dbo:abstract
|
- In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom: , where [A, B] = AB − BA is the commutator of A and B and(A, B, C) = (AB)C – A(BC) is the associator of A, B and C. In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra. (en)
- Коммутантно-ассоциативная алгебра — неассоциативная алгебра M над полем F, в которой бинарная мультипликативная операция подчиняется следующим аксиомам: 1. Тождеству коммутантной ассоциативности: , для всех .где — коммутатор элементов A и B, а — ассоциатор элементов A, B и C. 2. Условию билинейности: для всех и . Другими словами, алгебра M является коммутантно-ассоциативной, если коммутант, то есть подалгебра алгебры M образованная всеми коммутаторами , является ассоциативной алгеброй. Существует следующая взаимосвязь между коммутантно-ассоциативной алгеброй и алгеброй Валя. Замена умножения g(A,B) в алгебре M операцией коммутирования , превращает её в алгебру . При этом, если M является коммутантно-ассоциативной алгеброй, то будет алгеброй Валя. (ru)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2882 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:author
| |
dbp:first
| |
dbp:id
|
- A/a012090 (en)
- M/m062170 (en)
|
dbp:last
| |
dbp:title
|
- Alternative rings and algebras (en)
- Mal'tsev algebra (en)
|
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdf:type
| |
rdfs:comment
|
- In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom: , where [A, B] = AB − BA is the commutator of A and B and(A, B, C) = (AB)C – A(BC) is the associator of A, B and C. In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra. (en)
- Коммутантно-ассоциативная алгебра — неассоциативная алгебра M над полем F, в которой бинарная мультипликативная операция подчиняется следующим аксиомам: 1. Тождеству коммутантной ассоциативности: , для всех .где — коммутатор элементов A и B, а — ассоциатор элементов A, B и C. 2. Условию билинейности: для всех и . Другими словами, алгебра M является коммутантно-ассоциативной, если коммутант, то есть подалгебра алгебры M образованная всеми коммутаторами , является ассоциативной алгеброй. (ru)
|
rdfs:label
|
- Commutant-associative algebra (en)
- Коммутантно-ассоциативная алгебра (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |