ARIEL is ESA’s fourth medium-class mission in the Cosmic Vision program, is scheduled for launch in 2029. The telescope aims to conduct an expansive, unbiased spectroscopic survey, unraveling the complexities of exoplanet atmospheres and interiors to better comprehend the key factors influencing planetary system formation and evolution. The baseline payload features an off-axis Cassegrain telescope (M1-M2), a collimating off-axis parabola (M3), and a plane folding mirror (M4) channeling the collimated beam into two instrument modules. ARIEL’s capabilities span primary and secondary transit spectroscopy (1.10 to 7.80μm), broad-band photometry in the Optical (0.50 − 0.80μm) and Near IR (0.80 − 1.10μm) ranges, and a Fine Guidance System. This work will focus on M1, an aluminum mirror with an unobscured elliptical shape of size 1100 x 730mm. The Surface Error budget for M1 covers low and mid spatial frequencies. The work describes the manufacturing process of the mirror, the method used to quantify surface roughness, the characterization of MSF errors, and the study of the degradation of the system performance due to MSF errors.
The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel), selected as ESA’s fourth mediumclass mission in the Cosmic Vision program, is set to launch in 2029. The objective of the study is to conduct spectroscopic observations of approximately one thousand exoplanetary atmospheres for better understanding the planetary system formation and evolution and identifying a clear link between the characteristics of an exoplanet and those of its parent star.
The realization of the Ariel’s telescope is a challenging task that is still ongoing. It is an off-axis Cassegrain telescope (M1 parabola, M2 hyperbola) followed by a re-collimating off-axis parabola (M3) and a plane fold mirror (M4). It is made of Al 6061 and designed to operate at visible and infrared wavelengths. The mirrors of the telescope will be coated with protected silver, qualified to operate at cryogenic temperatures.
The qualification of the coating was performed according to the ECSS Q-ST-70-17C standard, on a set of samples that have been stored in ISO 6 cleanroom conditions and are subjected to periodic inspection and reflectance measurements to detect any potential performance degradation. The samples consist of a set of Aluminum alloy Al 6061-T651 disks coated with protected silver.
This paper presents the results of the morphological characterization of the samples based on Atomic Force Microscopy (AFM) and the reflectivity measurement in the infrared by Fourier Transform Infrared (FTIR) spectroscopy.
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Through the study of targets with a wide range of planetary parameters (mass, density, equilibrium temperature) and host star types the origin for the diversity observed in known exoplanets will be better understood. Ariel is an ESA Medium class science mission (M4) with a spacecraft bus developed by industry under contract to ESA, and a Payload provided by a consortium of national funding agencies in ESA member states, plus contributions from NASA, the CSA and JAXA. The payload is based on a 1-meter class telescope operated at below 60K, built all in Aluminium, which feeds two science instruments. A multi-channel photometer and low-resolution spectrometer instrument (the FGS, Fine Guidance System instrument) operating from 0.5 – 1.95 microns in wavelength provides both guidance information for stabilizing the spacecraft pointing as well as vital scientific information from spectroscopy in the near-infrared and photometry in the visible channels. The Ariel InfraRed Spectrometer (AIRS) instrument provides medium resolution spectroscopy from 1.95 – 7.8 microns wavelength coverage over two instrument channels. Supporting subsystems provide the necessary mechanical, thermal and electronics support to the cryogenic payload. This paper presents the overall picture of the payload for the Ariel mission. The payload tightly integrates the design and analysis of the various payload elements (including for example the integrated STOP analysis of the Telescope and Common Optics) in order to allow the exacting photometric stability requirements for the mission to be met. The Ariel payload has passed through the Preliminary Design Review (completed in Q2 2023) and is now developing and building prototype models of the Telescope, Instruments and Subsystems (details of which will be provided in other contributions to this conference). This paper will present the current status of the development work and outline the future plans to complete the build and verification of the integrated payload.
Ariel is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. It has been selected by ESA in March 2018 and adopted in November 2020 to be flown, then, in 2029. It is the first survey mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, in order to enable planetary science far beyond the boundaries of the Solar System. The Payload (P/L) is based on a cold section (PLM – Payload Module) working at cryogenic temperatures and a warm section, located within the Spacecraft (S/C) Service Vehicle Module (SVM) and hosting five warm units operated at ambient temperature (253-313 K). The P/L and its electrical, electronic and data handling architecture has been designed and optimized to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large set of unbiased observations to shed light and fully understand the nature of exoplanets atmospheres, retrieving information about planets interior and determining the key factors affecting the formation and evolution of planetary systems.
