dbo:abstract
|
- En mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est image d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l'ensemble image est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »). Pour désigner les ensembles de départ et d'arrivée d'une surjection, il est usuel de dire « de A sur B » au lieu de « de A dans B » comme pour une application en général. Dans le cas d'une fonction réelle d'une variable réelle, sa surjectivité est équivalente au fait que son graphe intersecte toute droite parallèle à l'axe des abscisses. Une application qui est à la fois surjective et injective est une bijection. (fr)
- En mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est image d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l'ensemble image est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »). Pour désigner les ensembles de départ et d'arrivée d'une surjection, il est usuel de dire « de A sur B » au lieu de « de A dans B » comme pour une application en général. Dans le cas d'une fonction réelle d'une variable réelle, sa surjectivité est équivalente au fait que son graphe intersecte toute droite parallèle à l'axe des abscisses. Une application qui est à la fois surjective et injective est une bijection. (fr)
|
rdfs:comment
|
- En mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est image d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l'ensemble image est égal à l'ensemble d'arrivée. Pour désigner les ensembles de départ et d'arrivée d'une surjection, il est usuel de dire « de A sur B » au lieu de « de A dans B » comme pour une application en général. Une application qui est à la fois surjective et injective est une bijection. (fr)
- En mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est image d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l'ensemble image est égal à l'ensemble d'arrivée. Pour désigner les ensembles de départ et d'arrivée d'une surjection, il est usuel de dire « de A sur B » au lieu de « de A dans B » comme pour une application en général. Une application qui est à la fois surjective et injective est une bijection. (fr)
|