MyRocks Табличный Движок для MySQL / Алексей Майков (Facebook) / Сергей Петру...Ontico
Facebook использует MySQL в качестве основного хранилища данных. MySQL работает на десятках тысяч серверов в нескольких ЦОДах. В качестве дисков используются Flash-накопители. Они дают большую производительность, но дорогой ценой — MySQL хранит данные на диске в структуре B-tree, которая использует flash-диск неоптимальным образом. В масштабах Facebook'a цена вопроса измеряется миллионами долларов.
Для оптимального использования Flash-дисков в Facebook была разработана библиотека RocksDB. Она основана на LSM-деревьях и оптимизирована для работы в условиях высокой загрузки. Чтобы использовать ее из MySQL, [совместно с MariaDB] был разработан табличный движок — MyRocks.
Данный доклад посвящен RocksDB и MyRocks. Мы расскажем о принципах их работы и преимуществах, как их настраивать, и какие возможны подводные камни.
Авторы доклада — ведущие разработчики MyRocks от Facebook и MariaDB.
RocksDB и MyRocks доступны на GitHub для свободного использования, участие в разработке также приветствуется.
AWS и GCP: трудная жизнь в облаках / Максим Пугачев (IPONWEB)Ontico
Разница между “несколько серверов в облаках” и “вся инфраструктура в облаках“ огромна. С одной стороны, мы перекладываем миллион забот на гигантские плечи Amazon и Google. С другой стороны, к сожалению, обретаем много новых и порой необычных проблем.
Как жить в облаках двух самых популярных провайдеров? Что это за проблемы и как их решать? В чем особенности облаков, если вы живете в мире highload? Как выжимать максимум из того, что предоставляют провайдеры?
Я попытаюсь рассказать о наиболее важных, на мой взгляд, особенностях:
- Почему не стоит полагаться на заявленные характеристики виртуальных машин.
- Почему нет разницы между загрузкой CPU в 85% и 100%.
- Всевозможные аномалии и неожиданные "спайки" в метриках.
- "Облачные" диски и их особенности.
За счет чего Tarantool такой оптимальный / Денис Аникин (Mail.Ru)Ontico
Многие из вас, наверное, видели результаты тестов сравнения Tarantool с остальными СУБД, которые показывают, что Tarantool быстрее всех, оптимальней по памяти, обрабатывает наибольшее количество транзакций в секунду.
И, несмотря на то, что исходные коды всех тестов полностью открыты и хорошо откомментированы, позволяя всем желающим повторить тесты, все равно остаются вопросы - за счет чего Tarantool такой быстрый и оптимальный?
Я решил суммировать мои ответы на эти вопросы в докладе на Highload++.
Итак, почему Tarantool такой быстрый?
Краткий ответ: потому что он с самого начала разрабатывался и до сих пор разрабатывается во главе угла с производительностью/оптимальностью/минимальным потреблением всех ресурсов системы.
Более полный ответ я раскрою в своем выступлении. Приходите, будет интересно! :)
HighLoad++ 2017
Зал «Рио-де-Жанейро», 8 ноября, 12:00
Тезисы:
http://www.highload.ru/2017/abstracts/3005.html
Когда мы говорим о нагруженных системах и базах данных с большим числом параллельных коннектов, особый интерес представляет практика эксплуатации и сопровождения таких проектов. В том числе инструменты и механизмы СУБД, которые могут быть использованы DBA и DevOps-инженерами для решения задач мониторинга жизнедеятельности базы данных и ранней диагностики возможных проблем.
...
MyRocks: табличный движок для MySQL на основе RocksDBSergey Petrunya
MyRocks: табличный движок для MySQL на основе RocksDB.
Презентация с HighLoad++ 2015.
Рассказывается о принципах работы LSM-Trees, их реализации в RocksDB, зачем и как был сделан MyRocks, с какими проблемами столкнулись и как их решили.
Кластеры баз данных делаем сложные вещи просто / Андрей Тихонов (Avito)Ontico
Порой в процессе развития высоконагруженного проекта наступает момент, когда необходимо масштабирование. Возможно, ваш проект впервые упёрся в производительность железа (и таким образом перешёл в разряд высоконагруженных); возможно, это уже не первое масштабирование — не важно. Какие же проблемы могут возникнуть?
Во-первых, если вы увеличиваете количество бэкенд-серверов, и, соответственно, количество рабочих процессов, то с ростом количества одновременных клиентских подключений вырастают и накладные расходы на базах данных.
Во-вторых, достаточно быстро может кончиться ресурс in-memory баз данных. Потребуется создать (либо увеличить) кластер, а это каждый раз влечёт за собой необходимость модифицировать логику приложения.
В-третьих, чем больше серверов, тем больше вероятность, что один из них выйдет из строя. Поэтому неплохо задуматься о том, как обеспечить отказоустойчивость, а это, опять же, потребует модифицировать логику приложения.
В этом докладе я расскажу, как и какими инструментами можно легко решить все вышеперечисленные проблемы: уменьшить накладные расходы от большого количества подключений к базам данных, создать/модифицировать кластер БД прозрачно для приложения, а также прозрачно добавить устойчивость к падениям серверов БД.
План доклада:
- Введение. Методы масштабирования БД: репликация, шардирование.
- Создаём шардированные кластеры in-memory БД прозрачно для приложений: Twemproxy, Redis-proxy, Mcrouter.
- Уменьшаем накладные расходы от большого количества одновременных подключений на PostgreSQL с помощью PgBouncer.
- Создаём шардированный кластер PostgreSQL с помощью PL/Proxy.
- Добавляем прозрачную для приложения отказо�
Путь от монолита на PHP к микросервисам на Scala / Денис Иванов (2GIS)Ontico
В своём проекте мы решали следующие задачи:
+ Скорость разработки задачи;
+ Стоимость поддержки задачи;
+ Возможность распараллеливать вычисления и задачи;
+ Возможность максимально просто масштабировать приложение;
+ CI/CD с минимальными усилиями.
Я расскажу о том, как мы решали эти задачи, на какие грабли мы наступали, что из этого всего получилось, и что делать дальше.
Что получили в итоге:
+ Мощь JVM под капотом Scala;
+ 15 минут от нажатия на кнопку "Merge request" до продакшена в 3 датацентра и 6 серверов с прохождением тестов (юнит + функциональные + интеграционные + нагрузочные);
+ 6 нод с приложениями вместо 18 (по 2 в каждом датацентре для отказоустойчивости) с запасом прочности в 60%;
+ Независимые пофичные релизы без даунтайма всех компонентов приложения;
+ Масштабирование только того функционала и в том количестве, которое необходимо данному сервису.
Брокер сообщений Kafka в условиях повышенной нагрузки / Артём Выборнов (Rambl...Ontico
РИТ++ 2017, Backend Conf
Зал Кейптаун, 6 июня, 18:00
Тезисы:
http://backendconf.ru/2017/abstracts/2542.html
Kafka - распределённый брокер сообщений, нашедший широкое применение как универсальная шина для больших данных. Kafka позволяет как реализовать realtime-обработку большого числа событий, так и построить батчевый pipeline по доставке логов.
