoas bundles, at steady-state isometric contraction following active lengthening to a sarcomere length of 3.0 µm (15.4% initial bundle length at 7.7% bundle length/s), and active shortening to a sarcomere length of 2.6 µm (15.4% bundle length at 7.7% bundle length/s), and during purely isometric reference contractions at the corresponding sarcomere lengths. Compared to the reference contraction, the isometric contraction after active lengthening was associated with an increase in force (i.e., residual force enhancement) and M3 spacing, no change in stiffness and the intensity ratio I1,1/I1,0, and decreased lattice spacing and M3 intensity. Compared to the reference contraction, the isometric contraction after active shortening resulted in decreased force, stiffness, I1,1/I1,0, M3 and M6 spacings, and M3 intensity. This suggests that residual force enhancement is achieved without an increase in the proportion of attached cross-bridges, and that force depression is accompanied by a decrease in the proportion of attached cross-bridges. Furthermore, the steady-state isometric contraction following active lengthening and shortening is accompanied by an increase in cross-bridge dispersion and/or a change in the cross-bridge conformation compared to the reference contractions.


2021 ◽  
Vol 9 (15) ◽  
Author(s):  
Florian K. Paternoster ◽  
Denis Holzer ◽  
Anna Arlt ◽  
Ansgar Schwirtz ◽  
Wolfgang Seiberl

Author(s):  
Daiani de Campos ◽  
Lucas B.R. Orssatto ◽  
Gabriel S. Trajano ◽  
Walter Herzog ◽  
Heiliane de Brito Fontana

Author(s):  
Neil D. Chapman ◽  
John W. Whitting ◽  
Suzanne Broadbent ◽  
Zachary J. Crowley-McHattan ◽  
Rudi Meir

Residual force enhancement (rFE) is observed when isometric force following an active stretch is elevated compared to an isometric contraction at corresponding muscle lengths. Acute rFE has been confirmed in vivo in upper and lower limb muscles. However, it is uncertain whether rFE persists using multiple, consecutive contractions as per a training simulation. Using the knee flexors, 10 recreationally active participants (seven males, three females; age 31.00 years ± 8.43 years) performed baseline isometric contractions at 150° knee flexion (180° representing terminal knee extension) of 50% maximal voluntary activation of semitendinosus. Participants performed post-stretch isometric (PS-ISO) contractions (three sets of 10 repetitions) starting at 90° knee extension with a joint rotation of 60° at 60°·s−1 at 50% maximal voluntary activation of semitendinosus. Baseline isometric torque and muscle activation were compared to PS-ISO torque and muscle activation across all 30 repetitions. Significant rFE was noted in all repetitions (37.8–77.74%), with no difference in torque between repetitions or sets. There was no difference in activation of semitendinosus or biceps femoris long-head between baseline and PS-ISO contractions in all repetitions (ST; baseline ISO = 0.095–1.000 ± 0.036–0.039 Mv, PS-ISO = 0.094–0.098 ± 0.033–0.038 and BFlh; baseline ISO = 0.068–0.075 ± 0.031–0.038 Mv). This is the first investigation to observe rFE during multiple, consecutive submaximal PS-ISO contractions. PS-ISO contractions have the potential to be used as a training stimulus.


2021 ◽  
Vol 11 ◽  
Author(s):  
Venus Joumaa ◽  
Atsuki Fukutani ◽  
Walter Herzog

Muscle force is enhanced during shortening when shortening is preceded by an active stretch. This phenomenon is known as the stretch-shortening cycle (SSC) effect. For some stretch-shortening conditions this increase in force during shortening is maintained following SSCs when compared to the force following a pure shortening contraction. It has been suggested that the residual force enhancement property of muscles, which comes into play during the stretch phase of SSCs may contribute to the force increase after SSCs. Knowing that residual force enhancement is associated with a substantial reduction in metabolic energy per unit of force, it seems reasonable to assume that the metabolic energy cost per unit of force is also reduced following a SSC. The purpose of this study was to determine the energy cost per unit of force at steady-state following SSCs and compare it to the corresponding energy cost following pure shortening contractions of identical speed and magnitude. We hypothesized that the energy cost per unit of muscle force is reduced following SSCs compared to the pure shortening contractions. For the SSC tests, rabbit psoas fibers (n = 12) were set at an average sarcomere length (SL) of 2.4 μm, activated, actively stretched to a SL of 3.2 μm, and shortened to a SL of 2.6 or 3.0 μm. For the pure shortening contractions, the same fibers were activated at a SL of 3.2 μm and actively shortened to a SL of 2.6 or 3.0 μm. The amount of ATP consumed was measured over a 40 s steady-state total isometric force following either the SSCs or the pure active shortening contractions. Fiber stiffness was determined in an additional set of 12 fibers, at steady-state for both experimental conditions. Total force, ATP consumption, and stiffness were greater following SSCs compared to the pure shortening contractions, but ATP consumption per unit of force was the same between conditions. These results suggest that the increase in total force observed following SSCs was achieved with an increase in the proportion of attached cross-bridges and titin stiffness. We conclude that muscle efficiency is not enhanced at steady-state following SSCs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Atsuki Fukutani ◽  
Tadao Isaka ◽  
Walter Herzog

Force attained during concentric contraction (active shortening) is transiently enhanced following eccentric contraction (active stretch) in skeletal muscle. This phenomenon is called stretch-shortening cycle (SSC) effect. Since many human movements contain combinations of eccentric and concentric contractions, a better understanding of the mechanisms underlying the SSC effect would be useful for improving physical performance, optimizing human movement efficiency, and providing an understanding of fundamental mechanism of muscle force control. Currently, the most common mechanisms proposed for the SSC effect are (i) stretch-reflex activation and (ii) storage of energy in tendons. However, abundant SSC effects have been observed in single fiber preparations where stretch-reflex activation is eliminated and storage of energy in tendons is minimal at best. Therefore, it seems prudent to hypothesize that factor(s) other than stretch-reflex activation and energy storage in tendons contribute to the SSC effect. In this brief review, we focus on possible candidate mechanisms for the SSC effect, that is, pre-activation, cross-bridge kinetics, and residual force enhancement (RFE) obtained in experimental preparations that exclude/control the influence of stretch-reflex activation and energy storage in tendons. Recent evidence supports the contribution of these factors to the mechanism of SSCs, and suggests that the extent of their contribution varies depending on the contractile conditions. Evidence for and against alternative mechanisms are introduced and discussed, and unresolved problems are mentioned for inspiring future studies in this field of research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ricarda M. Haeger ◽  
Dilson E. Rassier

AbstractWhen a muscle is stretched during a contraction, the resulting steady-state force is higher than the isometric force produced at a comparable sarcomere length. This phenomenon, also referred to as residual force enhancement, cannot be readily explained by the force-sarcomere length relation. One of the most accepted mechanisms for the residual force enhancement is the development of sarcomere length non-uniformities after an active stretch. The aim of this study was to directly investigate the effect of non-uniformities on the force-producing capabilities of isolated myofibrils after they are actively stretched. We evaluated the effect of depleting a single A-band on sarcomere length non-uniformity and residual force enhancement. We observed that sarcomere length non-uniformity was effectively increased following A-band depletion. Furthermore, isometric forces decreased, while the percent residual force enhancement increased compared to intact myofibrils (5% vs. 20%). We conclude that sarcomere length non-uniformities are partially responsible for the enhanced force production after stretch.


Export Citation Format

Share Document