Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Phycology
Latest Publications


TOTAL DOCUMENTS

15
(FIVE YEARS 15)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-9410

Phycology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 86-108
Author(s):  
Boer Bao ◽  
Skye R. Thomas-Hall ◽  
Peer M. Schenk

Microalgae contain high-value biochemical compounds including fatty acids (FA), protein and carotenoids, and are promising bioresources to enhance nutrition of food and animal feed. Important requirements for commercial strains are rapid growth and high productivities of desirable compounds. As these traits are believed to be found in aquatic environments with fluctuating conditions, we collected microalgae from marine and freshwater environments that are subjected to eutrophication and/or tidal fluctuations. Using this directed approach, 40 monoalgal cultures were isolated and 25 identified through 18S rDNA sequencing and morphological characterization. Based on their high growth rates (0.28–0.60 day−1) and biomass productivities (0.25–0.44 g L−1day−1) in commercial fertilizer under standardized conditions, six new strains were selected. Scenedesmus sp. GW63 produced quality FA-rich biomass with high omega-3 polyunsaturated FA (28.5% of total FA (TFA)) contents, especially α-linolenic acid (ALA; 20.0% of TFA) with a very low n-6/n-3 ratio (0.4), and high FA productivity (32.6 mg L−1 day−1). A high protein productivity (34.5 mg L−1 day−1) made Desmodesmus sp. UQL1_26 (33.4% of dry weight (DW)) attractive as potential protein-rich feed and nutrition supplement. Monoraphidium convolutum GW5 displayed valuable carotenoid production (0.8% DW) with high carotenoid accumulation capability (0.8 mg L−1 day−1). This research provides a pathway for fast-tracking the selection of high-performing local microalgae from different environments for nutraceuticals, functional foods and animal feed applications.


Phycology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 76-85
Author(s):  
Ainoa Morillas-España ◽  
Silvia Villaró ◽  
Martina Ciardi ◽  
Gabriel Acién ◽  
Tomás Lafarga

The microalga S. almeriensis was produced in spring and summer using 80 m2 raceway reactors located inside a greenhouse in Almería, Spain. This microalga was selected because it is a fast-growing and robust strain with potential applications in the production of functional foods and feeds or as a high-value agricultural biostimulant. Overall, the biomass productivity obtained in summer was 24.9 ± 0.9 g·m−2·day−1. This value was higher than that obtained in spring, with an average value of 21.4 ± 1.3 g·m−2·day−1 (p < 0.05). The Fv/Fm value of the cultures at the stationary phase was comparable and around 0.6, which is the optimum of this strain. No major differences in the macromolecular composition of the biomass were observed between seasons, with an average protein, lipid, ash, and carbohydrate content of 37.9, 4.6, 10.8, and 46.7%, respectively. The data reported herein were used to validate a previously described model. The differences between the experimental and the predicted biomass productivities were below 5% in spring and 8% in summer, although a larger dataset is needed to validate the model. Overall, results supported the robustness of the selected strain and its utilisation in different industrial sectors.


Phycology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 60-75
Author(s):  
Sirius Pui-Kam Tse ◽  
Ka-Fu Yung ◽  
Pak-Yeung Lo ◽  
Cheok-Kei Lam ◽  
Tsz-Wang Chu ◽  
...  

Occurrence of large-scale harmful algal blooms (HABs) in our reservoirs and water bodies threaten both quality of our drinking water and economy of aquaculture immensely. Hence, rapid removal of HAB biomass during and after a bloom is crucial in protecting the quality of our drinking water and preserve our water resources. We reported here a rapidly deployable algae cleaning system based on a high-capacity high-throughput (HCHT) spiral blade continuous centrifuge connected with inlet and effluent water tanks and a series of feed-in and feed-out pumps as well as piping, all fitted into a standard 20 feet metal shipping container. The system separates algal biomass from algae-laden water with a maximum flow rate of 4000 L/h and a centrifugal force of 4500× g. Cells collected by the system are still intact due to the low centrifugal force used. We showed that after HCHT centrifugation, cellular contents of HAB biomass were not found in the effluent water, and hence, could be discharged directly back to the water body. Furthermore, the addition of flocculants and chemicals prior to the separation process is not required. The system could operate continuously with proper programmed procedures. Taken overall, this system offered a much better alternative than the traditional flocculation- and sonication-based methods of HAB removal in a freshwater environment. This deployable system is the first of its kind being built and had been field-tested successfully.