Почему мы используем Kafka? Если коротко - унификация. А если чуть подробнее - десятки поставщиков, терабайты логов каждый день, онлайн- и офлайн-pipeline'ы - без единой высокопроизводительной шины данных с этим крайне сложно совладать.
Из доклада вы узнаете о том, почему мы перешли на Kafka, и как она вписалась в наш pipeline. Поймёте, как обеспечить exactly once доставку данных. Узнаете о том, как из-за одной опечатки в несколько раз выросла нагрузка на Kafka, и что мы из этого выяснили. Выясните, какие метрики Kafka стоит мониторить и как по ним понять, что что-то идёт не так.
Стратегия и тактика улучшения производительности BSS систем оператора мобильн...Ontico
В докладе поделимся опытом построения комплексного процесса последовательного улучшения производительности информационных систем мобильного оператора, расскажем об используемых инструментах и компонентах (Oracle, Tarantool, Java, Jmeter и т.д.).
Особенность нашего оператора в том, что основной канал взаимодействия с клиентом - это мобильное приложение или web Личный кабинет, а не USSD команды и СМС, как у основной массы операторов. Данная особенность создает высокие требования к времени отклика и доступности сервисов и ставит перед нами целый ряд вопросов:
- Как достичь приемлемого времени отрисовки страниц (не более 2х секунд) и не "уронить" backend при увеличении кол-ва абонентов в несколько раз за год до 4х миллионов?
- Как обеспечить приемлемую производительность при наличии сложных оркестрирующих процессов на ESB и достаточно медленного, основанного на Oracle биллинга?
- Как контролировать и улучшать производительность и доступность постоянно и на упреждение, а не когда "жареный петух клюнет"?
Мы расскажем о том, как мы отвечаем на выше обозначенные вопросы. В частности, расскажем о внедрении двух БД - inmemory БД на чтение и Oracle на запись с соответствующей синхронизацией, о технике кэширования на нескольких уровнях, оптимизации синхронных и асинхронных процессов, о постоянном выявлении узких мест на тестировании, о кластеризации и других аспектах улучшения общей и частной производительности и доступности при быстро растущей абонентской базе и беспощадной креативности бизнеса.
Поддержка высоконагруженного проекта: мониторинг, резервирование, обслуживани...Ontico
1. Мониторинг высоконагруженного проекта.
1.1. Специфика мониторинга высоконагруженного проекта: гранулярность мониторинга, надежность системы мониторинга, система оповещений.
1.2. Мониторинг и контроль распределенных систем.
1.3. Специфика организации оповещений в высоконагруженном проекте. Превентивный мониторинг.
2. Резервирование и резервное копирование в высоконагруженном проекте.
2.1. Резервирование и резервное копирование - разные вещи.
2.2. Резервирование: на уровне сервера, дата-центра, географически распределенных площадок.
2.1. Организация резервного копирования. Сохранность часто обновляемых данных.
3. Обслуживание высоконагруженного проекта.
3.1. Организация поддержки высоконагруженного проекта: опыт, специфика работы.
3.2. Организация дежурств, эскалация оповещений.
3.3. Аварии в высоконагруженных проектах: примеры из жизни.
Tempesta FW: challenges, internals, use cases / Александр Крижановский (Tempe...Ontico
Tempesta FW — это Open Source гибрид Web-акселератора и файервола, специально разработанный для высокопроизводительной доставки контента вне зависимости от DDoS или наплыва посетителей.
В докладе будет рассказано про задачи, которые ставились при разработке проекта и пути их решения. Рассмотрим проблемы современных операционных систем в приложении к Web-стеку (система фильтрации, Web-сервер, application слой, БД), и как они решаются в Tempesta — некоторые уже решены, некоторые еще в процессе работы.
И самое главное — у нас появился рабочий прототип, и я расскажу про типовые примеры инсталляции, фичи и конфигурацию, а также покажу бенчмарки.
Кэширование данных в web приложениях. Использование memcached / Юрий Красноще...Ontico
Каждый разработчик web приложений рано или поздно сталкивается с довольно типичной проблемой: перед ним стоит задача построить фабрику по производству омнониевых торсиометров.
Фабрика производит омнониевые торсиометры очень быстро, но для калибровки прибора (как известно) необходим омноний, за которым приходится летать на Андромеду.
Пока корабль летит до Андромеды, фабрика простаивает.
Самый очевидный выход из ситуации - построить склад омнониума прямо рядом с фабрикой.
Терминология кэширования
Выбор места для кэширования в WEB
Выбор данных для кэширования
Кэширование на стороне бэкенда
Отдельный кэширующий сервис
Пара слов о memcached
Пара слов о Redis
Dennis Anikin - Tarantool Case Studies in Mail.Ru GroupMail.ru Group
Денис рассказал о трех кейсах использования Tarantool в Mail.Ru Group - это система аутентификации пользователей, система нотификаций для мобильных приложений и система показа рекламы. Во всех трех кейсах Tarantool является краеугольным камнем распределенной серверной инфраструктуры, которая обслуживает суммарно порядка 100 миллионов пользователей в месяц.
Виртуальный ЦОД для корпоративных клиентов на базе Virtuozzo: стабильность, п...Ontico
Услуга виртуального дата-центра предъявляет жесткие требования к платформе виртуализации - клиенты хотят высокую производительность и стабильность, а провайдерам нужна возможность максимально плотно размещать нагрузки клиентов.
Мы расскажем:
1. как мы работали с Virtuozzo, чтобы сделать его более производительным и стабильным и, вместе с тем, добиться максимальной плотности размещения виртуальных машин;
2. контейнеры Virtuozzo прекрасно решают эту задачу, но не подходят для размещения некоторых типов приложений, например, Windows;
3. как мы будем переходить на Virtuozzo с KVM, каких целей мы хотим добиться.
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...Ontico
Широко распространено мнение, что SQL СУБД обречены быть медлительными и неповоротливыми, поскольку несут груз совместимости с предыдущими версиями. Это расхожее мнение широко эксплуатируется маркетингом NoSQL СУБД. Однако, это не всегда действительно так.
Разработка в Open Source сообществе позволяет продукту развиваться достаточно гибко, чтобы отвечать требованиям времени. В MySQL и PostgreSQL – самых популярных Open Source СУБД – недавно были проведены оптимизации для работы на больших серверах, что позволило им выполнять более миллиона SQL-запросов в секунду на одном экземпляре БД.
В данном докладе будут рассмотрены конкретные оптимизации, которые позволили добиться таких результатов, которые раньше могли бы показаться фантастическими. И можно сказать, что Open Source СУБД вошли в эру миллионов запросов в секунду.