In this proceeding, we present the development of the Optical Ground Support Equipment (OGSE) used for payload-level testing of the Ariel space mission. Ariel is an ESA mission that will use the transit spectroscopy method to observe the atmospheres of nominally ~1000 exoplanets. Ariel is a 1 m class cryogenic (∼ 40 K) space telescope that will be placed in a halo orbit around the Earth-Sun L2 point. To detect atmospheric molecular absorption features, Ariel will produce medium-resolution spectra (R ≥ 15) using three spectroscopic channels covering 1.1 – 7.9 μm as well as having photometric channels covering 0.5 – 1.1 μm. To achieve Ariel’s science goals, the payload requires detailed calibration and performance verification. The payload-level performance verification of the Ariel payload will take place in 2026 in a 5-meter vacuum chamber at the Rutherford Appleton Laboratory’s Space Instruments Test Facility. The payload will be enclosed in a Cryogenic Test Rig (CTR) to provide a space-like (~35 K) thermal environment and is illuminated by the OGSE. The OGSE provides point as well as extended source illumination across Ariel’s full wavelength range. The OGSE design also includes a series of mechanisms and features to enable the various illumination conditions required to test Ariel. Here we report design updates to the OGSE after a preliminary design review (PDR). Since PDR, there have been substantial revisions to the OGSE architecture. In this proceeding, we describe the evolution of the OGSE architecture. The updated OGSE design will then be presented.
The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA's "Cosmic Vision" program. Its launch is scheduled for 2029. The mission aims to study exoplanetary atmospheres on a target of ∼ 1000 exoplanets. Ariel's scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 μm and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, all bare aluminum. To date, aluminum mirrors the size of Ariel's primary have never been made. In fact, a disadvantage of making mirrors in this material is its low density, which facilitates deformation under thermal and mechanical stress of the optical surface, reducing the performance of the telescope. For this reason, studying each connection component between the primary mirror and the payload is essential. This paper describes, in particular, the development, manufacturing, and testing of the Flexure Hinges to connect Ariel's primary Structural Model mirror and its optical bench. The Flexure Hinges are components already widely used for space telescopes, but redesigning from scratch was a must in the case of Ariel, where the entire mirror and structures are made of aluminum. In fact, these flexures, as well as reducing the stress due to the connecting elements and the launch vibrations and maintaining the alignment of all the parts preventing plastic deformations, amplified for aluminum, must also have resonance frequencies different from those usually used, and must guarantee maximum contact (tolerance in the order of a micron) for the thermal conduction of heat. The entire work required approximately a year of work by the Ariel mechanical team in collaboration with the industry.
Ariel (Atmospheric Remote Sensing Infrared Exoplanet Large Survey) [1] [2] is the fourth Mission (M4) of the ESA’s Cosmic Vision Program 2015-2025, selected in March 2018 and officially adopted in November 2020 by the Agency, whose aim is to characterize the atmospheres of hundreds of diverse exoplanets orbiting nearby different types of stars and to identify the key factors affecting the formation and evolution of planetary systems. The Mission will have a nominal duration of four years and a possible extension of two years at least. Its launch is presently scheduled for mid 2029 from the French Guiana Space Centre in Kourou on board an Ariane 6.2 launcher in a dual launch configuration with Comet Interceptor. The baseline operational orbit of the Ariel is a large amplitude halo orbit around the second Lagrangian (L2) virtual point located along the line joining the Sun and the Earth-Moon system at about 1.5 million km (~236 RE) from the Earth in the anti-Sun direction. Ariel’s halo orbit is designed to be an eclipse-free orbit as it offers the possibility of long uninterrupted observations in a fairly stable environment (thermal, radiation, etc.). An injection trajectory is foreseen with a single passage through the Van Allen radiation belts (LEO, MEO and GEO near-Earth environments). This is approximated by a worst-case half orbit, prior the injection and transfer to L2, with a duration of 10.5 hours, a perigee of 300 km (LEO), an apogee of 64000 km (GEO and beyond), and an inclination close to 0 degrees. During both the injection trajectory and the final orbit around L2, Ariel will encounter and interact mainly with the Sun radiation and the space plasma environment. In L2 the Ariel spacecraft will spend most of its time in the direct solar wind and the Earth’s magnetosheath with passages through the magnetotail. These three environments, along with LEO and GEO, can lead to the build-up of a net electric charge on the spacecraft and payload conductive and dielectric surfaces leading to the risk of Electro Static Discharges (ESD), potentially endangering the whole Payload integrity and telecommunications to Ground.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission of ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm, and operating at cryogenic temperatures. The Ariel Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary, a parabolic recollimating tertiary and a flat folding mirror. The Primary mirror is a very innovative device made of lightened aluminum. Aluminum mirrors for cryogenic instruments and for space application are already in use, but never before now it has been attempted the creation of such a large mirror made entirely of aluminum: this means that the production process must be completely revised and fine-tuned, finding new solutions, studying the thermal processes and paying a great care to the quality check. By the way, the advantages are many: thermal stabilization is simpler than with mirrors made of other materials based on glass or composite materials, the cost of the material is negligeable, the shape may be free and the possibility of making all parts of the telescope, from optical surfaces to the structural parts, of the same material guarantees a perfect alignment at whichever temperature. The results and expectations for the flight model are discussed in this paper.