Phycology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 45-59
Author(s):  
Toshiki Uji ◽  
Shinnosuke Ueda ◽  
Hiroyuki Mizuta

Extracellular matrix (ECM) proteins play crucial roles in the regulation of cell proliferation and differentiation. We identified homologous genes encoding ECM proteins that are known to associate with integrins in animal cells in red macroalga Neopyropia yezoensis. Four genes encoding spondin domain-containing proteins (NySPLs) and eight genes encoding fasciclin domain-containing proteins (NyFALs) from N. yezoensis were selected for bioinformatics and expression analysis in order to obtain insights into the roles of ECM proteins for the life cycle. NySPLs had eight β-strands with two contiguous α-helices, which were similar to those of the F-spondin domain of animals. NyFALs had conserved H1 and H2 motifs and a YH motif between the H1 and H2 regions. Quantitative reverse transcription polymerase chain reaction showed that NySPL1–3 and NyFAL8 transcripts were highly accumulated in mature gametophytes that formed the spermatia. Furthermore, expressions of all NySPLs were upregulated in response to the ethylene precursor 1-aminocylopropane-1-carboxylic acid that induces gametogenesis. NyFAL1, 4 were highly expressed in sporophytes, whereas NyFAL2, 3, 5, 6, and 7 were overexpressed in gametophytes, especially at the vegetative stage. These findings facilitate future research on ECM architecture in the unique life cycles of red macroalgae.


Phycology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 30-44
Author(s):  
So Hyun (Sophia) Ahn ◽  
Patricia M. Glibert

Karenia mikimotoi is a toxic bloom-forming dinoflagellate that sometimes co-blooms with Karenia brevis in the Gulf of Mexico, especially on the West Florida Shelf where strong vertical temperature gradients and rapid changes in nitrogen (N) can be found. Here, the short-term interactions of temperature, N form, and availability on photosynthesis–irradiance responses were examined using rapid light curves and PAM fluorometry in order to understand their interactions, and how they may affect photosynthetic yields. Cultures of K. mikimotoi were enriched with either nitrate (NO3−), ammonium (NH4+), or urea with varying amounts (1, 5, 10, 20, 50 µM-N) and then incubated at temperatures of 15, 20, 25, 30 °C for 1 h. At 15–25 °C, fluorescence parameters (Fv/Fm, rETR) when averaged for all N treatments were comparable. Within a given light intensity, increasing all forms of N concentrations generally led to higher photosynthetic yields. Cells appeared to dynamically balance the “push” due to photon flux pressure and reductant generation, with consumption in overall metabolism (“pull” due to demand). However, at 30 °C, all fluorescence parameters declined precipitously, but differential responses were observed depending on N form. Cells enriched with urea at 30 °C showed a smaller decline in fluorescence parameters than cells treated with NO3− or NH4+, implying that urea might induce a photoprotective mechanism by increasing metabolic “pull”.


Phycology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-29
Author(s):  
Marta V. Freitas ◽  
Diana Pacheco ◽  
João Cotas ◽  
Teresa Mouga ◽  
Clélia Afonso ◽  
...  

Algae taxa are notably diverse regarding pigment diversity and composition, red seaweeds (Rhodophyta) being a valuable source of phycobiliproteins (phycoerythrins, phycocyanin, and allophycocyanin), carotenes (carotenoids and xanthophylls), and chlorophyll a. These pigments have a considerable biotechnological potential, which has been translated into several registered patents and commercial applications. However, challenges remain regarding the optimization and subsequent scale-up of extraction and purification methodologies, especially when considering the quality and quantity needs, from an industrial and commercial point of view. This review aims to provide the state-of-the-art information on each of the aforementioned groups of pigments that can be found within Rhodophyta. An outline of the chemical biodiversity within pigment groups, current extraction and purification methodologies and challenges, and an overview of commercially available products and registered patents, will be provided. Thus, the current biotechnological applications of red seaweeds pigments will be highlighted, from a sustainable and economical perspective, as well as their integration in the Blue Economy.


Phycology ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 143-162
Author(s):  
Birthe Vejby Nielsen ◽  
John James Milledge ◽  
Heidi Hertler ◽  
Supattra Maneein ◽  
Md Mahmud Al Farid ◽  
...  