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...Ontico
HighLoad++ 2017
Зал «Калининград», 8 ноября, 15:00
Тезисы:
http://www.highload.ru/2017/abstracts/2964.html
Одноклассники состоят из более чем восьми тысяч железных серверов, расположенных в нескольких дата-центрах. Каждая из этих машин была специализированной под конкретную задачу - как для обеспечения изоляции отказов, так и для обеспечения автоматизированного управления инфраструктурой.
...
Внутреннее устройство PostgreSQL: временные таблицы и фрагментация памяти / Г...Ontico
Всем известно о существовании временных таблиц в PostgreSQL, но как они устроены, и чем грозит их некорректное использование - не столь очевидно.
На примере одного известного приложения, активно и некорректно использующего временные таблицы, мы расскажем о создаваемой ими проблеме фрагментации памяти.
Что такое фрагментация памяти, по каким признакам можно определить ее наличие, чем она грозит, почему она возникает при активном использовании временных таблиц, и как мы пропатчили PostgreSQL, чтобы ее избежать - обо всем этом можно узнать из нашего доклада.
Архитектура HAWQ / Алексей Грищенко (Pivotal)Ontico
HAWQ — один из лучших на рынке движков SQL-on-Hadoop, который не раз доказывал свою лидирующую позицию в открытых тестированиях. Что еще более интересно, в конце сентября этого года Pivotal открыл его исходный код под лицензией Apache, а также разместил сам проект в инкубаторе Apache (http://hawq.incubator.apache.org), что делает этот инструмент доступным большому кругу пользователей и намного более привлекательным для компаний — лидеров интернет-индустрии.
Работая в Pivotal, я участвовал в развитии и внедрении этого продукта с первого дня его существования.
В этой презентации я раскрою следующие темы:
+ Что такое HAWQ и зачем он был создан.
+ Кластерная архитектура HAWQ.
+ Принципы работы HAWQ.
+ Внутреннее устройство процессов HAWQ.
+ Интеграция с внешними системами.
+ Альтернативные решения.
Реализация восстановления после аварий / Сергей Бурладян (Avito)Ontico
Базы данных PostgreSQL занимают одно из центральных мест в Авито. Они являются разделяемой платформой, вокруг которой построено множество дополнительных сервисов. Одной из основных задач при их администрировании является задача восстановления после аварий как самих баз, так и связанной с ними инфраструктуры.
В своём докладе я постараюсь рассказать про:
+ общую схему связей баз данных между собой и с другими компонентами;
+ точки отказа и виды аварий, затрагиваемые связи;
+ бинарную репликацию и архив;
+ логическую репликацию, pgq, londiste, UNDO (REDO), пересоздание репки;
+ скрипт и процедуру переключения при аварии;
+ планы: развитие «восстановлений» по всем связям, автоматика на основе системы zookeeper (etcd и т.п.).
Эволюция программно-аппаратного обеспечения хранения фотографий в Badoo / Дми...Ontico
На примере нашей системы хранения фотографий мы хотим рассказать о проблемах, с которыми столкнулись в течение прошедших семи лет, связанных с ее программными и аппаратными компонентами, и о путях их решений.
В данном докладе речь пойдет о том, как сохранить независимость от поставщика и построить масштабируемую систему хранения с длительным сроком эксплуатации и способностью к оперативному внесению изменений в конфигурацию. Как сделать изменения на аппаратном уровне прозрачными для разработчиков, а также о том, как упростить развертывание и обслуживание.
В общих чертах изложен опыт и проблемы, которые мы получили в ходе эксплуатации классических мультиконтроллерных СХД. Основная тема - построение собственных хранилищ на базе общедоступных компонентов (полки, адаптеры, экспандеры, интерпозеры, диски, ЦПУ и т.д.) с потенциальной возможностью замены любого из выше перечисленного на другую модель. Дублирование критически важных узлов в рамках одной СХД. Обзор используемых транспортов - SRP, FC, iSCSI и описание того, каким образом можно быстро адаптировать такое хранилище под один или несколько транспортов, с минимальными вложениями. Обзор ПО для реализации СХД (SCST/LIO или проприетарные решения в области Software Defined Storage ). Автоматизация развертывания (инсталляция/управление с помощью Puppet). Тестирование перед вводом в эксплуатацию. Multipath I/O и упрощение именования экспортируемых блочных устройств. Политика составления наборов firmware для стабильной работы. Мониторинг. Расследование сбоев (Order of failure и т.п.).
10 способов достижения HighLoad'а и BigData на ровном месте / Илья Космодемья...Ontico
Веб-сайт нужно делать так, чтобы о перипетиях его разработки и поддержки бессонными ночами через пару лет можно было рассказать на конференции Highload++, а тамошнюю аудиторию сложно удивить велосипедом с треугольными каменными колесами. Большинство разработчиков свято следуют этому принципу то ли в силу природной любознательности и трудолюбия, то ли по причине отсутствия конференции LowLoad--.
Примерно такие мысли приходят в голову практически любому специалисту по хранилищам данных, когда он видит успешный веб-проект, испытывающий стандартные проблемы с базой данных.
В этом докладе я расскажу о 10-ти очень распространенных ошибках проектирования и эксплуатации хранилища в веб-проекте — от преждевременного шардирования базы и непродуманной системы архивации ненужных данных до особенностей работы всеми любимых фреймворков. Про каждую из них я расскажу подробно и поделюсь рецептами, как такие ошибки исправлять.
За счет чего Tarantool такой оптимальный / Денис Аникин (Mail.Ru)Ontico
Многие из вас, наверное, видели результаты тестов сравнения Tarantool с остальными СУБД, которые показывают, что Tarantool быстрее всех, оптимальней по памяти, обрабатывает наибольшее количество транзакций в секунду.
И, несмотря на то, что исходные коды всех тестов полностью открыты и хорошо откомментированы, позволяя всем желающим повторить тесты, все равно остаются вопросы - за счет чего Tarantool такой быстрый и оптимальный?
Я решил суммировать мои ответы на эти вопросы в докладе на Highload++.
Итак, почему Tarantool такой быстрый?
Краткий ответ: потому что он с самого начала разрабатывался и до сих пор разрабатывается во главе угла с производительностью/оптимальностью/минимальным потреблением всех ресурсов системы.
Более полный ответ я раскрою в своем выступлении. Приходите, будет интересно! :)
HighLoad++ 2017
Зал «Рио-де-Жанейро», 8 ноября, 12:00
Тезисы:
http://www.highload.ru/2017/abstracts/3005.html
Когда мы говорим о нагруженных системах и базах данных с большим числом параллельных коннектов, особый интерес представляет практика эксплуатации и сопровождения таких проектов. В том числе инструменты и механизмы СУБД, которые могут быть использованы DBA и DevOps-инженерами для решения задач мониторинга жизнедеятельности базы данных и ранней диагностики возможных проблем.
...
MyRocks: табличный движок для MySQL на основе RocksDBSergey Petrunya
MyRocks: табличный движок для MySQL на основе RocksDB.