The Atmospheric Remote-sensing InfraRed Large-survey (ARIEL) is a medium-class mission of the European Space Agency whose launch is planned by late 2029 whose aim is to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class primary mirror, built in solid aluminum, and two focal-plane instruments: 1. FGS (Fine Guidance System), performing photometry in visible light and low resolution spectrometry over three bands (from 0.8 to 1.95 µm) 2. AIRS (ARIEL InfraRed Spectrometer) that will perform infrared spectrometry in two wavelength ranges between 1.95 and 7.8 µm. This paper depicts the status of the TA (Telescope Assembly) electric section whose purpose is to deploy sensors, managed by the Telescope Control Unit, for the precise monitoring of the Telescope’s temperatures and the decontamination system, used to avoid the contamination of the optical surfaces (mirrors in primis).
AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission adopted in November 2020 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4-year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over 1000 exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are exoplanets made of? How do planets and planetary systems form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering 1.95-3.90 µm (CH0) and 3.90-7.80 µm (CH1) wavelength ranges with prism-based dispersive elements producing spectra of low resolutions R>100 in CH0 and R>30 in CH1 on two independent detectors. The spectrometer is designed to provide a Nyquist-sampled spectrum in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermo-mechanical design of the instrument functioning in a 60 K environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled to below 42 K. This overview will present updated information of phase C studies, in particular on the assembly and testing of prototypes that are highly representative of the future engineering model that will be used as an instrument-level qualification model.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the fourth medium-class mission (M4) of the ESA’s Cosmic Vision Program. Its launch is planned for 2029. Ariel will observe a large and well selected sample of transiting gas giants, neptunes and super-earths around a wide range of host star types, with the objective to study planetary atmospheres and to understand composition and evolving processes of the planetary systems. A Structural, Thermal, and Optical Performance (STOP) analysis is conducted at Payload level to estimate the thermo-elastic induced degradation of the system performance for a number of selected environmental load cases. In particular, this document presents the general approach followed and the results of the optical design analysis performed to predict the performance of the Ariel Telescope Assembly for the in-flight operational cases during Cycle C-1.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is ESA’s M4 mission of the “Cosmic Vision” program, with launch scheduled for 2029. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 µm, operating at cryogenic temperatures in the range 40–50 K. The Ariel Telescope is an off-axis, unobscured Cassegrain design, with a parabolic recollimating tertiary mirror and a flat folding mirror directing the output beam parallel to the optical bench. The secondary mirror is mounted on a roto-translating stage for adjustments during the mission. The mirrors and supporting structures are all realized in an aerospace-grade aluminum alloy T6061 for ease of manufacturing and thermalization. The low stiffness of the material, however, poses unique challenges to integration and alignment. Care must be therefore employed when designing and planning the assembly and alignment procedures, necessarily performed at room temperature and with gravity, and the optical performance tests at cryogenic temperatures. This paper provides a high-level description of the Assembly, Integration and Test (AIT) plan for the Ariel telescope and gives an overview of the analyses and reasoning that led to the specific choices and solutions adopted.
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets.. Ariel is an ESA Medium class science mission (M4) with a spacecraft bus developed by industry under contract to ESA, and a Payload provided by a consortium of national funding agencies in ESA member states, plus contributions from NASA, the CSA and JAXA. With the payload being provided by a consortium of scientific institutes and industrial partners funded through their respective European national funding agencies, and additional contributions provided by ESA, NASA, CSA and JAXA, the coordination and management of this team is vital to the successful delivery of the mission. This paper will describe how we have tailored the standard systems engineering approaches taken for space instrumentation and implemented these in the large consortium structure. This has been done in order to try to maximise the efficiency of the consortium work and to allow as close to a seamless flow of information as possible. We outline the key tools being deployed by the payload management, systems engineering and product assurance teams in the consortium.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission of ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm, and operating at cryogenic temperatures. The Ariel Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary, a parabolic recollimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. The secondary mirror is mounted on a roto-translating stage for adjustments during the mission. Proper operation of the instruments prescribes a set of tolerances on the position and orientation of the telescope output beam: this needs to be verified against possible telescope misalignments as part of the ongoing Structural, Thermal, Optical and Performance Analysis. A specific part of this analysis concerns the mechanical misalignments, in terms of rigid body movements of the mirrors, that may arise after ground alignment, and how they can be compensated in flight. The purpose is to derive the mechanical constraints that can be used for the design of the opto-mechanical mounting systems of the mirrors. This paper describes the methodology and preliminary results of this analysis, and discusses future steps.
