タグ

techとquantumに関するhobbiel55のブックマーク (6)

  • グーグルの量子コンピュータ用チップ「Willow」がゲームチェンジャーである理由 | Forbes JAPAN 公式サイト(フォーブス ジャパン)

    この2年間、IBM、グーグル、マイクロソフト、インテルなど各社が主催する教育セミナーや個別説明会を通じて、この技術に関する理解を深めてきた。その過程で、量子コンピューティングがヘルスケアや金融、科学研究などあらゆる分野を一変させる可能性を秘めていること、そしてそれが今後のコンピューティング分野でどのような役割を果たし得るかが、より明確になった。ただし、これまで量子コンピューティングが主流になれなかったのは、大規模化によって生じるエラーや実用性の確保といった深刻な課題が立ちはだかっていたためだ。 米国時間12月9日に、グーグルが最新の量子プロセッサ「Willow(ウィロー)」を発表したことは、この分野における大きな飛躍を示している。そのスペックや機能から判断するに、Willowは量子コンピューティングを単なる技術的好奇心の対象から、実用的なツールへと押し上げる可能性を持つブレークスルーだ。

    グーグルの量子コンピュータ用チップ「Willow」がゲームチェンジャーである理由 | Forbes JAPAN 公式サイト(フォーブス ジャパン)
  • 量子コンピューター超えの計算能力…東京理科大が開発した「LSIシステム」がスゴイ ニュースイッチ by 日刊工業新聞社

    東京理科大学の河原尊之教授らの研究チームは、回路線幅22ナノメートル(ナノは10億分の1)の相補型金属酸化膜半導体(CMOS)を使い、現在の量子コンピューターを超える計算能力を持つ大規模集積回路(LSI)システムを開発した。創薬や材料開発などに生かせる「組み合わせ最適化問題」を低消費電力かつ高速に解く。複数のチップを並列動作させることで機能を拡張し、大型の設備が必要なクラウドサービスを使わずに大規模な計算を可能にする。 河原教授らが開発したのは、複数のLSIチップをつないで機能を拡張できるスケーラブルな全結合型の「イジングLSIシステム」。これまで1チップ内に収まっていた演算機能を、複数の汎用CMOSに分けて接続することで拡張可能なことを実機で実証した。 22ナノCMOSで作製した演算LSIチップ36個と制御用FPGA(演算回路が自由に書き換えられる半導体)1個を搭載。現状のゲート方式の量

    量子コンピューター超えの計算能力…東京理科大が開発した「LSIシステム」がスゴイ ニュースイッチ by 日刊工業新聞社
  • 100GHz100コアの「スーパー量子コンピュータ」実現へ、光通信技術が道を開く

    100GHz100コアの「スーパー量子コンピュータ」実現へ、光通信技術が道を開く:量子コンピュータ NTTと東京大学、理化学研究所、JSTは、最先端の商用光通信技術を光量子コンピュータに応用することで、世界最速となる43GHzのリアルタイム量子信号の測定に成功したと発表した。 日電信電話(NTT)と東京大学、理化学研究所、JST(科学技術振興機構)は2023年3月6日、最先端の商用光通信技術を光量子コンピュータに応用することで、世界最速となる43GHzのリアルタイム量子信号の測定に成功したと発表した。この成果は、超伝導量子ビットを用いる現行の量子コンピュータの性能を大幅に上回るだけでなく、シリコン半導体で構成される古典コンピュータの性能も超える「スーパー量子コンピュータ」の実現につながるものだ。2024年中ごろまでに、今回の技術を適用した光量子コンピュータをクラウドベースで利用できるよう

    100GHz100コアの「スーパー量子コンピュータ」実現へ、光通信技術が道を開く
  • 量子コンピューター開発に新手法、半導体製造技術で巻き返す日本

    新材料開発や創薬研究などへの応用が期待される量子コンピューターで、新方式の開発が加速している。量子計算に使う基素子を半導体技術で作製する研究で、日は世界でもトップクラスの実力を持つ。超電導やイオン(電荷を帯びた原子)を使う他方式と比べて小型化・集積化しやすく、複雑で難しい演算にも応用できると期待する。量子技術で欧米勢に後れを取る日だが、強みの半導体製造技術を生かして巻き返しを図る。 量子コンピューターに半導体の集積化技術を応用する「シリコン方式」は、将来の有望技術として期待されている。複雑な演算に使えるゲート型の量子コンピューターには、現在主流の「超電導方式」や「イオントラップ方式」などさまざまな方式があり、それぞれ実用化に向けた開発が進んでいる(表1)。シリコン方式は量子計算を担う「量子ビット」の制御が難しい半面、一度技術が確立すれば半導体のように多数の素子をチップに集積化でき、大

    量子コンピューター開発に新手法、半導体製造技術で巻き返す日本
  • 物理学の法則を破る「時間結晶」を15分以上も観察し続けることに成功、量子コンピューターの研究にも弾み

    「時間結晶」とは、安定した物体が時間を通して変化しないという物理学の規則を破り、エネルギーの出入りがない基底状態でも運動を繰り返す物質の状態のことです。かつては「時間結晶は実現不可能」とも考えられてきましたが、近年では時間結晶の作成や時間結晶が振動する様子の撮影などが成功しています。新たにイギリスやフィンランドなどの研究チームが、「時間結晶を15分以上も観察し続ける」という実験に成功したと報告しました。 Nonlinear two-level dynamics of quantum time crystals | Nature Communications https://doi.org/10.1038/s41467-022-30783-w Time crystals “impossible” but obey quantum p | EurekAlert! https://www.eur

    物理学の法則を破る「時間結晶」を15分以上も観察し続けることに成功、量子コンピューターの研究にも弾み
  • 「量子」と組合せ最適化に関する怪しい言説 ―とある研究者の小言― - むしゃくしゃしてやった,今は反省している日記

    最近,量子コンピュータの話題をニュースや新聞で見かけることが増えてきました. その中で気になってきたのが,組合せ最適化と量子コンピュータ(特に量子アニーリング)に関する怪しい言説.私自身は(古典コンピュータでの)組合せ最適化の研究をやってきて,量子コンピュータを研究しているわけではないのですが,さすがにこれはちょっと・・・と思う言説を何回か見かけてきました. 最近の「量子」に対する過熱ぶりは凄まじいので,こういう怪しい言説が広まるのは困りものです.すでにTwitter上には,“組合せ最適化は今のコンピュータでは解けない”とか“でも量子なら一瞬で解ける”という勘違いをしてしまっている人が多数見られます*1. さすがに危機感を覚えてきたので,この場できちんと指摘しておくことにしました. 今北産業(TL;DR) “古典コンピュータは組合せ最適化を解けない” → 古典コンピュータで組合せ最適化を解

    「量子」と組合せ最適化に関する怪しい言説 ―とある研究者の小言― - むしゃくしゃしてやった,今は反省している日記
  • 1