Презентация с HighLoad++ 2015.
Рассказывается о принципах работы LSM-Trees, их реализации в RocksDB, зачем и как был сделан MyRocks, с какими проблемами столкнулись и как их решили.
Кластеры баз данных делаем сложные вещи просто / Андрей Тихонов (Avito)Ontico
Порой в процессе развития высоконагруженного проекта наступает момент, когда необходимо масштабирование. Возможно, ваш проект впервые упёрся в производительность железа (и таким образом перешёл в разряд высоконагруженных); возможно, это уже не первое масштабирование — не важно. Какие же проблемы могут возникнуть?
Во-первых, если вы увеличиваете количество бэкенд-серверов, и, соответственно, количество рабочих процессов, то с ростом количества одновременных клиентских подключений вырастают и накладные расходы на базах данных.
Во-вторых, достаточно быстро может кончиться ресурс in-memory баз данных. Потребуется создать (либо увеличить) кластер, а это каждый раз влечёт за собой необходимость модифицировать логику приложения.
В-третьих, чем больше серверов, тем больше вероятность, что один из них выйдет из строя. Поэтому неплохо задуматься о том, как обеспечить отказоустойчивость, а это, опять же, потребует модифицировать логику приложения.
В этом докладе я расскажу, как и какими инструментами можно легко решить все вышеперечисленные проблемы: уменьшить накладные расходы от большого количества подключений к базам данных, создать/модифицировать кластер БД прозрачно для приложения, а также прозрачно добавить устойчивость к падениям серверов БД.
План доклада:
- Введение. Методы масштабирования БД: репликация, шардирование.
- Создаём шардированные кластеры in-memory БД прозрачно для приложений: Twemproxy, Redis-proxy, Mcrouter.
- Уменьшаем накладные расходы от большого количества одновременных подключений на PostgreSQL с помощью PgBouncer.
- Создаём шардированный кластер PostgreSQL с помощью PL/Proxy.
- Добавляем прозрачную для приложения отказо�
Путь от монолита на PHP к микросервисам на Scala / Денис Иванов (2GIS)Ontico
В своём проекте мы решали следующие задачи:
+ Скорость разработки задачи;
+ Стоимость поддержки задачи;
+ Возможность распараллеливать вычисления и задачи;
+ Возможность максимально просто масштабировать приложение;
+ CI/CD с минимальными усилиями.
Я расскажу о том, как мы решали эти задачи, на какие грабли мы наступали, что из этого всего получилось, и что делать дальше.
Что получили в итоге:
+ Мощь JVM под капотом Scala;
+ 15 минут от нажатия на кнопку "Merge request" до продакшена в 3 датацентра и 6 серверов с прохождением тестов (юнит + функциональные + интеграционные + нагрузочные);
+ 6 нод с приложениями вместо 18 (по 2 в каждом датацентре для отказоустойчивости) с запасом прочности в 60%;
+ Независимые пофичные релизы без даунтайма всех компонентов приложения;
+ Масштабирование только того функционала и в том количестве, которое необходимо данному сервису.
Брокер сообщений Kafka в условиях повышенной нагрузки / Артём Выборнов (Rambl...Ontico
РИТ++ 2017, Backend Conf
Зал Кейптаун, 6 июня, 18:00
Тезисы:
http://backendconf.ru/2017/abstracts/2542.html
Kafka - распределённый брокер сообщений, нашедший широкое применение как универсальная шина для больших данных. Kafka позволяет как реализовать realtime-обработку большого числа событий, так и построить батчевый pipeline по доставке логов.
Почему мы используем Kafka? Если коротко - унификация. А если чуть подробнее - десятки поставщиков, терабайты логов каждый день, онлайн- и офлайн-pipeline'ы - без единой высокопроизводительной шины данных с этим крайне сложно совладать.
Из доклада вы узнаете о том, почему мы перешли на Kafka, и как она вписалась в наш pipeline. Поймёте, как обеспечить exactly once доставку данных. Узнаете о том, как из-за одной опечатки в несколько раз выросла нагрузка на Kafka, и что мы из этого выяснили. Выясните, какие метрики Kafka стоит мониторить и как по ним понять, что что-то идёт не так.
Стратегия и тактика улучшения производительности BSS систем оператора мобильн...Ontico
В докладе поделимся опытом построения комплексного процесса последовательного улучшения производительности информационных систем мобильного оператора, расскажем об используемых инструментах и компонентах (Oracle, Tarantool, Java, Jmeter и т.д.).
Особенность нашего оператора в том, что основной канал взаимодействия с клиентом - это мобильное приложение или web Личный кабинет, а не USSD команды и СМС, как у основной массы операторов. Данная особенность создает высокие требования к времени отклика и доступности сервисов и ставит перед нами целый ряд вопросов:
- Как достичь приемлемого времени отрисовки страниц (не более 2х секунд) и не "уронить" backend при увеличении кол-ва абонентов в несколько раз за год до 4х миллионов?
- Как обеспечить приемлемую производительность при наличии сложных оркестрирующих процессов на ESB и достаточно медленного, основанного на Oracle биллинга?
- Как контролировать и улучшать производительность и доступность постоянно и на упреждение, а не когда "жареный петух клюнет"?
Мы расскажем о том, как мы отвечаем на выше обозначенные вопросы. В частности, расскажем о внедрении двух БД - inmemory БД на чтение и Oracle на запись с соответствующей синхронизацией, о технике кэширования на нескольких уровнях, оптимизации синхронных и асинхронных процессов, о постоянном выявлении узких мест на тестировании, о кластеризации и других аспектах улучшения общей и частной производительности и доступности при быстро растущей абонентской базе и беспощадной креативности бизнеса.
Поддержка высоконагруженного проекта: мониторинг, резервирование, обслуживани...Ontico
1. Мониторинг высоконагруженного проекта.
1.1. Специфика мониторинга высоконагруженного проекта: гранулярность мониторинга, надежность системы мониторинга, система оповещений.
1.2. Мониторинг и контроль распределенных систем.
1.3. Специфика организации оповещений в высоконагруженном проекте. Превентивный мониторинг.
2. Резервирование и резервное копирование в высоконагруженном проекте.
2.1. Резервирование и резервное копирование - разные вещи.
2.2. Резервирование: на уровне сервера, дата-центра, географически распределенных площадок.
2.1. Организация резервного копирования. Сохранность часто обновляемых данных.
3. Обслуживание высоконагруженного проекта.
3.1. Организация поддержки высоконагруженного проекта: опыт, специфика работы.
3.2. Организация дежурств, эскалация оповещений.
3.3. Аварии в высоконагруженных проектах: примеры из жизни.
Tempesta FW: challenges, internals, use cases / Александр Крижановский (Tempe...Ontico
Tempesta FW — это Open Source гибрид Web-акселератора и файервола, специально разработанный для высокопроизводительной доставки контента вне зависимости от DDoS или наплыва посетителей.
