Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
2.7 Combining Functions


John 16:33 I have said these things to you, that in me you
may have peace. In the world you will have tribulation. But
take heart; I have overcome the world.”
We can add, subtract, multiply, divide functions
We can add, subtract, multiply, divide functions

       f (x) + g(x) = ( f + g)(x)   D : D f I Dg
We can add, subtract, multiply, divide functions

       f (x) + g(x) = ( f + g)(x)   D : D f I Dg

       f (x) − g(x) = ( f − g)(x)   D : D f I Dg
We can add, subtract, multiply, divide functions

       f (x) + g(x) = ( f + g)(x)   D : D f I Dg

       f (x) − g(x) = ( f − g)(x)   D : D f I Dg

       f (x)⋅ g(x) = ( f ⋅ g)(x)    D : D f I Dg
We can add, subtract, multiply, divide functions

       f (x) + g(x) = ( f + g)(x)   D : D f I Dg

       f (x) − g(x) = ( f − g)(x)   D : D f I Dg

       f (x)⋅ g(x) = ( f ⋅ g)(x)    D : D f I Dg

      f (x) ⎛ f ⎞                 D : D f I Dg
           = ⎜ ⎟ ( x )
      g(x) ⎝ g ⎠                        and
                                        g(x) ≠ 0
x−4           x−3
Example:   f (x) =        g(x) =
                   x −1          x−2
x−4            x−3
Example:     f (x) =         g(x) =
                     x −1           x−2
                x−4 x−3
  ( f + g)(x) =     +            D:   {x : x ≠ 1,2}
                x −1 x − 2
x−4            x−3
Example:     f (x) =         g(x) =
                     x −1           x−2
                x−4 x−3
  ( f + g)(x) =     +            D:   {x : x ≠ 1,2}
                x −1 x − 2
                x−4 x−3
  ( f − g)(x) =     −            D:   {x : x ≠ 1,2}
                x −1 x − 2
x−4                x−3
Example:          f (x) =             g(x) =
                          x −1               x−2
                x−4 x−3
  ( f + g)(x) =     +                     D:   {x : x ≠ 1,2}
                x −1 x − 2
                x−4 x−3
  ( f − g)(x) =     −                     D:   {x : x ≠ 1,2}
                x −1 x − 2

                ⎛ x − 4 ⎞ ⎛ x − 3 ⎞
  ( f ⋅ g)(x) = ⎜
                ⎝ x − 1 ⎟ ⎜ x − 2 ⎟
                         ⎠ ⎝       ⎠
                                          D:   {x : x ≠ 1,2}
x−4                   x−3
Example:           f (x) =                g(x) =
                           x −1                  x−2
                x−4 x−3
  ( f + g)(x) =     +                         D:   {x : x ≠ 1,2}
                x −1 x − 2
                x−4 x−3
  ( f − g)(x) =     −                         D:   {x : x ≠ 1,2}
                x −1 x − 2

                ⎛ x − 4 ⎞ ⎛ x − 3 ⎞
  ( f ⋅ g)(x) = ⎜
                ⎝ x − 1 ⎟ ⎜ x − 2 ⎟
                         ⎠ ⎝       ⎠
                                              D:   {x : x ≠ 1,2}

  ⎛ f ⎞       ⎛ x − 4 ⎞ ⎛ x − 2 ⎞
  ⎜ g ⎟ (x) = ⎜ x − 1 ⎟ ⎜ x − 3 ⎟
                ⎝       ⎠ ⎝       ⎠
                                              D:   {x : x ≠ 1,2, 3}
  ⎝ ⎠
x−4                   x−3
Example:           f (x) =                g(x) =
                           x −1                  x−2
                x−4 x−3
  ( f + g)(x) =     +                         D:   {x : x ≠ 1,2}
                x −1 x − 2
                x−4 x−3
  ( f − g)(x) =     −                         D:   {x : x ≠ 1,2}
                x −1 x − 2

                ⎛ x − 4 ⎞ ⎛ x − 3 ⎞
  ( f ⋅ g)(x) = ⎜
                ⎝ x − 1 ⎟ ⎜ x − 2 ⎟
                         ⎠ ⎝       ⎠
                                              D:   {x : x ≠ 1,2}