The Turks and Caicos Islands (TCI) have been affected by sargassum inundations, with impacts on the economy and environment. Sargassum removal can be costly, but sargassum use and valorisation may generate income and offset environmental damage. A significant barrier to the valorisation of sargassum is insufficient knowledge of its chemical makeup, as well as its seasonal variation and decay after stranding. The chemical characterisation of mixed sargassum and its constituent species and morphotypes (S. natans I, S.natans VIII and S. fluitans) collected from TCI between September 2020 and May 2021 and changes in the composition of sargassum decaying (over 147 days) were studied. High ash (24.61–51.10% dry weight (DW)) and arsenic (49–217 mg kg−1) could severely hamper the use of this seaweed for food or feed purposes. Although there was some reduction in arsenic levels in decaying sargassum, levels remained high (>49 mg kg−1). Biomethane production by anaerobic digestion (AD) is a potential option. Nevertheless, the exploitation of sargassum for biogas, either fresh or as it decays on the beach, is challenging due to low methane yields (<42% of theoretical potential). Pre-treatment or co-digestion with other waste may be options to improve yield. The metal sorption ability of sargassum, which can be problematic, makes biosorption of pollutants an option for further research.


Phycology ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 129-142
Author(s):  
Yoichi Sato ◽  
Tomonari Hirano ◽  
Hiroyuki Ichida ◽  
Nobuhisa Fukunishi ◽  
Tomoko Abe ◽  
...  

The Sanriku district is one of the largest Undaria pinnatifida (Wakame) cultivation areas in Japan. However, the production has steadily declined in recent years due to the high retirement rate among fishers. Extending the cultivation period is a potential way to improve productivity by decentralizing the workforce through the production process. We aimed to investigate the phenotypic differentiation between regional strains of U. pinnatifida collected from Matsushima Bay (MAT) and Hirota Bay (HRT) in the Sanriku district through a cultivation trial to verify the application for the purpose of extending the cultivation period. The growth of MAT was better than that of HRT when the cultivation started earlier (i.e., 9 and 19 October 2014); in contrast, HRT outperformed MAT when the cultivation started later (6 November and 12 December 2014). The yield of MAT reached over the standard amount in the Sanriku district in February. On the other hand, the yield of HRT reached over this value in April. Furthermore, the photosynthetic performance and nutrient uptake rates differed between MAT and HRT, indicating that the differences may result in maturation characteristics. According to these results, the combined use of MAT and HRT would be a valuable strategy by which to extend the cultivation period.


Phycology ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 119-128
Author(s):  
Yuki Nishida ◽  
Yoshikatsu Miyabe ◽  
Hideki Kishimura ◽  
Yuya Kumagai

Mycosporine-like amino acids (MAAs) are the natural ultraviolet (UV)-absorbing compounds from micro- and macro-algae. The MAAs in algae change with the environmental conditions and seasons. We previously determined an efficient extraction method of MAAs from red alga dulse in Usujiri (Hokkaido, Japan) and revealed monthly variation of MAA in 2019. Dulse samples in 2019 for MAA preparation were suitable from late February to April. In this study, to confirm the suitable timings to extract MAAs from Usujiri dulse, we also investigated the monthly (from January to May) variation of MAA content in 2020. There were the most MAAs in the sample on 18 March (6.696 µmol g−1 dry weight) among the samples from January to May 2020. From two years of investigation, we deduce that samples of Usujiri dulse from late February to early April were suitable for MAA preparation. The UV stability of the two major purified MAAs in Usujiri dulse—palythine and porphyra-334—was tested. The two MAAs and 2-hydroxy-4-methoxybenzophenone were stable for up to 12 h under a 312 nm lamp at 200 µW cm−2, but 2-ethylhexyl-4-methoxycinnamate formed a cis/trans-mixture in a short time. The data in this study show the suitable sampling period for Usujiri dulse and the possible application for UV protection from food and cosmetics.


Phycology ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 105-118
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Izabela Świca ◽  
Joanna Kazimierowicz

Algae biomass is perceived as a prospective source of many types of biofuels, including biogas and biomethane produced in the anaerobic digestion process, ethanol from alcoholic fermentation, biodiesel synthesized from lipid reserve substances, and biohydrogen generated in photobiological transformations. Environmental and economic analyses as well as technological considerations indicate that methane fermentation integrated with bio-oil recovery is one of the most justified directions of energy use of microalgae biomass for energy purposes. A promising direction in the development of bioenergy systems based on the use of microalgae is their integration with waste and pollution neutralization technologies. The use of wastewater, another liquid waste, or flue gases can reduce the costs of biofuel production while having a measurable environmental effect.


Export Citation Format

Share Document