タグ

ブックマーク / iisssseeiiii.hatenablog.com (5)

  • MapReduceできる10個のアルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    HadoopとMahoutにより、ビッグデータでも機械学習を行うことができます。Mahoutで実装されている手法は、全て分散処理できるアルゴリズムということになります。Mahoutで実装されているアルゴリズムは、ここに列挙されています。論文としても、2006年に「Map-Reduce for Machine Learning on Multicore」としていくつかのアルゴリズムが紹介されています。 そこで今回は、(何番煎じか分かりませんが自分の理解のためにも)この論文で紹介されているアルゴリズムと、どうやって分散処理するのかを簡単にメモしておきたいと思います。計算するべき統計量が、summation form(足し算で表現できる形)になっているかどうかが、重要なポイントです。なってない場合は、”うまく”MapReduceの形にバラす必要があります。 ※例によって、間違いがあった場合は随時

    MapReduceできる10個のアルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • 一年で身に付ける!Rと統計学・機械学習の4ステップ - データサイエンティスト上がりのDX参謀・起業家

    久しぶりの投稿です。この一年間、Rの勉強会などに参加したり主催したりしてきて、後輩や勉強会の方々の話をいろいろ聞くとこができました。そんな中、一年間でRと統計学・機械学習を身に付けれるようなフローを作れるかも?と思ったので、ここで記録しておきます。統計学や機械学習は理論を勉強するだけでなく、Rで実際に解析してみることで、より理解が深まります。 ステップ1. 分布・検定 理論 統計学入門 (基礎統計学?) 作者: 東京大学教養学部統計学教室出版社/メーカー: 東京大学出版会発売日: 1991/07/09メディア: 単行購入: 158人 クリック: 3,604回この商品を含むブログ (79件) を見る R Rによるやさしい統計学 作者: 山田剛史,杉澤武俊,村井潤一郎出版社/メーカー: オーム社発売日: 2008/01/25メディア: 単行購入: 64人 クリック: 782回この商品を含

    一年で身に付ける!Rと統計学・機械学習の4ステップ - データサイエンティスト上がりのDX参謀・起業家
  • データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • Rを使えるようになるための10のこと - Issei’s Analysis ~おとうさんの解析日記~

    Rは統計解析を行うことができる強力なツールです。計算上の信頼性はとても高く、世界中の分析者が日々分析用パッケージを公開しております。近年では行政機関で使われているという事例もちらほら聞きます。 ・姫路市役所での事例 これまでSASは使ってきたけどRは全く使ったことがない!JAVAとかC++とかガリガリ書けるけどRはよく分からない!という方々がすんなりRの世界に入れるよう、資料の探し場所や導入部分をまとめておきます。 ※まだ不完全ですが情報を入手し次第アップデートしていきます。 1. 資料を探す場所 CRAN R体、パッケージ、PDF資料などの置き場 Task Viewに分野ごとのまとめ Searchでパッケージや資料の検索 CRANの読み方は「しーらん」派と「くらん」派でわかれる(どっちでもいいw) Rjpwiki 日語で書かれている、これまでのRに関する資料の集大成 データの加工技、

    Rを使えるようになるための10のこと - Issei’s Analysis ~おとうさんの解析日記~
  • 統計学を勉強するときに知っておきたい10ポイント - Issei’s Analysis ~おとうさんの解析日記~

    googleさんやマイクロソフトさんは「次の10年で熱い職業は統計学」と言っているようです。またIBMは分析ができる人材を4,000人増やすと言っています(同記事)。しかし分析をするときの基礎的な学問は統計学ですが、いざ統計学を勉強しようとしてもどこから取りかかればいいか分からなかくて困るという話をよく聞きます。それに機械学習系のは最近増えてきましたが、統計学自体が基礎から学べるはまだあまり見かけないです。 そこで今回は、統計学を初めて勉強するときに知っておいた方が良い10ポイントを紹介したいと思います。 1. 同じ手法なのに違う呼び名が付いている 別の人が違う分野で提案した手法が、実は全く同じだったということがあります。良く聞くのは、数量化理論や分散分析についてです。 数量化理論 数量化I類 = ダミー変数による線形回帰 数量化II類 = ダミー変数による判別分析 数量化III類 =

    統計学を勉強するときに知っておきたい10ポイント - Issei’s Analysis ~おとうさんの解析日記~
  • 1