Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

intramuscular fat
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 214)

H-INDEX

53
(FIVE YEARS 5)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Supamit Mekchay ◽  
Nanthana Pothakam ◽  
Worrarak Norseeda ◽  
Pantaporn Supakankul ◽  
Tawatchai Teltathum ◽  
...  

Interferon-alpha-16 (IFNA16) and tumor necrosis factor receptor superfamily member 19 (TNFRSF19) are cytokines that may play a role in adipogenesis and fatness. Single nucleotide polymorphisms (SNPs) of the porcine IFNA16 and TNFRSF19 genes were verified and their association with intramuscular fat (IMF) content and fatty acid (FA) composition were evaluated in commercial crossbred pigs. Two non-synonymous SNPs of the porcine IFNA16 c.413G > A and TNFRSF19 c.860G > C loci were detected in commercial crossbred pigs. The porcine IFNA16 c.413G >A polymorphism was significantly associated with stearic acid, total saturated FAs (SFAs), and the ratio of monounsaturated FAs (MUFAs) to SFAs (p < 0.05). Furthermore, the porcine TNFRSF19 c.860G > C polymorphism was found to be significantly associated with IMF content and arachidic acid levels (p < 0.05). The results revealed that porcine IFNA16 and TNFRSF19 polymorphisms are related to IMF content and/or FA composition and affirmed the importance of these cytokine genes as potential candidate genes for lipid deposition and FA composition in the muscle tissue of pigs.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 150
Author(s):  
Isaac Hyeladi Malgwi ◽  
Veronika Halas ◽  
Petra Grünvald ◽  
Stefano Schiavon ◽  
Ildikó Jócsák

Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Emma Solé ◽  
Rayner González-Prendes ◽  
Yelyzaveta Oliinychenko ◽  
Marc Tor ◽  
Roger Ros-Freixedes ◽  
...  

Abstract Background The composition of intramuscular fat depends on genetic and environmental factors, including the diet. In pigs, we identified a haplotype of three SNP mutations in the stearoyl-coA desaturase (SCD) gene promoter associated with higher content of monounsaturated fatty acids in intramuscular fat. The second of these three SNPs (rs80912566, C > T) affected a putative retinol response element in the SCD promoter. The effect of dietary vitamin A restriction over intramuscular fat content is controversial as it depends on the pig genetic line and the duration of the restriction. This study aims to investigate changes in the muscle transcriptome in SCD rs80912566 TT and CC pigs fed with and without a vitamin A supplement during the fattening period. Results Vitamin A did not affect carcass traits or intramuscular fat content and fatty acid composition, but we observed an interaction between vitamin A and SCD genotype on the desaturation of fatty acids in muscle. As reported before, the SCD-TT pigs had more monounsaturated fat than the SCD-CC animals. The diet lacking the vitamin A supplement enlarged fatty acid compositional differences between SCD genotypes, partly because vitamin A had a bigger effect on fatty acid desaturation in SCD-CC pigs (positive) than in SCD-TT and SCD-TC animals (negative). The interaction between diet and genotype was also evident at the transcriptome level; the highest number of differentially expressed genes were detected between SCD-TT pigs fed with the two diets. The genes modulated by the diet with the vitamin A supplement belonged to metabolic and signalling pathways related to immunity and inflammation, transport through membrane-bounded vesicles, fat metabolism and transport, reflecting the impact of retinol on a wide range of metabolic processes. Conclusions Restricting dietary vitamin A during the fattening period did not improve intramuscular fat content despite relevant changes in muscle gene expression, both in coding and non-coding genes. Vitamin A activated general pathways of retinol response in a SCD genotype-dependant manner, which affected the monounsaturated fatty acid content, particularly in SCD-CC pigs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Wei He ◽  
Xibi Fang ◽  
Xin Lu ◽  
Yue Liu ◽  
Guanghui Li ◽  
...  

