Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Binom 
ial 
The 
Theorem 
By iTutor.com 
T- 1-855-694-8886 
Email- info@iTutor.com
Binomials 
 An expression in the form a + b is called a binomial, because it 
is made of of two unlike terms. 
 We could use the FOIL method repeatedly to evaluate 
expressions like (a + b)2, (a + b)3, or (a + b)4. 
– (a + b)2 = a2 + 2ab + b2 
– (a + b)3 = a3 + 3a2b + 3ab2 + b3 
– (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 
 But to evaluate to higher powers of (a + b)n would be a difficult 
and tedious process. 
 For a binomial expansion of (a + b)n, look at the expansions 
below: 
– (a + b)2 = a2 + 2ab + b2 
– (a + b)3 = a3 + 3a2b + 3ab2 + b3 
– (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 
• Some simple patterns emerge by looking at these 
examples: 
– There are n + 1 terms, the first one is an and the last is bn. 
– The exponent of a decreases by 1 for each term and the exponents of 
b increase by 1. 
– The sum of the exponents in each term is n.
For bigger exponents 
 To evaluate (a + b)8, we will find a way to calculate the value of 
each coefficient. 
(a + b)8= a8 + __a7b + __a6b2 + __a5b3 + __a4b4 + __a3b5 + __a2b6 + __ab7 + b8 
– Pascal’s Triangle will allow us to figure out what the coefficients of 
each term will be. 
– The basic premise of Pascal’s Triangle is that every entry (other than 
a 1) is the sum of the two entries diagonally above it. 
The Factorial 
 In any of the examples we had done already, notice that the 
coefficient of an and bn were each 1. 
– Also, notice that the coefficient of an-1 and a were each n. 
 These values can be calculated by using factorials. 
– n factorial is written as n! and calculated by multiplying the positive 
whole numbers less than or equal to n. 
 Formula: For n≥1, n! = n • (n-1) • (n-2)• . . . • 3 • 2 • 1. 
 Example: 4! = 4  3  2  1 = 24 
– Special cases: 0! = 1 and 1! = 1, to avoid division by zero in the next 
formula.
The Binomial Coefficient 
 To find the coefficient of any term of (a + b)n, we 
can apply factorials, using the formula: 
n 
! 
 
   
 
 
 
  
Cn r   
!  ! 
r n r 
n 
r 
 
– where n is the power of the binomial expansion, (a + 
b)n, and 
– r is the exponent of b for the specific term we are 
Blaise Pascal calculating. 
(1623-1662) 
 So, for the second term of (a + b)8, we would have n = 8 and r = 
1 (because the second term is ___a7b). 
– This procedure could be repeated for any term we choose, or all of the 
terms, one after another. 
– However, there is an easier way to calculate these coefficients. 
Example : 
7 
4! 3! 
7! 
7 3   
4! 3! 
7! 
(7 3)! 3! 
• • • 
 
C  
(7 • 6 • 5 • 4) • (3 • 2 • 
1) 
7 • 6 • 5 • 
4 
 35 
(4 • 3 • 2 • 1) • (3 • 2 • 
1) 
  
4 • 3 • 2 • 
1
Recall that a binomial has two terms... 
(x + y) 
The Binomial Theorem gives us a quick method to expand binomials 
raised to powers such as… (x + y)0 
(x + y)1 (x + y)2 (x + y)3 
Study the following… 
1 
1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1 
1 5 10 10 5 1 
This triangle is called Pascal’s 
Triangle (named after mathematician 
Blaise Pascal). 
Notice that row 5 comes from adding up row 
4’s adjacent numbers. 
(The first row is named row 0). 
Row 0 
Row 1 
Row 2 
Row 3 
Row 4 
Row 5 
Row 6 1 6 15 20 15 6 1 
This pattern will help us find the coefficients when we expand binomials...
 What we will notice is that when r=0 and when r=n, then nCr=1, no 
matter how big n becomes. This is because: 
 Note also that when r = 1 and r = (n-1): 
 So, the coefficients of the first and last terms will always be one. 
– The second coefficient and next-to-last coefficient will be n. 
(because the denominators of their formulas are equal) 
 
nC0  
n! 
n  0!0! 
 
n! 
n!0! 
 1 
 
nCn  
n! 
n  n!n! 
 
