タグ

ブックマーク / zenn.dev/knowledgesense (2)

  • RAGが「複雑な質問に弱い問題」を解決する「Plan×RAG」

    記事では、RAGの性能を高めるための「Plan×RAG」という手法について、ざっくり理解します。株式会社ナレッジセンスは、エンタープライズ企業向けにRAGを提供しているスタートアップです。 この記事は何 この記事は、RAGの文脈消える問題を克服する新手法「Plan×RAG」の論文[1]について、日語で簡単にまとめたものです。 今回も「そもそもRAGとは?」については、知っている前提で進みます。確認する場合はこちらの記事もご参考下さい。 題 ざっくりサマリー Plan×RAGは、RAGの精度を上げるための新しい手法です。アールト大学とMicrosoft Researchの研究者らによって2024年10月に提案されました。 ざっくり言うと、Plan×RAGとは、「計画を立ててから検索する」手法です。Plan×RAGでは、ユーザーの質問を、まず最初に小さな単位に分解。その後、それらの関係性

    RAGが「複雑な質問に弱い問題」を解決する「Plan×RAG」
    igrep
    igrep 2024/11/13
  • RAGを複雑な質問に強くする手法「CoA」について

    記事では、「Chain-of-Abstraction (CoA) Reasoning」についてざっくり理解します。軽めの記事です。 株式会社ナレッジセンスでは普段の業務で、生成AIやRAGシステムを活用したサービスを開発しています。 この記事は何 この記事は、最近聞くようになった「Chain-of-Abstraction (CoA) Reasoning」の論文[1]について、日語で簡単にまとめたものです。 今回も「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 題 ざっくりサマリー LLMが外部ツールを使って回答を生成するときの、回答精度を高める手法についての論文です。Metaの研究者らによって2024年1月に提案されました。「Chain-of-Abstraction (CoA)」という手法を使うメリットは、RAGに応用することで

    RAGを複雑な質問に強くする手法「CoA」について
    igrep
    igrep 2024/04/17
    "CoAでは、問題(ユーザーからの質問)を複数の問題に分解し、複数回のドキュメント検索を行った上で総合的な回答を生成できます。それだけでなく、類似手法の「Chain-of-Thought (CoT)」[2]と違い、回答時間が短くて済む"
  • 1