В докладе будет рассказано про задачи, которые ставились при разработке проекта и пути их решения. Рассмотрим проблемы современных операционных систем в приложении к Web-стеку (система фильтрации, Web-сервер, application слой, БД), и как они решаются в Tempesta — некоторые уже решены, некоторые еще в процессе работы.
И самое главное — у нас появился рабочий прототип, и я расскажу про типовые примеры инсталляции, фичи и конфигурацию, а также покажу бенчмарки.
Кэширование данных в web приложениях. Использование memcached / Юрий Красноще...Ontico
Каждый разработчик web приложений рано или поздно сталкивается с довольно типичной проблемой: перед ним стоит задача построить фабрику по производству омнониевых торсиометров.
Фабрика производит омнониевые торсиометры очень быстро, но для калибровки прибора (как известно) необходим омноний, за которым приходится летать на Андромеду.
Пока корабль летит до Андромеды, фабрика простаивает.
Самый очевидный выход из ситуации - построить склад омнониума прямо рядом с фабрикой.
Терминология кэширования
Выбор места для кэширования в WEB
Выбор данных для кэширования
Кэширование на стороне бэкенда
Отдельный кэширующий сервис
Пара слов о memcached
Пара слов о Redis
Dennis Anikin - Tarantool Case Studies in Mail.Ru GroupMail.ru Group
Денис рассказал о трех кейсах использования Tarantool в Mail.Ru Group - это система аутентификации пользователей, система нотификаций для мобильных приложений и система показа рекламы. Во всех трех кейсах Tarantool является краеугольным камнем распределенной серверной инфраструктуры, которая обслуживает суммарно порядка 100 миллионов пользователей в месяц.
Виртуальный ЦОД для корпоративных клиентов на базе Virtuozzo: стабильность, п...Ontico
Услуга виртуального дата-центра предъявляет жесткие требования к платформе виртуализации - клиенты хотят высокую производительность и стабильность, а провайдерам нужна возможность максимально плотно размещать нагрузки клиентов.
Мы расскажем:
1. как мы работали с Virtuozzo, чтобы сделать его более производительным и стабильным и, вместе с тем, добиться максимальной плотности размещения виртуальных машин;
2. контейнеры Virtuozzo прекрасно решают эту задачу, но не подходят для размещения некоторых типов приложений, например, Windows;
3. как мы будем переходить на Virtuozzo с KVM, каких целей мы хотим добиться.
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...Ontico
Широко распространено мнение, что SQL СУБД обречены быть медлительными и неповоротливыми, поскольку несут груз совместимости с предыдущими версиями. Это расхожее мнение широко эксплуатируется маркетингом NoSQL СУБД. Однако, это не всегда действительно так.
Разработка в Open Source сообществе позволяет продукту развиваться достаточно гибко, чтобы отвечать требованиям времени. В MySQL и PostgreSQL – самых популярных Open Source СУБД – недавно были проведены оптимизации для работы на больших серверах, что позволило им выполнять более миллиона SQL-запросов в секунду на одном экземпляре БД.
В данном докладе будут рассмотрены конкретные оптимизации, которые позволили добиться таких результатов, которые раньше могли бы показаться фантастическими. И можно сказать, что Open Source СУБД вошли в эру миллионов запросов в секунду.
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...Ontico
HighLoad++ 2017
Зал «Калининград», 8 ноября, 15:00
Тезисы:
http://www.highload.ru/2017/abstracts/2964.html
Одноклассники состоят из более чем восьми тысяч железных серверов, расположенных в нескольких дата-центрах. Каждая из этих машин была специализированной под конкретную задачу - как для обеспечения изоляции отказов, так и для обеспечения автоматизированного управления инфраструктурой.
...
Внутреннее устройство PostgreSQL: временные таблицы и фрагментация памяти / Г...Ontico
Всем известно о существовании временных таблиц в PostgreSQL, но как они устроены, и чем грозит их некорректное использование - не столь очевидно.
На примере одного известного приложения, активно и некорректно использующего временные таблицы, мы расскажем о создаваемой ими проблеме фрагментации памяти.
Что такое фрагментация памяти, по каким признакам можно определить ее наличие, чем она грозит, почему она возникает при активном использовании временных таблиц, и как мы пропатчили PostgreSQL, чтобы ее избежать - обо всем этом можно узнать из нашего доклада.
Архитектура HAWQ / Алексей Грищенко (Pivotal)Ontico
HAWQ — один из лучших на рынке движков SQL-on-Hadoop, который не раз доказывал свою лидирующую позицию в открытых тестированиях. Что еще более интересно, в конце сентября этого года Pivotal открыл его исходный код под лицензией Apache, а также разместил сам проект в инкубаторе Apache (http://hawq.incubator.apache.org), что делает этот инструмент доступным большому кругу пользователей и намного более привлекательным для компаний — лидеров интернет-индустрии.
Работая в Pivotal, я участвовал в развитии и внедрении этого продукта с первого дня его существования.
В этой презентации я раскрою следующие темы:
+ Что такое HAWQ и зачем он был создан.
+ Кластерная архитектура HAWQ.
+ Принципы работы HAWQ.
+ Внутреннее устройство процессов HAWQ.
+ Интеграция с внешними системами.
+ Альтернативные решения.
Реализация восстановления после аварий / Сергей Бурладян (Avito)Ontico
Базы данных PostgreSQL занимают одно из центральных мест в Авито. Они являются разделяемой платформой, вокруг которой построено множество дополнительных сервисов. Одной из основных задач при их администрировании является задача восстановления после аварий как самих баз, так и связанной с ними инфраструктуры.
В своём докладе я постараюсь рассказать про:
+ общую схему связей баз данных между собой и с другими компонентами;
+ точки отказа и виды аварий, затрагиваемые связи;
+ бинарную репликацию и архив;
+ логическую репликацию, pgq, londiste, UNDO (REDO), пересоздание репки;
+ скрипт и процедуру переключения при аварии;
+ планы: развитие «восстановлений» по всем связям, автоматика на основе системы zookeeper (etcd и т.п.).
Эволюция программно-аппаратного обеспечения хранения фотографий в Badoo / Дми...Ontico
На примере нашей системы хранения фотографий мы хотим рассказать о проблемах, с которыми столкнулись в течение прошедших семи лет, связанных с ее программными и аппаратными компонентами, и о путях их решений.
В данном докладе речь пойдет о том, как сохранить независимость от поставщика и построить масштабируемую систему хранения с длительным сроком эксплуатации и способностью к оперативному внесению изменений в конфигурацию. Как сделать изменения на аппаратном уровне прозрачными для разработчиков, а также о том, как упростить развертывание и обслуживание.