n! 
0!n! 
 1 
Finding coefficient 
nC1  
n! 
n 1!1! 
 
nn 1! 
n 1!1! 
 n 
 
nCn 1  
n! 
n  n 1!n 1! 
 
nn 1! 
1!n 1! 
 n
Constructing Pascal’s Triangle 
 Continue evaluating nCr for n=2 and n=3. 
 When we include all the possible values of r such that 0≤r≤n, we 
get the figure below: 
n=0 0C0 
n=1 1C0 1C1 
n=2 2C0 2C1 2C2 
n=3 3C0 3C1 3C2 3C3 
n=4 4C0 4C1 4C2 4C3 4C4 
n=5 5C0 5C1 5C2 5C3 5C4 5C5 
n=6 6C0 6C1 6C2 6C3 6C4 6C5 6C6
 Knowing what we know about nCr and its values when r=0, 1, 
(n-1), and n, we can fill out the outside values of the Triangle: 
r=0, nCr=1 0C0 
1C0 1C1 
2C0 2C2 
3C0 3C3 
4C0 4C4 
5C0 5C5 
6C0 6C6 
r=n, nCr=1 
n=0 1 
n=1 1 1 C1 
11 
n=2 1 1 CCC1 
221 1 22 
n=3 1 1 CCCCC1 
331 1 332 2 33 
n=4 1 1 CCCCCCC1 
441 1 442 2 443 3 44 
n=5 1 1 CCCCCCCCC1 
551 1 552 2 553 3 554 4 55 
n=6 1 CCCCCC61 62 63 64 65 66 
1 6C1 6C2 6C3 6C4 6C5 1 
r=1, nCr=n 
1 2 1 
1 3 32 1 
1 4 4C2 4C3 1 
1 5 52 53 54 1 
1 6 6C2 6C3 6C4 6C5 1 
r=(n-1), nCr=n 
1 3 3 1 
1 4 4 1 
1 5 5 1 
1 6 6 1
Using Pascal’s Triangle 
 We can also use Pascal’s Triangle to expand binomials, such 
as (x - 3)4. 
 The numbers in Pascal’s Triangle can be used to find the 
coefficients in a binomial expansion. 
 For example, the coefficients in (x - 3)4 are represented by the 
row of Pascal’s Triangle for n = 4. 
x  34 
4C0 x4 
30 
4C1 x3 
31 
4C2 x2 
32 
4C3 x1 
33 
4C4 x0 
34 
1 4 6 4 1 
1x4 12x3  54x2 108x  81 
 
 1x4 
1 4x3 
3 6x2 
9 4x1 
271x0 
81
The Binomial Theorem 
1 1 ( )n n n n r r n n 
n r x y x nx y C x y nxy y       L  L   
n 
C 
 The general idea of the Binomial Theorem is that: 
– The term that contains ar in the expansion (a + b)n is 
or 
n ! 
 
 ! ! 
– It helps to remember that the sum of the exponents of each term of the 
expansion is n. (In our formula, note that r + (n - r) = n.) 
 
n 
n  r 
 
 
 
 
 
arbn r 
  
r n r a b 
n r r 
! 
with 
n r 
( n r )! r 
!  
 
Example: Use the Binomial Theorem to expand (x4 + 2)3. 
3 0 C 3 1 C 3 2 C 3 3   C 4 3 (x 2)  4 3 (x ) ( ) (2)  4 2 x  4 2 (x )(2) 3 (2) 
1  4 3 ) (x  3 ) 2 ( ) ( 4 2 x 3  4 2 ) 2 )( (x 1 3 (2) 
6 12 8 12 8 4  x  x  x 
Find the eighth term in the expansion of (x + y)13 . 
The eighth term is 13C7 x6y7. 
13 7 C   
Therefore, 
(13 • 12 • 11 • 10 • 9 • 8) • 
7! 
6! 7! 
13! 
6! 7! 
• 
• 
1716 
13 • 12 • 11 • 10 • 9 • 
8 
  
