dbo:abstract
|
- En mathématiques, une bijection est une application bijective. Une application est bijective si tout élément de son ensemble d'arrivée a un et un seul antécédent, c'est-à-dire est image d'exactement un élément (de son domaine de définition), ou encore si elle est à la fois injective et surjective. Les bijections sont aussi parfois appelées correspondances biunivoques. On peut remarquer que dans cette définition, on n'impose pas de condition aux éléments de l'ensemble de départ, autre que celle qui définit une application : tout élément a une image et une seule. S'il existe une bijection f d'un ensemble E dans un ensemble F alors il en existe une de F dans E : la bijection réciproque de f, qui à chaque élément de F associe son antécédent par f. On peut alors dire que ces ensembles sont en bijection, ou équipotents. Cantor a le premier démontré que s'il existe une injection de E vers F et une injection de F vers E (non nécessairement surjectives), alors E et F sont équipotents (c'est le théorème de Cantor-Bernstein). Si deux ensembles finis sont équipotents alors ils ont le même nombre d'éléments. L'extension de cette équivalence aux ensembles infinis a mené au concept de cardinal d'un ensemble, et à distinguer différentes tailles d'ensembles infinis, qui sont des classes d'équipotence. Ainsi, on peut par exemple montrer que l'ensemble des entiers naturels est de même taille que l'ensemble des rationnels, mais de taille strictement inférieure à l'ensemble des réels. En effet, de dans , il existe des injections mais pas de surjection. (fr)
- En mathématiques, une bijection est une application bijective. Une application est bijective si tout élément de son ensemble d'arrivée a un et un seul antécédent, c'est-à-dire est image d'exactement un élément (de son domaine de définition), ou encore si elle est à la fois injective et surjective. Les bijections sont aussi parfois appelées correspondances biunivoques. On peut remarquer que dans cette définition, on n'impose pas de condition aux éléments de l'ensemble de départ, autre que celle qui définit une application : tout élément a une image et une seule. S'il existe une bijection f d'un ensemble E dans un ensemble F alors il en existe une de F dans E : la bijection réciproque de f, qui à chaque élément de F associe son antécédent par f. On peut alors dire que ces ensembles sont en bijection, ou équipotents. Cantor a le premier démontré que s'il existe une injection de E vers F et une injection de F vers E (non nécessairement surjectives), alors E et F sont équipotents (c'est le théorème de Cantor-Bernstein). Si deux ensembles finis sont équipotents alors ils ont le même nombre d'éléments. L'extension de cette équivalence aux ensembles infinis a mené au concept de cardinal d'un ensemble, et à distinguer différentes tailles d'ensembles infinis, qui sont des classes d'équipotence. Ainsi, on peut par exemple montrer que l'ensemble des entiers naturels est de même taille que l'ensemble des rationnels, mais de taille strictement inférieure à l'ensemble des réels. En effet, de dans , il existe des injections mais pas de surjection. (fr)
|
rdfs:comment
|
- En mathématiques, une bijection est une application bijective. Une application est bijective si tout élément de son ensemble d'arrivée a un et un seul antécédent, c'est-à-dire est image d'exactement un élément (de son domaine de définition), ou encore si elle est à la fois injective et surjective. Les bijections sont aussi parfois appelées correspondances biunivoques. On peut remarquer que dans cette définition, on n'impose pas de condition aux éléments de l'ensemble de départ, autre que celle qui définit une application : tout élément a une image et une seule. (fr)
- En mathématiques, une bijection est une application bijective. Une application est bijective si tout élément de son ensemble d'arrivée a un et un seul antécédent, c'est-à-dire est image d'exactement un élément (de son domaine de définition), ou encore si elle est à la fois injective et surjective. Les bijections sont aussi parfois appelées correspondances biunivoques. On peut remarquer que dans cette définition, on n'impose pas de condition aux éléments de l'ensemble de départ, autre que celle qui définit une application : tout élément a une image et une seule. (fr)
|