This paper describes the Optical Ground Support Equipment (OGSE) that is being developed for the payload level testing of the Ariel Space Telescope. Ariel has been adopted as ESA’s “M4” mission in its Cosmic Visions Programme and will launch in 2029 to the second Earth-Sun Lagrange point. During four years of operation the Ariel payload (PL – the cryogenic payload module plus warm units) will perform precise transit spectroscopy of approximately 1000 known exoplanetary atmospheres using a 1.1 m × 0.7 m telescope coupled to two instruments: the Fine Guidance Sensor (FGS) and the Ariel Infrared Spectrometer (AIRS). These instruments provide three spectrometric channels that cover 1.0 to 7.8 μm wavelength range and three photometric channels between 0.5 and 1.1 μm. The Ariel OGSE will verify the optical and radiometric performance of the integrated Ariel PL under vacuum and cryogenic (<40 K) test conditions within the limitations of operation under Earth’s gravity and vibration environments. To achieve these verification requirements the OGSE is integrated with the main Ariel ground test 5 m thermal vacuum chamber. The test chamber contains a cryogenic enclosure (the Cryogenic Test Rig) that surrounds the PL and the OGSE itself comprises of four subsystems. (1) A cryogenic vacuum chamber and integrating sphere illumination module that is fed by visible, near infrared and thermal infrared sources. The illumination module is mounted external to the Ariel test chamber and coupled via a vacuum feedthrough that relays a 22 mm diameter test beam into the Cryogenic Test Rig. The test beam is then relayed using (2) an injection module that steers the beam to maintain alignment during cool-down and scan the Ariel telescope field of view. The beam is then expanded to partially illuminate the Ariel telescope primary mirror using an (3) ~0.3 m diameter target projector collimating mirror. The final optical component of the OGSE is a (4) beam expander placed on the Ariel common optical bench to compensate for the sub-aperture illumination of the primary and to ensure that the spectrometer modules provide illumination with correct cone angles during ground testing. It is planned to use the OGSE in 2026 for a full range of calibration and verification tests of the end-to-end telescope and instrument performance, including detectors, field of view and alignment. These tests will then ensure that Ariel meets it challenging photometric and spectral performance requirements.
Ariel [1] is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. The operational orbit of the spacecraft is baselined as a large amplitude halo orbit around the Sun-Earth L2 Lagrangian point, as it offers the possibility of long uninterrupted observations in a fairly stable radiative and thermo-mechanical environment. A direct escape injection with a single passage through the Earth radiation belts and no eclipses is foreseen. The space environment around Earth and L2 presents significant design challenges to all spacecraft, including the effects of interactions with Sun radiation and charged particles owning to the surrounding plasma environment, potentially leading to dielectrics charging and unwanted electrostatic discharge (ESD) phenomena endangering the Payload operations and its data integrity. Here, we present some preliminary simulations and analyses about the Ariel Payload dielectrics and semiconductors charging along the transfer orbit from launch to L2 included.
AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission selected in March 2018 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4 year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over a 1000 of exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are the exoplanets made of? How do planets and planetary system form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering the CH0 [1.95-3.90] µm and the CH1 [3.90-7.80] µm wavelength range with prism-based dispersive elements producing spectrum of low resolutions R<100 in CH0 and R<30 in CH1 on two independent detectors. The spectrometer is designed to provide spectrum Nyquist-sampled in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermal mechanical design of the instrument functioning in a 60 K cold environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled down below 42 K. This overview will present updated information of phase B2 studies in particular with the early manufacturing of prototype for key elements like the optics, focal-plane assembly and read-out electronics as well as the results of testing of the IR detectors up to 8.0 μm cut-off.
ARIEL, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission1-3 was selected in early 2018 by the European Space Agency (ESA) as the fourth medium-class mission (M4) launch opportunity of the Cosmic Vision Program, with an expected launch in late 2028. It is the first mission dedicated to the analysis of the chemical composition and thermal structures of up to a thousand transiting exoplanets atmospheres, which will expand planetary science far beyond the limits of our current knowledge.
The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum.
This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.