6 • 5 • 4 • 3 • 2 • 
1 
the eighth term of (x + y)13 is 1716 x6y7. 
Example: 
 Think of the first term of the expansion as x13y 0 . 
 The power of y is 1 less than the number of the term in the 
expansion.
Proof of Binomial Theorem 
 Binomial theorem for any positive integer n, 
n n n n n n n n a b  c a  c a b c a b   c b   ........ 2 2 
  n 
n 
2 
1 
0 1 
Proof 
The proof is obtained by applying principle of mathematical 
induction. 
Step: 1 
Let the given statement be 
  n 
n n n n n n n n f n ab  c a  c a b c a b   c b   ( ) : ........ 2 2 
Check the result for n = 1 we have 
n 
2 
1 
0 1 
f a b  c a  c a b  a b  (1) : 1 1 1 
1 
1 1 
0 
1 1 
Thus Result is true for n =1 
Step: 2 Let us assume that result is true for n = k 
k k k k k k k k f k ab  c a  c a b c a b   c b   ( ) : ........ 2 2 
  k 
k 
2 
1 
0 1
Step: 3 We shall prove that f (k + 1) is also true, 
k k k k k k k k f k a b c a c a b c a b c b 
(  1) :   1   1        ........   k 
 
  1 
1 
1 2 1 
2 
1 
1 
1 1 
0 
 
k 
Now, 
  k k a b (a b)(a b) 1      
   k  
k k k k k k k  a  b c a  c a b c a b   c b   ........ 2 2 
k 
2 
1 
0 1 
From Step 2 
  
 
 
  
c a  c a b  c a b  ........ 
 
c ab 
  
 
 
 
 
 
    
 
 
 
 
........ 
1 
1 
1 2 
0 1 
1 2 
1 2 
1 
0 
k 
k 
k k 
k 
k k k k k 
k 
k 
k k k k k k k 
c a b c a b c ab c b 
    
 
 
1 2 
k k k k k k k k 
c a c c a b c c a b 
     
   
 
 
 
 
 
   
 
 
 
  
1 
1 
1 0 2 1 
1 
0 
. .. 
..... 
k 
k 
k k 
k 
k 
k 
k 
c c ab c b 
k k c c c c c c 
1 by using 1, , and 1  
1 
       
1 
0  
1 
k 
k 
k 
k 
r 
k 
r 
k 
r
k k k k k k k c a c a b c a b c ab c b 
             k 
1 ........  
 Thus it has been proved that f(k+1) is true when ever f(k) is 
true, 
 Therefore, by Principle of mathematical induction f(n) is true 
for every Positive integer n. 
1 
1 
1 2 1 1 
2 
1 
1 
1 1 
0 
 
k 
k k 
k
Call us for 
more 
Information: 
1-855-694- 
8886 
www.iTutor.com 
Vis 
it 
The End

More Related Content

What's hot

Factor Theorem and Remainder Theorem
Factor Theorem and Remainder TheoremFactor Theorem and Remainder Theorem
Factor Theorem and Remainder Theorem
Ronalie Mejos
 
Matrix.
Matrix.Matrix.
Matrix.
Awais Bakshy
 
Cramer's Rule
Cramer's RuleCramer's Rule
Cramer's Rule
Abdul SAttar
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
Tarun Gehlot
 
Pascal triangle and binomial theorem
Pascal triangle and binomial theoremPascal triangle and binomial theorem
Pascal triangle and binomial theorem
rey castro
 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
Aditya Vaishampayan
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
aakashray33
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
Shakehand with Life
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
mstf mstf
 
Metric space
Metric spaceMetric space
Metric space
NaliniSPatil
 
5.9 complex numbers
5.9 complex numbers5.9 complex numbers
5.9 complex numbers
Jessica Garcia
 
Funtional analysis-BANACH SPACE
Funtional analysis-BANACH SPACEFuntional analysis-BANACH SPACE
Funtional analysis-BANACH SPACE
Manikanta satyala
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
NirnayMukharjee
 
Rank nullity theorem
Rank nullity theoremRank nullity theorem
Rank nullity theorem
Roqui Gonzaga
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
mstf mstf
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
Diler4
 
Measure and integration
Measure and integrationMeasure and integration
Measure and integration
Prakash Dabhi
 
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1 INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
Mishal Chauhan
 
A study on number theory and its applications
A study on number theory and its applicationsA study on number theory and its applications
A study on number theory and its applications
Itishree Dash
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 

What's hot (20)

Factor Theorem and Remainder Theorem
Factor Theorem and Remainder TheoremFactor Theorem and Remainder Theorem
Factor Theorem and Remainder Theorem
 
Matrix.
Matrix.Matrix.
Matrix.
 
Cramer's Rule
Cramer's RuleCramer's Rule
Cramer's Rule
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Pascal triangle and binomial theorem
Pascal triangle and binomial theoremPascal triangle and binomial theorem
Pascal triangle and binomial theorem
 
system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Metric space
Metric spaceMetric space
Metric space
 
5.9 complex numbers
5.9 complex numbers5.9 complex numbers
5.9 complex numbers
 
Funtional analysis-BANACH SPACE
Funtional analysis-BANACH SPACEFuntional analysis-BANACH SPACE
Funtional analysis-BANACH SPACE
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
Rank nullity theorem
Rank nullity theoremRank nullity theorem
Rank nullity theorem
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Measure and integration
Measure and integrationMeasure and integration
Measure and integration
 
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1 INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
 
A study on number theory and its applications
A study on number theory and its applicationsA study on number theory and its applications
A study on number theory and its applications
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 

Similar to Binomial theorem

Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
itutor
 
Vivek
VivekVivek
jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
HamnaAnis1
 
Binomial theorem
Binomial theoremBinomial theorem
Binomial theorem
indu psthakur
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
smiller5
 
M112rev
M112revM112rev
10.2 using combinations and the binomial theorem
10.2 using combinations and the binomial theorem10.2 using combinations and the binomial theorem
10.2 using combinations and the binomial theorem
hartcher
 
Binomial
BinomialBinomial
Binomial
DEDESUDJADI
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
FranciscoJavierCaedo
 
Binomial Theorem, Recursion ,Tower of Honai, relations
Binomial Theorem, Recursion ,Tower of Honai, relationsBinomial Theorem, Recursion ,Tower of Honai, relations
Binomial Theorem, Recursion ,Tower of Honai, relations
Aqeel Rafique
 
1631 the binomial theorem
1631 the binomial theorem1631 the binomial theorem
1631 the binomial theorem
Dr Fereidoun Dejahang
 
X ch 1 real numbers
X  ch 1  real numbersX  ch 1  real numbers
X ch 1 real numbers
AmruthaKB2
 
Determinants
DeterminantsDeterminants
Determinants
Joey Valdriz
 
1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf
RajDubey83
 
1506 binomial-coefficients
1506 binomial-coefficients1506 binomial-coefficients
1506 binomial-coefficients
Dr Fereidoun Dejahang
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 
Real number by G R Ahmed of KVK
Real number by G R Ahmed of KVKReal number by G R Ahmed of KVK
Real number by G R Ahmed of KVK
MD. G R Ahmed
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
geraldsiew
 
Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริง
Nittaya Noinan
 
Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริง
Nittaya Noinan
 

Similar to Binomial theorem (20)

Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Vivek
VivekVivek
Vivek
 
jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
 
Binomial theorem
Binomial theoremBinomial theorem
Binomial theorem
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
 
M112rev
M112revM112rev
M112rev
 
10.2 using combinations and the binomial theorem
10.2 using combinations and the binomial theorem10.2 using combinations and the binomial theorem
10.2 using combinations and the binomial theorem
 
Binomial
BinomialBinomial
Binomial
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Binomial Theorem, Recursion ,Tower of Honai, relations
Binomial Theorem, Recursion ,Tower of Honai, relationsBinomial Theorem, Recursion ,Tower of Honai, relations
Binomial Theorem, Recursion ,Tower of Honai, relations
 
1631 the binomial theorem
1631 the binomial theorem1631 the binomial theorem
1631 the binomial theorem
 
X ch 1 real numbers
X  ch 1  real numbersX  ch 1  real numbers
X ch 1 real numbers
 
Determinants
DeterminantsDeterminants
Determinants
 
1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf1631-thebinomialtheorem-161031145734.pdf
1631-thebinomialtheorem-161031145734.pdf
 
1506 binomial-coefficients
1506 binomial-coefficients1506 binomial-coefficients
1506 binomial-coefficients
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
Real number by G R Ahmed of KVK
Real number by G R Ahmed of KVKReal number by G R Ahmed of KVK
Real number by G R Ahmed of KVK
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริง
 
Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริง
 

Recently uploaded

Matka guessing satta Matta matka Dpboss Matka boss otg
Matka guessing satta Matta matka Dpboss  Matka boss otgMatka guessing satta Matta matka Dpboss  Matka boss otg
Indian Matka Dpboss Matka guessing satta
Indian Matka Dpboss Matka guessing sattaIndian Matka Dpboss Matka guessing satta
Matka boss otg matka 420 matka otg matka boss
Matka boss otg matka 420 matka otg matka bossMatka boss otg matka 420 matka otg matka boss
Kalyan Satta Matka 420 ,Indian matka 143
Kalyan Satta Matka 420 ,Indian matka 143Kalyan Satta Matka 420 ,Indian matka 143
Kalyan Satta Matka 420 ,Indian matka 143
Matka Guessing ❼ʘ❷ʘ❻❻➃➆➆➀ Matka Result
 
Indian Matka Satta Matta Matka Dpboss Matka Boss otg Satta Matka
Indian Matka Satta Matta Matka Dpboss Matka Boss otg Satta MatkaIndian Matka Satta Matta Matka Dpboss Matka Boss otg Satta Matka
Indian Matka Satta Matta Matka Dpboss Matka Boss otg Satta Matka
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK
9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK
9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK
❾❸❹❽❺❾❼❾❾⓿SATTA MATKA DPBOSS KALYAN MAIN BAZAR FAST MATKA ...
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Kalyan Today Kalyan Open Satta Matka 143
Kalyan Today Kalyan Open Satta Matka 143Kalyan Today Kalyan Open Satta Matka 143
Kalyan Today Kalyan Open Satta Matka 143
Matka Guessing ❼ʘ❷ʘ❻❻➃➆➆➀ Matka Result
 
Indian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otg
Indian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otgIndian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otg
Indian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otg
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Indian Matka Kalyan Matka Satta Matta Matka Dpboss Matka Guessing
Indian Matka Kalyan Matka Satta Matta Matka Dpboss Matka GuessingIndian Matka Kalyan Matka Satta Matta Matka Dpboss Matka Guessing
Indian Matka Kalyan Matka Satta Matta Matka Dpboss Matka Guessing
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Matka boss otg matka boss matka 420 matka satta
Matka boss otg matka boss matka 420 matka sattaMatka boss otg matka boss matka 420 matka satta
Kalyan matka sattamatka Dpboss Dpboss Matka Dpboss satta
Kalyan matka sattamatka Dpboss Dpboss Matka Dpboss sattaKalyan matka sattamatka Dpboss Dpboss Matka Dpboss satta
Satta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matka
Satta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matkaSatta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matka
Satta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matka
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Matka boss otg satta matka kalyan matka Dpboss Matka guessing Indian Matka
Matka boss otg satta matka kalyan matka Dpboss Matka guessing Indian MatkaMatka boss otg satta matka kalyan matka Dpboss Matka guessing Indian Matka
Matka boss otg satta matka kalyan matka Dpboss Matka guessing Indian Matka
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Kalyan Satta Matka Guessing Dp boss..143
Kalyan Satta Matka Guessing Dp boss..143Kalyan Satta Matka Guessing Dp boss..143
Kalyan Satta Matka Guessing Dp boss..143
Matka Guessing ❼ʘ❷ʘ❻❻➃➆➆➀ Matka Result
 
Kalyan matka Dpboss Matka guessing satta
Kalyan matka Dpboss Matka guessing sattaKalyan matka Dpboss Matka guessing satta
Matka boss otg satta Matta matka Indian Matka Tara Matka
Matka boss otg satta Matta matka Indian Matka Tara MatkaMatka boss otg satta Matta matka Indian Matka Tara Matka
➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg
➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg
➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Satta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otg
Satta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otgSatta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otg
Satta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otg
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart

Recently uploaded (20)

Matka guessing satta Matta matka Dpboss Matka boss otg
Matka guessing satta Matta matka Dpboss  Matka boss otgMatka guessing satta Matta matka Dpboss  Matka boss otg
Matka guessing satta Matta matka Dpboss Matka boss otg
 
Indian Matka Dpboss Matka guessing satta
Indian Matka Dpboss Matka guessing sattaIndian Matka Dpboss Matka guessing satta
Indian Matka Dpboss Matka guessing satta
 
Matka boss otg matka 420 matka otg matka boss
Matka boss otg matka 420 matka otg matka bossMatka boss otg matka 420 matka otg matka boss
Matka boss otg matka 420 matka otg matka boss
 