  ⎛ f ⎞       ⎛ x − 4 ⎞ ⎛ x − 2 ⎞
  ⎜ g ⎟ (x) = ⎜ x − 1 ⎟ ⎜ x − 3 ⎟
                ⎝       ⎠ ⎝       ⎠
                                              D:   {x : x ≠ 1,2, 3}
  ⎝ ⎠

  Be sure to read Example 2 in your textbook
Composite Functions
Composite Functions
The output of one function (the inner function)
is used as input for another function (the
outer function)    notation : f ( g ( x ))
Composite Functions
 The output of one function (the inner function)
 is used as input for another function (the
 outer function)    notation : f ( g ( x ))
Example 1:    y = x +1
Composite Functions
 The output of one function (the inner function)
 is used as input for another function (the
 outer function)    notation : f ( g ( x ))
Example 1:    y = x +1
 Inner function is done first        x +1

 Outer function is done second        x
Composite Functions
 The output of one function (the inner function)
 is used as input for another function (the
 outer function)    notation : f ( g ( x ))
Example 1:    y = x +1
 Inner function is done first        x +1

 Outer function is done second        x
             g(x) = x + 1
             f (x) = x
             f (g(x)) = x + 1
Composite Functions

Example 2:    y = sin ( 3θ )
Composite Functions

Example 2:        y = sin ( 3θ )

  Inner      3θ                    g(θ ) = 3θ
Composite Functions

Example 2:        y = sin ( 3θ )

  Inner      3θ                    g(θ ) = 3θ

  Outer      sin ( x )             f (x) = sin ( x )
Composite Functions

Example 2:        y = sin ( 3θ )

  Inner      3θ                    g(θ ) = 3θ

  Outer      sin ( x )             f (x) = sin ( x )

                  f (g(θ )) = sin ( 3θ )
Composite Functions

Example 3:    y = sin 2 (θ )
Composite Functions

Example 3:       y = sin 2 (θ )

  Inner      sin (θ )             g(θ ) = sin (θ )
Composite Functions

Example 3:           y = sin 2 (θ )

  Inner      sin (θ )                 g(θ ) = sin (θ )

  Outer      x   2
                                      f (x) = x   2
Composite Functions

Example 3:           y = sin 2 (θ )

  Inner      sin (θ )                 g(θ ) = sin (θ )

  Outer      x   2
                                      f (x) = x   2




                     f (g(θ )) = sin 2 (θ )
Composite Functions

Example 4:    y = sin 2 ( 3θ )
Composite Functions

Example 4:     y = sin 2 ( 3θ )

  Innermost         3θ            h(θ ) = 3θ
Composite Functions

Example 4:     y = sin 2 ( 3θ )

  Innermost         3θ            h(θ ) = 3θ

  Next Inner       sin (θ )       g(θ ) = sin (θ )
Composite Functions

Example 4:     y = sin 2 ( 3θ )

  Innermost         3θ            h(θ ) = 3θ

  Next Inner       sin (θ )       g(θ ) = sin (θ )

  Outer             x   2
                                  f (x) = x 2
Composite Functions

Example 4:     y = sin 2 ( 3θ )

  Innermost         3θ               h(θ ) = 3θ

  Next Inner       sin (θ )          g(θ ) = sin (θ )

  Outer             x   2
                                     f (x) = x 2

                    f (g(h(θ ))) = sin 2 ( 3θ )
Composite Functions

Example 4:     y = sin 2 ( 3θ )

  Innermost         3θ               h(θ ) = 3θ

  Next Inner       sin (θ )          g(θ ) = sin (θ )

  Outer             x   2
                                     f (x) = x 2

                    f (g(h(θ ))) = sin 2 ( 3θ )


 Be sure to read Example 7 in your textbook
Is f (g(x)) = g( f (x)) ?
Is f (g(x)) = g( f (x)) ?   Let f(x) = 2x+1
                                g(x) = x-3
Is f (g(x)) = g( f (x)) ?     Let f(x) = 2x+1
                                  g(x) = x-3

    f (g(x)) = 2(x − 3) + 1
            = 2x − 6 + 1
            = 2x − 5
Is f (g(x)) = g( f (x)) ?     Let f(x) = 2x+1
                                    g(x) = x-3

    f (g(x)) = 2(x − 3) + 1   g( f (x)) = (2x + 1) − 3
            = 2x − 6 + 1               = 2x − 2
            = 2x − 5
Is f (g(x)) = g( f (x)) ?      Let f(x) = 2x+1
                                     g(x) = x-3

    f (g(x)) = 2(x − 3) + 1    g( f (x)) = (2x + 1) − 3
            = 2x − 6 + 1                = 2x − 2
            = 2x − 5

                        Not the same
Is f (g(x)) = g( f (x)) ?      Let f(x) = 2x+1
                                     g(x) = x-3

    f (g(x)) = 2(x − 3) + 1    g( f (x)) = (2x + 1) − 3
            = 2x − 6 + 1                = 2x − 2
            = 2x − 5

                        Not the same
                Could they be the same?
Could f (g(x)) = g( f (x)) ?
Could f (g(x)) = g( f (x)) ?
                                           x −1
             Let f (x) = 2x + 1 and g(x) =
                                             2
Could f (g(x)) = g( f (x)) ?
                                              x −1
                Let f (x) = 2x + 1 and g(x) =
                                                2

                 ⎛ x − 1 ⎞
    f (g(x)) = 2 ⎜       ⎟ + 1
                 ⎝ 2 ⎠

             = x − 1+ 1

             =x
Could f (g(x)) = g( f (x)) ?
                                              x −1
                Let f (x) = 2x + 1 and g(x) =
                                                2

                 ⎛ x − 1 ⎞                   (2x + 1) − 1
    f (g(x)) = 2 ⎜       ⎟ + 1   g( f (x)) =
                 ⎝ 2 ⎠                            2
                                               2x
             = x − 1+ 1                      =
                                                2
             =x                             =x
Could f (g(x)) = g( f (x)) ?
                                              x −1
                Let f (x) = 2x + 1 and g(x) =
                                                2

                 ⎛ x − 1 ⎞                   (2x + 1) − 1
    f (g(x)) = 2 ⎜       ⎟ + 1   g( f (x)) =
                 ⎝ 2 ⎠                            2
                                               2x
             = x − 1+ 1                      =
                                                2
             =x                             =x

    These are the same. It happens when f(x)
       and g(x) are inverses of each other.
HW #9

“There are precious few Einsteins among us.
Most brilliance arises from ordinary people
working together in extraordinary ways.”
                              Roger Von Oech

More Related Content

0210 ch 2 day 10

  • 1. 2.7 Combining Functions John 16:33 I have said these things to you, that in me you may have peace. In the world you will have tribulation. But take heart; I have overcome the world.”
  • 2. We can add, subtract, multiply, divide functions
  • 3. We can add, subtract, multiply, divide functions f (x) + g(x) = ( f + g)(x) D : D f I Dg
  • 4. We can add, subtract, multiply, divide functions f (x) + g(x) = ( f + g)(x) D : D f I Dg f (x) − g(x) = ( f − g)(x) D : D f I Dg
  • 5. We can add, subtract, multiply, divide functions f (x) + g(x) = ( f + g)(x) D : D f I Dg f (x) − g(x) = ( f − g)(x) D : D f I Dg f (x)⋅ g(x) = ( f ⋅ g)(x) D : D f I Dg
  • 6. We can add, subtract, multiply, divide functions f (x) + g(x) = ( f + g)(x) D : D f I Dg f (x) − g(x) = ( f − g)(x) D : D f I Dg f (x)⋅ g(x) = ( f ⋅ g)(x) D : D f I Dg f (x) ⎛ f ⎞ D : D f I Dg = ⎜ ⎟ ( x ) g(x) ⎝ g ⎠ and g(x) ≠ 0
  • 7. x−4 x−3 Example: f (x) = g(x) = x −1 x−2
  • 8. x−4 x−3 Example: f (x) = g(x) = x −1 x−2 x−4 x−3 ( f + g)(x) = + D: {x : x ≠ 1,2} x −1 x − 2
  • 9. x−4 x−3 Example: f (x) = g(x) = x −1 x−2 x−4 x−3 ( f + g)(x) = + D: {x : x ≠ 1,2} x −1 x − 2 x−4 x−3 ( f − g)(x) = − D: {x : x ≠ 1,2} x −1 x − 2
  • 10. x−4 x−3 Example: f (x) = g(x) = x −1 x−2 x−4 x−3 ( f + g)(x) = + D: {x : x ≠ 1,2} x −1 x − 2 x−4 x−3 ( f − g)(x) = − D: {x : x ≠ 1,2} x −1 x − 2 ⎛ x − 4 ⎞ ⎛ x − 3 ⎞ ( f ⋅ g)(x) = ⎜ ⎝ x − 1 ⎟ ⎜ x − 2 ⎟ ⎠ ⎝ ⎠ D: {x : x ≠ 1,2}
  • 11. x−4 x−3 Example: f (x) = g(x) = x −1 x−2 x−4 x−3 ( f + g)(x) = + D: {x : x ≠ 1,2} x −1 x − 2 x−4 x−3 ( f − g)(x) = − D: {x : x ≠ 1,2} x −1 x − 2 ⎛ x − 4 ⎞ ⎛ x − 3 ⎞ ( f ⋅ g)(x) = ⎜ ⎝ x − 1 ⎟ ⎜ x − 2 ⎟ ⎠ ⎝ ⎠ D: {x : x ≠ 1,2} ⎛ f ⎞ ⎛ x − 4 ⎞ ⎛ x − 2 ⎞ ⎜ g ⎟ (x) = ⎜ x − 1 ⎟ ⎜ x − 3 ⎟ ⎝ ⎠ ⎝ ⎠ D: {x : x ≠ 1,2, 3} ⎝ ⎠
  • 12. x−4 x−3 Example: f (x) = g(x) = x −1 x−2 x−4 x−3 ( f + g)(x) = + D: {x : x ≠ 1,2} x −1 x − 2 x−4 x−3 ( f − g)(x) = − D: {x : x ≠ 1,2} x −1 x − 2 ⎛ x − 4 ⎞ ⎛ x − 3 ⎞ ( f ⋅ g)(x) = ⎜ ⎝ x − 1 ⎟ ⎜ x − 2 ⎟ ⎠ ⎝ ⎠ D: {x : x ≠ 1,2} ⎛ f ⎞ ⎛ x − 4 ⎞ ⎛ x − 2 ⎞ ⎜ g ⎟ (x) = ⎜ x − 1 ⎟ ⎜ x − 3 ⎟ ⎝ ⎠ ⎝ ⎠ D: {x : x ≠ 1,2, 3} ⎝ ⎠ Be sure to read Example 2 in your textbook
  • 14. Composite Functions The output of one function (the inner function) is used as input for another function (the outer function) notation : f ( g ( x ))
  • 15. Composite Functions The output of one function (the inner function) is used as input for another function (the outer function) notation : f ( g ( x )) Example 1: y = x +1
  • 16. Composite Functions The output of one function (the inner function) is used as input for another function (the outer function) notation : f ( g ( x )) Example 1: y = x +1 Inner function is done first x +1 Outer function is done second x
  • 17. Composite Functions The output of one function (the inner function) is used as input for another function (the outer function) notation : f ( g ( x )) Example 1: y = x +1 Inner function is done first x +1 Outer function is done second x g(x) = x + 1 f (x) = x f (g(x)) = x + 1
  • 19. Composite Functions Example 2: y = sin ( 3θ ) Inner 3θ g(θ ) = 3θ
  • 20. Composite Functions Example 2: y = sin ( 3θ ) Inner 3θ g(θ ) = 3θ Outer sin ( x ) f (x) = sin ( x )
  • 21. Composite Functions Example 2: y = sin ( 3θ ) Inner 3θ g(θ ) = 3θ Outer sin ( x ) f (x) = sin ( x ) f (g(θ )) = sin ( 3θ )
  • 23. Composite Functions Example 3: y = sin 2 (θ ) Inner sin (θ ) g(θ ) = sin (θ )
  • 24. Composite Functions Example 3: y = sin 2 (θ ) Inner sin (θ ) g(θ ) = sin (θ ) Outer x 2 f (x) = x 2
  • 25. Composite Functions Example 3: y = sin 2 (θ ) Inner sin (θ ) g(θ ) = sin (θ ) Outer x 2 f (x) = x 2 f (g(θ )) = sin 2 (θ )
  • 26. Composite Functions Example 4: y = sin 2 ( 3θ )
  • 27. Composite Functions Example 4: y = sin 2 ( 3θ ) Innermost 3θ h(θ ) = 3θ
  • 28. Composite Functions Example 4: y = sin 2 ( 3θ ) Innermost 3θ h(θ ) = 3θ Next Inner sin (θ ) g(θ ) = sin (θ )
  • 29. Composite Functions Example 4: y = sin 2 ( 3θ ) Innermost 3θ h(θ ) = 3θ Next Inner sin (θ ) g(θ ) = sin (θ ) Outer x 2 f (x) = x 2
  • 30. Composite Functions Example 4: y = sin 2 ( 3θ ) Innermost 3θ h(θ ) = 3θ Next Inner sin (θ ) g(θ ) = sin (θ ) Outer x 2 f (x) = x 2 f (g(h(θ ))) = sin 2 ( 3θ )
  • 31. Composite Functions Example 4: y = sin 2 ( 3θ ) Innermost 3θ h(θ ) = 3θ Next Inner sin (θ ) g(θ ) = sin (θ ) Outer x 2 f (x) = x 2 f (g(h(θ ))) = sin 2 ( 3θ ) Be sure to read Example 7 in your textbook
  • 32. Is f (g(x)) = g( f (x)) ?
  • 33. Is f (g(x)) = g( f (x)) ? Let f(x) = 2x+1 g(x) = x-3
  • 34. Is f (g(x)) = g( f (x)) ? Let f(x) = 2x+1 g(x) = x-3 f (g(x)) = 2(x − 3) + 1 = 2x − 6 + 1 = 2x − 5
  • 35. Is f (g(x)) = g( f (x)) ? Let f(x) = 2x+1 g(x) = x-3 f (g(x)) = 2(x − 3) + 1 g( f (x)) = (2x + 1) − 3 = 2x − 6 + 1 = 2x − 2 = 2x − 5
  • 36. Is f (g(x)) = g( f (x)) ? Let f(x) = 2x+1 g(x) = x-3 f (g(x)) = 2(x − 3) + 1 g( f (x)) = (2x + 1) − 3 = 2x − 6 + 1 = 2x − 2 = 2x − 5 Not the same
  • 37. Is f (g(x)) = g( f (x)) ? Let f(x) = 2x+1 g(x) = x-3 f (g(x)) = 2(x − 3) + 1 g( f (x)) = (2x + 1) − 3 = 2x − 6 + 1 = 2x − 2 = 2x − 5 Not the same Could they be the same?
  • 38. Could f (g(x)) = g( f (x)) ?
  • 39. Could f (g(x)) = g( f (x)) ? x −1 Let f (x) = 2x + 1 and g(x) = 2
  • 40. Could f (g(x)) = g( f (x)) ? x −1 Let f (x) = 2x + 1 and g(x) = 2 ⎛ x − 1 ⎞ f (g(x)) = 2 ⎜ ⎟ + 1 ⎝ 2 ⎠ = x − 1+ 1 =x
  • 41. Could f (g(x)) = g( f (x)) ? x −1 Let f (x) = 2x + 1 and g(x) = 2 ⎛ x − 1 ⎞ (2x + 1) − 1 f (g(x)) = 2 ⎜ ⎟ + 1 g( f (x)) = ⎝ 2 ⎠ 2 2x = x − 1+ 1 = 2 =x =x
  • 42. Could f (g(x)) = g( f (x)) ? x −1 Let f (x) = 2x + 1 and g(x) = 2 ⎛ x − 1 ⎞ (2x + 1) − 1 f (g(x)) = 2 ⎜ ⎟ + 1 g( f (x)) = ⎝ 2 ⎠ 2 2x = x − 1+ 1 = 2 =x =x These are the same. It happens when f(x) and g(x) are inverses of each other.
  • 43. HW #9 “There are precious few Einsteins among us. Most brilliance arises from ordinary people working together in extraordinary ways.” Roger Von Oech

Editor's Notes

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n
  34. \n
  35. \n