どうも、大阪オフィスの丸毛(@marumo1981)です。 re:Invent 2019 のレポートまとめ記事は既にあったのですが、『公開動画に対して、レポート記事があるかないかの一覧』が欲しいなぁ、とふと思ったので作成しました。(軽い気持ちではじめたことを後悔するくらいに動画もレポート記事も多かった。。) 基本的には執筆時点の公式のプレイリストを参考にリストを作成していますが、公式のプレイリストには無かった『AI と機械学習(AIM)』なども動画を探してリストに追加しました。一方で、数が多かったスポンサーセッション(セッションコード xxx-S)や、現地セッションではない事前収録セッション(xxx-P)はレポート記事があるものだけを記載しています。 セッションタイトルは邦題にしたほうが良いんだろうなと思いつつ、リンクの数で心が折れてしまったので、各自 Google ページ翻訳などご利用く
はじめに こんにちは、Data Strategy所属の岡です。グループ会社BASE BANKで分析/モデリングなども兼務しています。 テキストデータを特徴量にもつ不均衡データ分類問題をDNNで解きたくなった際、下記の論文を参考にしたのでその内容を紹介します。 https://users.cs.fiu.edu/~chens/PDF/ISM15.pdf 不均衡データ分類問題ってなに? 何かしらのカテゴリを機械学習などで分類予測しようとする際、カテゴリごとのデータ件数に偏りがある、特に正例のデータが極端に少ないケースで予測精度が上がりにくい、という問題をこのように呼んでいます。 例: 不正決済と正常な注文、不正商品と健全な商品、がん患者と正常な患者 普通はどうやって対処するの? ベースとなるアプローチは下記3つにまとめられます。 アプローチ 内容 デメリット アンダーサンプリング 多数派データを
MLOpsに関してちゃんと勉強中でして、色々事例とか調べてました。 とは言うものの、現在ではMLOpsを様々な観点から語られて、MLOpsという言葉にいろんな意味が含まれています。 という事情から色々探していたら、こちらをお見かけしました。 medium.com 書籍へのリンクはこちらです。 n月刊ラムダノート Vol.1, No.1(2019)(紙書籍+PDF版) – 技術書出版と販売のラムダノート こちらの書籍では基本的な背景からきれいに整理されていました。 こちらを参考にしつつ、頑張ってMLOpsの動向について整理してみたので、そのメモです。 それでは張り切って書いていきます。 tl;dr; 背景・問題設定 機械学習は学習のアルゴリズムよりその周辺のほうが大きい 機械学習システムに携わる人の役割の違いによってうまくいかないことがある 機械学習システムの構築・運用する上で課題も多い 問
「ゼロから作るDeepLearning」とは? DeepLearningの理論非常に丁寧に説明している良書です。ライブラリに頼らず理論を理解してゼロから実装するので、「DeepLearningの理論をしっかりと理解したい!」という人におすすめです。ですが、Pythonの文法の説明は少ないので、ある程度入門書などでPythonの基礎を習得していないと理論は理解できてもプログラムを理解するのは難しいかと思います。 以下から購入できます。 https://www.amazon.co.jp/dp/4873117585/ref=cm_sw_em_r_mt_dp_U_dEFvEb1FVX4AK プログラムをGoogle Colaboratoryで動かしたい https://github.com/oreilly-japan/deep-learning-from-scratch 上記のGithubにそれぞ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く