Kalyan Satta Matka 420 ,Indian matka 143
Kalyan Satta Matka 420 ,Indian matka 143Kalyan Satta Matka 420 ,Indian matka 143
Kalyan Satta Matka 420 ,Indian matka 143
 
Indian Matka Satta Matta Matka Dpboss Matka Boss otg Satta Matka
Indian Matka Satta Matta Matka Dpboss Matka Boss otg Satta MatkaIndian Matka Satta Matta Matka Dpboss Matka Boss otg Satta Matka
Indian Matka Satta Matta Matka Dpboss Matka Boss otg Satta Matka
 
9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK
9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK
9348597990SATTA MATKA DPBOSS KALYAN CHART RESULT FIRST FINAL ANK
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 
Kalyan Today Kalyan Open Satta Matka 143
Kalyan Today Kalyan Open Satta Matka 143Kalyan Today Kalyan Open Satta Matka 143
Kalyan Today Kalyan Open Satta Matka 143
 
Indian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otg
Indian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otgIndian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otg
Indian Matka Dpboss Matka Guessing Kalyan panel Chart Matka Boss otg
 
Indian Matka Kalyan Matka Satta Matta Matka Dpboss Matka Guessing
Indian Matka Kalyan Matka Satta Matta Matka Dpboss Matka GuessingIndian Matka Kalyan Matka Satta Matta Matka Dpboss Matka Guessing
Indian Matka Kalyan Matka Satta Matta Matka Dpboss Matka Guessing
 
Matka boss otg matka boss matka 420 matka satta
Matka boss otg matka boss matka 420 matka sattaMatka boss otg matka boss matka 420 matka satta
Matka boss otg matka boss matka 420 matka satta
 
Kalyan matka sattamatka Dpboss Dpboss Matka Dpboss satta
Kalyan matka sattamatka Dpboss Dpboss Matka Dpboss sattaKalyan matka sattamatka Dpboss Dpboss Matka Dpboss satta
Kalyan matka sattamatka Dpboss Dpboss Matka Dpboss satta
 
Satta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matka
Satta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matkaSatta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matka
Satta matka Dpboss Matka guessing satta Matta matka Indian Matka kalyan matka
 
Matka boss otg satta matka kalyan matka Dpboss Matka guessing Indian Matka
Matka boss otg satta matka kalyan matka Dpboss Matka guessing Indian MatkaMatka boss otg satta matka kalyan matka Dpboss Matka guessing Indian Matka
Matka boss otg satta matka kalyan matka Dpboss Matka guessing Indian Matka
 
Kalyan Satta Matka Guessing Dp boss..143
Kalyan Satta Matka Guessing Dp boss..143Kalyan Satta Matka Guessing Dp boss..143
Kalyan Satta Matka Guessing Dp boss..143
 
Kalyan matka Dpboss Matka guessing satta
Kalyan matka Dpboss Matka guessing sattaKalyan matka Dpboss Matka guessing satta
Kalyan matka Dpboss Matka guessing satta
 
Matka boss otg satta Matta matka Indian Matka Tara Matka
Matka boss otg satta Matta matka Indian Matka Tara MatkaMatka boss otg satta Matta matka Indian Matka Tara Matka
Matka boss otg satta Matta matka Indian Matka Tara Matka
 
➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg
➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg
➒➌➎➏➑➐➋➑➐➐ Indian Matka Dpboss Matka boss otg
 
Satta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otg
Satta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otgSatta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otg
Satta Matta Matka Indian Matka Satta Matka Dpboss Matka boss otg
 