В общих чертах изложен опыт и проблемы, которые мы получили в ходе эксплуатации классических мультиконтроллерных СХД. Основная тема - построение собственных хранилищ на базе общедоступных компонентов (полки, адаптеры, экспандеры, интерпозеры, диски, ЦПУ и т.д.) с потенциальной возможностью замены любого из выше перечисленного на другую модель. Дублирование критически важных узлов в рамках одной СХД. Обзор используемых транспортов - SRP, FC, iSCSI и описание того, каким образом можно быстро адаптировать такое хранилище под один или несколько транспортов, с минимальными вложениями. Обзор ПО для реализации СХД (SCST/LIO или проприетарные решения в области Software Defined Storage ). Автоматизация развертывания (инсталляция/управление с помощью Puppet). Тестирование перед вводом в эксплуатацию. Multipath I/O и упрощение именования экспортируемых блочных устройств. Политика составления наборов firmware для стабильной работы. Мониторинг. Расследование сбоев (Order of failure и т.п.).
10 способов достижения HighLoad'а и BigData на ровном месте / Илья Космодемья...Ontico
Веб-сайт нужно делать так, чтобы о перипетиях его разработки и поддержки бессонными ночами через пару лет можно было рассказать на конференции Highload++, а тамошнюю аудиторию сложно удивить велосипедом с треугольными каменными колесами. Большинство разработчиков свято следуют этому принципу то ли в силу природной любознательности и трудолюбия, то ли по причине отсутствия конференции LowLoad--.
Примерно такие мысли приходят в голову практически любому специалисту по хранилищам данных, когда он видит успешный веб-проект, испытывающий стандартные проблемы с базой данных.
В этом докладе я расскажу о 10-ти очень распространенных ошибках проектирования и эксплуатации хранилища в веб-проекте — от преждевременного шардирования базы и непродуманной системы архивации ненужных данных до особенностей работы всеми любимых фреймворков. Про каждую из них я расскажу подробно и поделюсь рецептами, как такие ошибки исправлять.
Как в PostgreSQL устроено взаимодействие с диском, какие проблемы производительности при этом бывают и как их решать выбором подходящего hardware, настройками операционной системы и настройками PostgreSQL
#RuPostges в Yandex, эпизод 3. Что же нового в PostgreSQL 9.6Nikolay Samokhvalov
Первый релиз-кандидат версии 9.6 вышел 1 сентября, а это значит, что совсем скоро будет полноценный релиз. Все вокруг уже успели обсудить новинки, и теперь уже стыдно ничего не знать о таких вещах, как параллелизация выполнения запросов, pushdown для FDW, мониторинг waitlocks, полнотекстовый поиск по фразам или магический \gexec в psql. Чтобы никому не приходилось краснеть, мы быстро пройдёмся по всем основным и интересным моментам версии 9.6.
Linux internals for Database administrators at Linux Piter 2016PostgreSQL-Consulting
Input-output performance problems are on every day agenda for DBAs since the databases exist. Volume of data grows rapidly and you need to get your data fast from the disk and moreover - fast to the disk. For most databases there is a more or less easy to find checklist of recommended Linux settings to maximize IO throughput. In most cases that checklist is good enough. But it is always better to understand how it works, especially if you run into some corner-cases. This talk is about how IO in Linux works, how database pages travel from disk level to database own shared memory and back and what kind of mechanisms exist to control this. We will discuss memory structures, swap and page-out daemons, filesystems, schedullers and IO methods. Some fundamental differences in IO approaches between PostgreSQL, Oracle and MySQL will be covered.
PostgreSQL autovacuum is important for garbage collection and preventing fragmentation. It works table-by-table to remove old tuples and collect statistics. While autovacuum settings are often left as defaults, it's best to configure it aggressively for OLTP workloads so it can work quickly in small portions. Autovacuum must be properly configured for replication as well to avoid conflicts. Tools exist to help remove existing bloat without needing to dump/restore the entire database.
10 things, an Oracle DBA should care about when moving to PostgreSQLPostgreSQL-Consulting
PostgreSQL can handle many of the same workloads as Oracle and provides alternatives to common Oracle features and practices. Some key differences for DBAs moving from Oracle to PostgreSQL include: using shared_buffers instead of SGA with a recommended 25-75% of RAM; using pgbouncer instead of a listener; performing backups with pg_basebackup and WAL archiving instead of RMAN; managing undo data in datafiles instead of undo segments; using streaming replication for high availability instead of RAC; and needing to tune autovacuum instead of manually managing redo and undo logs. PostgreSQL is very capable but may not be suited for some extremely high update workloads of 200K+ transactions per second on a single server
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 ViennaPostgreSQL-Consulting
Autovacuum is PostgreSQL's automatic vacuum process that helps manage bloat and garbage collection. It is critical for performance but is often improperly configured by default settings. Autovacuum works table-by-table to remove expired rows in small portions to avoid long blocking operations. Its settings like scale factors, thresholds, and costs can be tuned more aggressively for OLTP workloads to better control bloat and avoid long autovacuum operations.
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015PostgreSQL-Consulting
This document discusses how PostgreSQL works with disks and provides recommendations for disk subsystem monitoring, hardware selection, and configuration tuning to optimize performance. It explains that PostgreSQL relies on disk I/O for reading pages, writing the write-ahead log (WAL), and checkpointing. It recommends monitoring disk utilization, IOPS, latency, and I/O wait. The document also provides tips for choosing hardware like SSDs or RAID configurations and configuring the operating system, file systems, and PostgreSQL to improve performance.
PostgreSQL worst practices, version FOSDEM PGDay 2017 by Ilya KosmodemianskyPostgreSQL-Consulting
This talk is prepared as a bunch of slides, where each slide describes a really bad way people can screw up their PostgreSQL database and provides a weight - how frequently I saw that kind of problem. Right before the talk I will reshuffle the deck to draw ten random slides and explain you why such practices are bad and how to avoid running into them.
Что особенного в СУБД для данных в оперативной памяти / Константин Осипов (Ta...Ontico
Оперативная память становится всё более дешёвой и производительной, что позволяет использовать её для хранения рабочего набора данных всё большего числа приложений. Хранение всех данных в оперативной памяти позволяет сделать их высоко доступными, а алгоритмы для работы с данными либо существенно упростить, либо ускорить, а иногда — и то, и другое.
Тезисы - http://www.highload.ru/2015/abstracts/1964.html
Доклад от Parallels:
Методики тестировния производительности database-centric приложений
Описание: При работе над сложными продуктами в database-centric приложениях изменения в коде и тем более в SQL запросах к базе данных могут приводить к неожиданным падениям производительности или же деградации производительности приложения с ростом размера базы данных. Поэтому важно уметь как можно быстрее отлавливать и исправлять причины таких деградаций.
Доклад о том, как устроен процесс мониторинга производительности продукта автоматизации хостинга и облачных сервисов Parallels Automation, для которого определяющим фактором является производительность базы данных.
Компания покажет, как анализирует планы исполнения SQL запросов внутри PostgreSQL, как проверяет насколько быстро и эффективно в целом работают SQL запросы, как определяет стратегию дальнейшей оптимизации.