Acyl-CoA synthetase family member 3 (ACSF3) carries out the first step of mitochondrial fatty acid synthesis II, which is the linkage of malonate and, to a lesser extent, methylmalonate onto CoA. Malonyl-coenzyme A (malonyl-CoA) is a central metabolite in mammalian fatty acid biochemistry that is generated and utilized in the cytoplasm. In this research, we verified the relationship between expression of the ACSF3 and the production of triglycerides (TGs) at the cellular level by silencing and over-expressing ACSF3. Subsequently, through Sanger sequencing, five polymorphisms were found in the functional domain of the bovine ACSF3, and the relationship between ACSF3 polymorphism and the economic traits and fatty acid composition of Chinese Simmental cattle was analyzed by a means of variance analysis and multiple comparison. The results illustrated that the expression of ACSF3 promoted triglyceride synthesis in bovine mammary epithelial cells and bovine fetal fibroblast cells. Further association analysis also indicated that individuals with the AG genotype (g.14211090 G &gt; A) of ACSF3 were significantly associated with the fatty acid composition of intramuscular fat (higher content of linoleic acid, α-linolenic acid, and arachidonic acid), and that CTCAG haplotype individuals were significantly related to the fatty acid composition of intramuscular fat (higher linoleic acid content). Individuals with the AA genotypes of g.14211055 A &gt; G and g.14211090 G &gt; A were substantially associated with a larger eye muscle area in the Chinese Simmental cattle population. ACSF3 played a pivotal role in the regulation of cellular triacylglycerol and long-chain polyunsaturated fatty acid levels, and polymorphism could serve as a useful molecular marker for future marker-assisted selection in the breeding of intramuscular fat deposition traits in beef cattle.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 119
Author(s):  
Hongyan Ren ◽  
Haoyuan Zhang ◽  
Zaidong Hua ◽  
Zhe Zhu ◽  
Jiashu Tao ◽  
...  

The intramuscular fat is a major quality trait of meat, affecting sensory attributes such as flavor and texture. Several previous GWAS studies identified Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) gene as the candidate gene to regulate intramuscular fat content in different pig populations, but the underlying molecular function of ACSL4 in adipogenesis within pig skeletal muscle is not fully investigated. In this study, we isolated porcine endogenous intramuscular adipocyte progenitors and performed ACSL4 loss- and gain-of-function experiments during adipogenic differentiation. Our data showed that ACSL4 is a positive regulator of adipogenesis in intramuscular fat cells isolated from pigs. More interestingly, the enhanced expression of ACSL4 in pig intramuscular adipocytes could increase the cellular content of monounsaturated and polyunsaturated fatty acids, such as gamma-L eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA). The above results not only confirmed the function of ACSL4 in pig intramuscular adipogenesis and meat quality attributes, but also provided new clues for the improvement of the nutritional value of pork for human health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Du ◽  
Yong Wang ◽  
Yanyan Li ◽  
Quzhe Emu ◽  
Jiangjiang Zhu ◽  
...  

Intramuscular fat (i.m.) is an adipose tissue that is deposited between muscle bundles. An important type of post-transcriptional regulatory factor, miRNAs, has been observed as an important regulator that can regulate gene expression and cell differentiation through specific binding with target genes, which is the pivotal way determining intramuscular fat deposition. Thus, this study intends to use RT-PCR, cell culture, liposome transfection, real-time fluorescent quantitative PCR (qPCR), dual luciferase reporter systems, and other biological methods clarifying the possible mechanisms on goat intramuscular preadipocyte differentiation that is regulated by miR-214-5p. Ultimately, our results showed that the expression level of miR-214-5p peaked at 48 h after the goat intramuscular preadipocytes were induced for adipogenesis. Furthermore, after inhibition of the expression of miR-214-5p, the accumulation of lipid droplets and adipocyte differentiation in goat intramuscular adipocytes were promoted by the way of up-regulation of the expression level of lipoprotein lipase (LPL) (p &lt; 0.05) and peroxisome proliferator-activated receptor gamma (PPARγ) (p &lt; 0.01) but inhibited the expression of hormone-sensitive lipase (HSL) (p &lt; 0.01). Subsequently, our study confirmed that Krüppel-like factor 12 (KLF12) was the target gene of miR-214-5p. Inhibition of the expression of KLF12 promoted adipocyte differentiation and lipid accumulation by upregulation of the expression of LPL and CCAAT/enhancer binding protein (C/EBPα) (p &lt; 0.01). Overall, these results indicated that miR-214-5p and its target gene KLF12 were negative regulators in progression of goat preadipocyte differentiation. Our research results provided an experimental basis for finally revealing the mechanism of miR-214-5p in adipocytes.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4533
Author(s):  
Marc Villedon de Naide ◽  
Bruno Pereira ◽  
Daniel Courteix ◽  
Frederic Dutheil ◽  
Lucie Cassagnes ◽  
...  