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 

Binomial theorem

  • 1. Binom ial The Theorem By iTutor.com T- 1-855-694-8886 Email- info@iTutor.com
  • 2. Binomials  An expression in the form a + b is called a binomial, because it is made of of two unlike terms.  We could use the FOIL method repeatedly to evaluate expressions like (a + b)2, (a + b)3, or (a + b)4. – (a + b)2 = a2 + 2ab + b2 – (a + b)3 = a3 + 3a2b + 3ab2 + b3 – (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4  But to evaluate to higher powers of (a + b)n would be a difficult and tedious process.  For a binomial expansion of (a + b)n, look at the expansions below: – (a + b)2 = a2 + 2ab + b2 – (a + b)3 = a3 + 3a2b + 3ab2 + b3 – (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 • Some simple patterns emerge by looking at these examples: – There are n + 1 terms, the first one is an and the last is bn. – The exponent of a decreases by 1 for each term and the exponents of b increase by 1. – The sum of the exponents in each term is n.
  • 3. For bigger exponents  To evaluate (a + b)8, we will find a way to calculate the value of each coefficient. (a + b)8= a8 + __a7b + __a6b2 + __a5b3 + __a4b4 + __a3b5 + __a2b6 + __ab7 + b8 – Pascal’s Triangle will allow us to figure out what the coefficients of each term will be. – The basic premise of Pascal’s Triangle is that every entry (other than a 1) is the sum of the two entries diagonally above it. The Factorial  In any of the examples we had done already, notice that the coefficient of an and bn were each 1. – Also, notice that the coefficient of an-1 and a were each n.  These values can be calculated by using factorials. – n factorial is written as n! and calculated by multiplying the positive whole numbers less than or equal to n.  Formula: For n≥1, n! = n • (n-1) • (n-2)• . . . • 3 • 2 • 1.  Example: 4! = 4  3  2  1 = 24 – Special cases: 0! = 1 and 1! = 1, to avoid division by zero in the next formula.
  • 4. The Binomial Coefficient  To find the coefficient of any term of (a + b)n, we can apply factorials, using the formula: n !          Cn r   !  ! r n r n r  – where n is the power of the binomial expansion, (a + b)n, and – r is the exponent of b for the specific term we are Blaise Pascal calculating. (1623-1662)  So, for the second term of (a + b)8, we would have n = 8 and r = 1 (because the second term is ___a7b). – This procedure could be repeated for any term we choose, or all of the terms, one after another. – However, there is an easier way to calculate these coefficients. Example : 7 4! 3! 7! 7 3   4! 3! 7! (7 3)! 3! • • •  C  (7 • 6 • 5 • 4) • (3 • 2 • 1) 7 • 6 • 5 • 4  35 (4 • 3 • 2 • 1) • (3 • 2 • 1)   4 • 3 • 2 • 1
  • 5. Recall that a binomial has two terms... (x + y) The Binomial Theorem gives us a quick method to expand binomials raised to powers such as… (x + y)0 (x + y)1 (x + y)2 (x + y)3 Study the following… 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 This triangle is called Pascal’s Triangle (named after mathematician Blaise Pascal). Notice that row 5 comes from adding up row 4’s adjacent numbers. (The first row is named row 0). Row 0 Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 1 6 15 20 15 6 1 This pattern will help us find the coefficients when we expand binomials...
  • 6.  What we will notice is that when r=0 and when r=n, then nCr=1, no matter how big n becomes. This is because:  Note also that when r = 1 and r = (n-1):  So, the coefficients of the first and last terms will always be one. – The second coefficient and next-to-last coefficient will be n. (because the denominators of their formulas are equal)  nC0  n! n  0!0!  n! n!0!  1  nCn  n! n  n!n!  n! 0!n!  1 Finding coefficient nC1  n! n 1!1!  nn 1! n 1!1!  n  nCn 1  n! n  n 1!n 1!  nn 1! 1!n 1!  n
  • 7. Constructing Pascal’s Triangle  Continue evaluating nCr for n=2 and n=3.  When we include all the possible values of r such that 0≤r≤n, we get the figure below: n=0 0C0 n=1 1C0 1C1 n=2 2C0 2C1 2C2 n=3 3C0 3C1 3C2 3C3 n=4 4C0 4C1 4C2 4C3 4C4 n=5 5C0 5C1 5C2 5C3 5C4 5C5 n=6 6C0 6C1 6C2 6C3 6C4 6C5 6C6
  • 8.  Knowing what we know about nCr and its values when r=0, 1, (n-1), and n, we can fill out the outside values of the Triangle: r=0, nCr=1 0C0 1C0 1C1 2C0 2C2 3C0 3C3 4C0 4C4 5C0 5C5 6C0 6C6 r=n, nCr=1 n=0 1 n=1 1 1 C1 11 n=2 1 1 CCC1 221 1 22 n=3 1 1 CCCCC1 331 1 332 2 33 n=4 1 1 CCCCCCC1 441 1 442 2 443 3 44 n=5 1 1 CCCCCCCCC1 551 1 552 2 553 3 554 4 55 n=6 1 CCCCCC61 62 63 64 65 66 1 6C1 6C2 6C3 6C4 6C5 1 r=1, nCr=n 1 2 1 1 3 32 1 1 4 4C2 4C3 1 1 5 52 53 54 1 1 6 6C2 6C3 6C4 6C5 1 r=(n-1), nCr=n 1 3 3 1 1 4 4 1 1 5 5 1 1 6 6 1
  • 9. Using Pascal’s Triangle  We can also use Pascal’s Triangle to expand binomials, such as (x - 3)4.  The numbers in Pascal’s Triangle can be used to find the coefficients in a binomial expansion.  For example, the coefficients in (x - 3)4 are represented by the row of Pascal’s Triangle for n = 4. x  34 4C0 x4 30 4C1 x3 31 4C2 x2 32 4C3 x1 33 4C4 x0 34 1 4 6 4 1 1x4 12x3  54x2 108x  81   1x4 1 4x3 3 6x2 9 4x1 271x0 81
  • 10. The Binomial Theorem 1 1 ( )n n n n r r n n n r x y x nx y C x y nxy y       L  L   n C  The general idea of the Binomial Theorem is that: – The term that contains ar in the expansion (a + b)n is or n !   ! ! – It helps to remember that the sum of the exponents of each term of the expansion is n. (In our formula, note that r + (n - r) = n.)  n n  r      arbn r   r n r a b n r r ! with n r ( n r )! r !   Example: Use the Binomial Theorem to expand (x4 + 2)3. 3 0 C 3 1 C 3 2 C 3 3   C 4 3 (x 2)  4 3 (x ) ( ) (2)  4 2 x  4 2 (x )(2) 3 (2) 1  4 3 ) (x  3 ) 2 ( ) ( 4 2 x 3  4 2 ) 2 )( (x 1 3 (2) 6 12 8 12 8 4  x  x  x 
  • 11. Find the eighth term in the expansion of (x + y)13 . The eighth term is 13C7 x6y7. 13 7 C   Therefore, (13 • 12 • 11 • 10 • 9 • 8) • 7! 6! 7! 13! 6! 7! • • 1716 13 • 12 • 11 • 10 • 9 • 8   6 • 5 • 4 • 3 • 2 • 1 the eighth term of (x + y)13 is 1716 x6y7. Example:  Think of the first term of the expansion as x13y 0 .  The power of y is 1 less than the number of the term in the expansion.
  • 12. Proof of Binomial Theorem  Binomial theorem for any positive integer n, n n n n n n n n a b  c a  c a b c a b   c b   ........ 2 2   n n 2 1 0 1 Proof The proof is obtained by applying principle of mathematical induction. Step: 1 Let the given statement be   n n n n n n n n n f n ab  c a  c a b c a b   c b   ( ) : ........ 2 2 Check the result for n = 1 we have n 2 1 0 1 f a b  c a  c a b  a b  (1) : 1 1 1 1 1 1 0 1 1 Thus Result is true for n =1 Step: 2 Let us assume that result is true for n = k k k k k k k k k f k ab  c a  c a b c a b   c b   ( ) : ........ 2 2   k k 2 1 0 1
  • 13. Step: 3 We shall prove that f (k + 1) is also true, k k k k k k k k f k a b c a c a b c a b c b (  1) :   1   1        ........   k    1 1 1 2 1 2 1 1 1 1 0  k Now,   k k a b (a b)(a b) 1         k  k k k k k k k  a  b c a  c a b c a b   c b   ........ 2 2 k 2 1 0 1 From Step 2       c a  c a b  c a b  ........  c ab                ........ 1 1 1 2 0 1 1 2 1 2 1 0 k k k k k k k k k k k k k k k k k k k c a b c a b c ab c b       1 2 k k k k k k k k c a c c a b c c a b                      1 1 1 0 2 1 1 0 . .. ..... k k k k k k k k c c ab c b k k c c c c c c 1 by using 1, , and 1  1        1 0  1 k k k k r k r k r
  • 14. k k k k k k k c a c a b c a b c ab c b              k 1 ........   Thus it has been proved that f(k+1) is true when ever f(k) is true,  Therefore, by Principle of mathematical induction f(n) is true for every Positive integer n. 1 1 1 2 1 1 2 1 1 1 1 0  k k k k
  • 15. Call us for more Information: 1-855-694- 8886 www.iTutor.com Vis it The End