Эксперименты с Postgres в Docker и облаках — оптимизация настроек и схемы ва...Nikolay Samokhvalov
Администрирование баз данных в будущем будет полностью автоматизировано. Это уже так для базовых операций DBA: поднятие инстансов, бэкапы, управление репликацией, failover — мы наблюдаем это по бурному развитию облачных «управляемых» СУБД (AWS RDS, Google Cloud SQL и десятков игроков поменьше), работе над k8s-оператором для Postgres и MySQL в ряде компаний, внедрению внутренних RDS-like DBaaS (database-as-a-service) решений внутри крупных организаций.
Но диагностика и оптимизация производительности баз данных сегодня всё ещё очень «ручные». Например, в Postgres: находим медленную группу запросов в pg_stat_statements, ищем конкретный пример (а то и «выдумываем» его на ходу), пробуем EXPLAIN ANALYZE сначала в dev/staging-окружении, где, как правило, данных не так много, а потом на prod'е... Подбираем индекс, убеждаемся, что он ускоряет (вроде бы) один SQL-запрос и — всё, отправляем в production. Метод «чик-чик и в production» должен остаться в прошлом! Как остались в прошлом развёртывание и настройка серверов и сервисов вручную.
Nancy CLI (https://github.com/postgres-ai/nancy) – открытый фреймворк для проведения экспериментов над базами данных PostgreSQL, позволяющий любому инженеру наладить системный подход к анализу и оптимизации производительности БД. Nancy поддерживает проведение экспериментов локально (на любом сервере) и удалённо на дешёвых высокопроизводительных спот-инстансах AWS EC2.
Без каких-либо специальных знаний, используя Nancy CLI, любой инженер может теперь:
- собрать подробную информацию о поведении «SQL-запросов с прода» на «клоне прода», но «не трогая прод» с целью выявления узких мест (на «проде» под нагрузкой включать обширную диагностику неразумно, а иногда и невозможно);
- проверить, как тот или иной индекс влияет на производительность SQL (в том числе, насколько он замедлит UPDATE'ы);
- подобрать оптимальные параметры настройки Postgres'а (пример: запустить в облаке проверку 100 вариантов default_statistics_target с подробным исследованием эффекта и анализом для каждой группы SQL-запросов);
- сравнить 2+ прогонов моделированной нагрузки на клоне реальной БД в различных условиях (разное оборудование, разные версии Postgres, разные настройки, разные наборы индексов).
В докладе мы также обсудим конкретные примеры внедрения метода автоматизации экспериментов над БД и Nancy CLI в ряд проектов различных компаний (БД до 2ТБ, hybrid workload, до 15k TPS) и трудности, которые пришлось преодолеть на пути:
1. Включение полного логирования запросов: когда это просто страх, а когда это действительно серьёзный стресс для сервера? Как быть, если диски «не тянут» полное логирование?
2. Вопросы безопасности: нужно ли давать доступ к экспериментальным узлам всем разработчикам или можно обойтись без этого? Обфускировать ли данные?
3. Как убедиться, что результаты эксперимента достоверны?
4. Как проводить эксперименты над терабайтной базой данных быстро?
5. Стоит ли включать Nancy в CI/CD-конвейер?
Техносфера Mail.ru Group, МГУ им. М.В. Ломоносова.
Курс "Методы распределенной обработки больших объемов данных в Hadoop"
Видео лекции курса https://www.youtube.com/playlist?list=PLrCZzMib1e9rPxMIgPri9YnOpvyDAL9HD
1. Postgresql XC
Что это и с чем его есть.
Maxim.Boguk@PostgreSQL-Consulting.com
2. Что такое Postgresql-XC
• Решение для кластеризации PostgreSQL с
возможностью наращивания
производительности путем добавления
новых серверов.
• Поддержка автоматического прозрачного
шардинга данных на несколько серверов.
• Честный ACID и честные транзакции в
распределенной среде.
3. Что такое Postgresql-XC
• До разумного количества нод – возможна
(при определенных условиях) почти
линейная масштабируемость и по чтению и
по записи.
• Возможно построение высокодоступных
(high-available) конфигураций
• Некоторые запросы могут выполнятся
частично параллельно.
4. Чем не является PostgreSQL-XC
• Хоть Postgresql-XC и выглядит похожим на
MultiMaster он им не является. Все сервера
кластера должны быть соединены сетью с
минимальными задержками (читай
воткнуты в один switch), никакое
географически-распределенное решение с
разумной производительностью построить
на нем не возможно (это важный момент).
5. Масштабируемость
Результаты DBT-1
Производительность
Количество серверов
7. Где взять и какие есть версии?
Официальный сайт:
http://postgres-xc.sourceforge.net/
Последняя доступная версия:
1.0.1 на основе Postgresql 9.1.5 (выпущена в
сентябре 2012)
Версия в разработке:
1.1 на основе PostgreSQL 9.2 (ожидается в мае 2013)
8. Минимальная конфигурация:
• Минимальная конфигурация PostgreSQL-XC
содержит 4 независимых подсистем
(администрировать это все достаточно
весело): 2 сервиса с данными, сервис-
координатор, GTM (global transaction
manager).
• В принципе это все можно завести на 2
физических серверах или виртуалках.
10. Транзакции и ACID
• Приложение присоденившееся к любому из
координаторов видит одинаковое (между
всеми координаторами) и целостное
представление данных.
• Честный ACID без необходимости вносить
правки в приложение.
• Единые snapshots и видимость транзакций
обеспечиваются специальным отдельным
приложением GTM.
11. А как же печальноизвестная CAP
теорема?
• PostgreSQL-XC попадает в CA угол этого
треугольника. Таким образом всегда есть
согласованность данных и доступность (HA
требует дополнительной настройки но в
целом возможен). В общем как и любое
другое кластерное решение для
классических баз данных.
12. Обеспечение транзакционой
целостности между нодами.
• Для обеспечения транзакционной
целостности операций затрагивающих
более одной ноды – используется
классический механизм 2PC (two-phase
commit).
• После сбоя для разбора ситуации с 2PC есть
специальная утилита pgxc_clean для
приведения кластера в согласованное
состояние.
13. Распределение данных в кластере
• Два в общем то стандартных варианта:
таблица целиком хранися на всех базах
кластера или шардинг (про это потом
подробнее)
• Так как PostgreSQL-XC умеет проводить joins
прямо на нодах с данными таблицы с
которым часто идут Joins лучше
реплицировать целиком.
14. Шардинг. В каких случаях?
• Таблицы логов (завершенные операции,
посещения)
• Таблицы с временными данными
(например корзина заказа в интернет
магазине)
• Пользователи и их данные (шардинг по id
пользователя).
15. Синтаксис шардинга:
• CREATE TABLE tab (…) DISTRIBUTE BY
HASH(col) | MODULO(col) | REPLICATE
Просто и удобно.