Rheumatoid arthritis (RA) and spondyloarthritis (SpA) are associated with changes in body composition. Ectopic intramuscular fat (IMAT) may alter muscle function and contribute to cardiometabolic disorders. In a pilot study, we analyzed IMAT in the calf with peripheral quantitative computed tomography (pQCT) and examined correlations between IMAT quantity and body composition parameters. In 20 patients with active RA and 23 with active SpA, IMAT was correlated with visceral fat (VAT; r = 0.5143 and 0.6314, respectively; p < 0.05) and total lean mass (r = 0.5414 and 0.8132, respectively; p < 0.05), but not with whole body fat mass. Total lean mass mediated 16% and 33% of the effects of VAT on IMAT in RA and SpA, respectively. In both RA and SpA, calf muscle area was correlated with total lean mass (r = 0.5940 and r = 0.8597, respectively; p < 0.05) and fat area was correlated with total body fat (r = 0.6767 and 0.5089, respectively; p < 0.05) and subcutaneous fat (r = 0.6526 and 0.5524, respectively; p < 0.05). Fat area was inversely correlated with handgrip and walking tests, and it was associated with disease activity and disability. We showed that ectopic IMAT, measured with pQCT, was correlated with VAT, but not with total body fat, in RA and SpA. This result suggests that metabolically active fat was specifically associated with IMAT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Le Zhao ◽  
Lisheng Zhou ◽  
Xiaojing Hao ◽  
Lei Wang ◽  
Fuhui Han ◽  
...  

Aohan fine-wool sheep (AFWS) is a high-quality fine-wool sheep breed that supplies wool and meat. Research is needed on the molecular mechanism behind intramuscular fat (IMF) deposition that greatly improves mutton quality. The widely expressed non-coding RNA is physiologically used in roles such as competitive endogenous RNA (ceRNA) that includes circular RNAs (circRNAs). Although circRNAs were studied in many fields, little research was devoted to IMF in sheep. We used the longissimus dorsi muscle of 2 and 12-month-old AWFS as research material to identify circRNAs related to IMF deposition in these sheep by RNA-seq screening for differentially expressed circRNAs in the two age groups. A total of 11,565 candidate circRNAs were identified, of which the 104 differentially expressed circRNAs in the two age groups were analyzed. Enrichment analysis was performed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. The enriched pathways included lipid transport (GO:0006869), negative regulation of canonical Wnt signaling pathway (GO:0090090), fat digestion and absorption (ko04975), and sphingolipid metabolism (ko00600). The differentially expressed circRNAs included ciRNA455, circRNA9086, circRNA7445, circRNA4557, and others. The source genes involved in these pathways might regulate IMF deposition. We used the TargetScan and miRanda software for interaction analysis, and a network diagram of circRNA-miRNA interactions was created. CircRNA455-miR-127, circRNA455-miR-29a, circRNA455-miR-103, circRNA4557-mir149-5p, and circRNA2440-mir-23a might be involved in the IMF deposition process. The targeting relationship of circRNA4557-miR-149-5p was verified by a dual-luciferase reporter assay. The RT-qPCR results of seven randomly selected circRNAs were consistent with the sequencing results. This study provides additional information on circRNA regulation of IMF deposition in AFWS and is a useful resource for future research on this sheep breed.


Export Citation Format

Share Document