На практике – надо очень внимательно
думать о том как делать так как переделывать
большую таблицу на другой режим шардинга
до 1.1 очень неудобно.
16. Что не надо шардить?
• Таблицы-справочники и прочие глобальные
данные с которыми постоянно
производятся Joins (join большого обьема
данных с таблицей разбитой на нескольких
нодах будет весьма неэффективен).
• В общем то любые статические или
редкоизменяемые таблицы с большим
потоком чтения.
17. План простого запроса:
CREATE TABLE tab1 (val int, val2 int)
DISTRIBUTE BY REPLICATION TO NODE datanode_1, datanode_2;
-- полная копия данных на обоих нодах
EXPLAIN VERBOSE SELECT * FROM tab1 WHERE val2 = 5;
-- Решаем где выполнять запрос
-> Data Node Scan on tab1
Output: val, val2
-- выбрали одну из нод
Node/s: datanode_1
Remote query: SELECT val, val2 FROM ONLY tab1 WHERE (val2 = 5)
18. План простого запроса v2:
CREATE TABLE tab1 (val int, val2 int)
DISTRIBUTE BY HASH(val) TO NODE datanode_1, datanode_2;
-- таблица раскидана на 2 ноды
EXPLAIN VERBOSE SELECT * FROM tab1 WHERE val2 = 5;
-- поиск по всем нодам
-> Data Node Scan on "__REMOTE_FQS_QUERY__«
Output: tab1.val, tab1.val2
-- собираем данные со всех нод
Node/s: datanode_1, datanode_2
-- операции на всех нодах идут параллельно!
Remote query: SELECT val, val2 FROM tab1 WHERE (val2 = 5)
19. Подсчет агрегата sum():
CREATE TABLE tab1 (val int, val2 int)
DISTRIBUTE BY REPLICATION TO NODE datanode_1, datanode_2;
-- полная копия данных на обоих нодах
EXPLAIN VERBOSE SELECT sum(val) FROM tab1 GROUP BY val2;
HashAggregate
--подсчет суммы на ноде-координаторе
Output: sum(val), val2
-> Data Node Scan on tab1
Output: val, val2
--вытаскиваем таблицу целиком с одной из нод
Node/s: datanode_1
Remote query: SELECT val, val2 FROM ONLY tab1 WHERE true
20. Подсчет агрегата sum() v2:
CREATE TABLE tab1 (val int, val2 int)
DISTRIBUTE BY HASH(val) TO NODE datanode_1, datanode_2;
-- таблица раскидана на 2 ноды
EXPLAIN VERBOSE SELECT sum(val) FROM tab1 GROUP BY val2;
HashAggregate
Output: pg_catalog.sum((sum(tab1.val))), tab1.val2
--суммируем подитоги на координаторе
->Data Node Scan on "__REMOTE_GROUP_QUERY__"
Output: sum(tab1.val), tab1.val2
Node/s: datanode_1, datanode_2
Remote query: SELECT sum(group_1.val), group_1.val2
FROM (SELECT val, val2 FROM ONLY tab1
WHERE true) group_1 GROUP BY 2
--получаем частичные суммы с каждой из нод
21. А что на счет JOINS:
• Joins между и с участием реплицированных
таблиц, а также Joins между
распределенными по одному и тому же
полю в таблицах – выполняются на data-
нодах напрямую.
• Joins с участием распределенных таблиц по
другим ключам – будут выполнены на ноде-
координаторе и скорее всего это будет
медленно.
22. Известные ограничения.
• не поддерживаются триггеры (обещают
доделать в 1.1).
• Нет удобной системы
репартиционирования при добавлении или
удалении нод (тоже обещают доделать в
1.1 но даже тогда это будет означать
downtime)
23. Известные ограничения часть 2.
• Нет глобальных UNIQUE на распределенных
таблицах.
• Не поддерживаются курсоры (обещают в
версии 1.1)
• Не поддерживаются foreign keys между
нодами (т.е. FK стого должен вести на
данные расположенные на той же ноде).
24. Известные ограничения часть 3:
• Не поддерживается INSERT … RETURNING
(опять же обещается поддержка в 1.1)
• Невозможно удаление и добавление нод в
кластер без полной реинициализации
кластера (обещают в 1.1 тоже исправить).
25. А оно надежно?
• Много подсистем – много потенциальных
точек отказа. Архитектура PostgreSQL-XC с
самого начала предусматривает
возможность дублирования всех
компонентов.
• Ноды с данными и ноды-координаторы
представляют из слегка изменнеый
PostgreSQL и поддерживают streaming
репликацию для избыточности.
26. Обеспечение высокой доступности:
• GTM это отдельный процесс и может быть
точкой отказа, поэтому для него разработан
отдельный механизм синхроннго standby.
• Все ноды с данными и ноды координаторы
должны иметь синхронные streaming
реплики.
• GTM всегда используется в связке с GTM-
standby.
27. Backup и восстановление:
• Pg_dump/pg_dumpall работают фактически
так же как и для обычного PostgreSQL.
• Hot-backup – требует вызова специальной
команды CREATE BARRIER ‘barrier_id’
(фактически аналог вызова select
pg_start_backup(‘label’); ) далее для всех
нод с данными и координаторов так же как
для обычного PostgreSQL.
28. А зачем оно надо?
• При росте проекта может сложится
ситуация когда обьем данных или нагрузка
доходит до того уровня когда один сервер
(или даже мастер + N реплик) не
справляются с нагрузкой или по причине
высокого интенсивности записи в базу или
по причине роста объема данных.
29. А зачем оно надо?
• Тогда есть вариант или делать
слабосвязанную систему из многих
серверов (ручной шардинг) и переписывать
проект почти заново.
• Или попробовать использовать PostreSQL-
XC как временное или постоянное решение
оставив почти 100% совместимость с single-
database версий на уровне запросов.
30. А зачем оно надо?
• Вторая целевая группа для PostgreSQL-XC
это Data Warehousing и системы аналитики:
параллельное выполнение запросов на
распределенных таблицах позволяет резко
ускорить тяжелые аналитических запросы.
• Заодно и обьем данных на каждой из нод
будет поменьше.
31. А стоит ли оно того?
• Решать вам. Администрирование PostgreSQL-
XC заметно сложнее и более трудоемкое чем
администрирование простого PostgreSQL (но в
общем не принципиально сложнее чем
администрирование PostgreSQL в связке с
Slony или Londiste).
• Далеко не любой проект можно смигрировать
без переделок. Но их понадобится заметно
меньше чем при использовании шардинга.
32. Использованные материалы:
PostgreSQL-XC tutorial from PGCon2012 by
Koichi Suzuki
Michael Paquier
Ashutosh Bapat
http://www.pgcon.org/2012/schedule/attachments/224_Postgres-XC_tutorial.pdf
Официальная документация продукта:
http://postgres-xc.sourceforge.net/docs/1_0/